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In this paper, we introduce a quantum walk whose local scattering at each vertex is denoted by a unitary
circulant matrix, namely, the circulant quantum walk. We also introduce another quantum walk induced by the
circulant quantum walk, namely, the optical quantum walk, whose underlying graph is a 2-regular directed graph
and obtained by blowing up the original graph in some way. We propose a design of an optical circuit which
implements the stationary state of the optical quantum walk. We show that if the induced optical quantum walk
does not have +1 eigenvalue, then the stationary state of the optical quantum walk gives that of the original
circulant quantum walk. From this result, we give a useful condition for the setting of the circulant quantum
walks which can be implemented by this optical circuit.
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I. INTRODUCTION

Random walks on finite graphs play key roles for analysis
of the electrical network (e.g., Ref. [1]) and cutoff phenomena
(e.g., Refs. [2,3]). Quantum walks (QWs) are known as the
quantum counterpart of such random walks [4,5]. Although
the application of QWs to a quantum search algorithm is one
of the more remarkable applications [6–8], we also anticipate
that such a quantum version of the application will be de-
veloped. It is well-known that irreducible random walks on
a finite graph converges to the stationary state in the long time
limit. This is very fundamental to such applications of random
walks. The convergence to the stationary state of random
walks is supported by the fact that all the absolute values of
the eigenvalues except ±1 are strictly smaller than 1 because
these eigenvalues converge to 0 by the exponentiation of the
time steps. On the other hand, the eigenvalues of QWs live
on the unit circle in the complex plan. Thus every eigenvalue
having the overlap to the initial state asserts its existence even
in the long time limit, in general, since the absolute value
of the eigenvalue is the unit. Indeed, in the quantum search
algorithm, a high probability at the marked vertices is obtained
in an asymptotic periodicity of the time evolution with respect
to the sufficiently large number of vertices. This derives from
the eigenvalues each of whose eigenspace has a large overlap
to the initial state. Then if we miss the optimal timing of the

observation, we may have a very low probability of finding
the marked vertex [9].

Thus, it is natural to consider finding a stationary state
of a QW as a fixed point of a dynamical system [10,11].
In Refs. [12–14], such a QW model where the dynamics
converges to a stationary state is proposed by considering a
semi-infinite system. In this model, the boundary of the graph
and the initial state are set so the unitary time evolution on
the whole space, which includes the outside of the graph,
describes that some quantum walkers penetrate as the inflow
from the outside of the graph to the boundaries and some
quantum walkers go out from the boundaries to the outside
of the graph as the outflow at every time step. Then it is
mathematically shown the dynamical system based on this
QW model converges to a fixed point as a stationary state
since the inflow to the graph and outflow to the outside are
balanced in the long time limit [12–14]. For example, it is
shown that the stationary state of the Szegedy walk induced
by a reversible random walk with a constant inflow can be
expressed by using the current of an electrical circuit [15].

Then, because discrete-time QW is implemented on one-
and two-dimensional lattices (see, for example, Refs. [16–18]
and references therein) and also continuous-time QW is im-
plemented on the circulant graph [19], and so on, we attempt
to consider an implementation of a discrete-time QW having
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FIG. 1. The island of the blow-up graph (left side), the island mounted with optical elements (middle), and the simplified version of the
island mounted with optical elements (right side). This figure corresponds to the islands of G̃(BU,ξ ) for N = 3, where each island of G̃(BU,ξ ) is a
directed graph with two inputs (i, s) and two outputs (o, s) (for example, on the left, we can see the vertices where i1 and s3 are inputs and o1
and s1 are outputs). The island on the right is a simplified equivalent of the middle optical island.

the stationary state as a dynamical system on the symmetric
digraph induced by a general undirected and connected graph
substituting the symmetric arcs into each undirected edge. In
Ref. [20], the stationary state of a discrete-time QW model on
the one-dimensional lattice gives the stationary Schrödinger
equation with delta potentials on R [21] and a possible ap-
proach to the implementation of this QW model using the
optical circuit is suggested; the internal graph corresponds
to a finite path graph in the setting of our QW treated here.
The more detailed mathematical discussion in Ref. [20] from
the viewpoint of the spectral and scattering theory can be
seen in Ref. [22]. In this paper, based on an idea inspired
by Refs. [16,20], in particular, we propose the design of an
optical circuit implementing our QW model on a general
graph which converges to a stationary state. Moreover, we
mathematically find a useful setting of this QW model where
the stationary states can be implemented by using this op-
tical circuit, although technical difficulties remain in terms
of the implementation. The QW model of our target for the
implementation is called the circulant QW. The quantum coin
assigned at each vertex, which describes the manner of scat-
tering at each vertex u ∈ V , is given by a d (u)-dimensional
circulant matrix. Here d (u) is the degree of the vertex u.
The circulant matrix is diagonalized by the discrete Fourier
matrix and related to coding theories [23]. The circulant
matrix assigned at each vertex coincides with the scattering
matrix describing the response of our proposed optical circuit
(see Fig. 1).

The main idea of the implementation of the quantum coin
is that we embed this local optical circuit into each vertex as
the quantum coin and we regard each boundary of the circuit
as the gateway leading into one of the adjacent vertices (see
Figs. 2, 3, and 4). We heuristically show that this resulting
large optical circuit can be represented by the stationary state
of another QW model—namely, an optical QW. The under-
lying graph of the optical QW is a blow-up digraph of the
original graph which is two-regular. This two-regularity is
represented by horizontal and vertical polarization of the light
|H〉 and |V 〉 in the optical circuit in our proposed very ideal
design. To implement the original QW by this optical circuit,
the theoretical problem is to clarify the relation between sta-

tionary states of the circulant QW and optical QW. So, if such
a stationary state of the circulant QW coincides with that of
the optical QW, we say that the optical QW implements the
underlying circulant QW. In this paper, we mathematically
show a useful sufficient condition for the implementation.
The sufficient condition provides a concrete setting of the
implementing optical circuit. The setting breaks a kind of
symmetricity (see Theorem 2 and Figs. 9 and 10) with respect
to the orientation of the circuit or with respect to the quantum
coins.

The rest of this paper is organized as follows. In Sec. II,
the circulant QW on graph G = (V, A) is introduced. The
quantum coin assigned at each vertex is a circulant matrix
induced by a two-dimensional unitary matrix Hu. The circu-
lant QW is determined by the sequence {Hu}u∈V and labeling

FIG. 2. The island implemented with the optical elements shown
on the right of Fig. 1, with N generalized(the figure shown here is for
N = 8, but it can be extended to general circumscribed polygons).
Mirrors are eliminated and the angle of incidence and reflection at
the PBS are not taken into account (generally, the angle of incidence
and reflection would be 90◦, but that is just a matter of changing the
direction of the optical path). Each location of HWP corresponds to
an individual vertex of the island. Each PBS plays two roles, both
receiving the inflows with a superposition of H and V polarizations
from the backward HWP and with H polarization from the outside,
and sending the outflow with V polarization to the forward HWP and
with H polarization to the outside.
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FIG. 3. The original graph G0 (left) and its blow-up graph G̃(BU,ξ ) (right). The labeling ξ is set as follows: ξu(tail) = 0, ξu((v, u)) = 1,
ξu((z, u)) = 2; ξv (tail) = 1, ξv ((w, v)) = 2, ξv ((z, v)) = 3, ξv ((u, v)) = 0; ξw (tail) = 2, ξw ((z,w)) = 0, ξw ((v,w)) = 1; ξz(tail) = 3,
ξz((u, z)) = 0, ξz((v, z)) = 1, ξz((w.z)) = 2. For example; (i) there is an arc from (u; 2) to (u; 0) because the terminal vertices are commonly
u and 2 + 1 = 0 in the modulus of deg(u) = 3, which satisfies the connected condition (1) in Definition 3, and (ii) there are symmetric arcs
between vertex (v; 2) and (w; 1) in G̃(BU;ξ )

0 because we can check that o(ξ−1
v (2)) = o((w, v)) = w and o(ξ−1

w (1)) = o((v,w))) = v, which
satisfies the connected condition (2) in Definition 3.

{ξu}u∈V , where ξu : Au → {0, . . . , deg(u) − 1} is a bijection
map. Here Au is the set of all the arcs of G whose terminal
vertices are u ∈ V . In Sec. III, we introduce the optical QW
on the blow-up directed graph induced by the original graph
of the circulant graph. Then the optical QW is determined
by the same parameters of the circulant QW. Our target is to
find a useful condition for the setting of the circulant QW in
which the stationary state of the circulant QW can be obtained
by referring to that of the optical QW. The motivation for
the target derives from the expectation that the optical QW
can be implemented by an optical circuit using polarizing

elements proposed by Sec. IV. In particular, the design of
the optical circuit is proposed for the circulant QW on an
arbitrary connected graph in Sec. IV. In Sec. V, we demon-
strate numerically the case for the complete graph with ten
vertices, K10. The first example is the case that the imple-
mentation works while the second example is the case that
the implementation does not work. In Sec. VI, a solution to
the concrete labeling way {ξu}u∈V for the implementation is
proposed using a key proposition. The key proposition gives a
sufficient condition for the implementation: If the induced op-
tical QW does not have eigenvalue 1, then the implementation

FIG. 4. G′ (left) and the design of the optical circuit (right). To highlight the act of drawing the circuit, we include G̃(BU,ξ ) in gray on the
left. We draw the circumscribed polygons around each island (blue arcs) and place the vertices on the corners and in the midpoint of each side.
Then, the sides of the circumscribed polygon correspond to Acycle

0 . On the other hand, all the arcs in Ã0 are reconnected as depicted on the left.
For example, the symmetric arcs between (u; 1) and (v; 0) are reconnected by changing the origin and terminal vertices to the corresponding
corners of the circumscribed polygon. We set the half-wave plate on each black vertex and the polarizing beam splitter on each white vertex as
depicted on the right.
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works. In Sec. VII, we present the useful conditions for the
implementation in the complete graph KN case. In Sec. VIII,
we give the proof for the key proposition. Finally, we provide
the summary and discussion of our results. The important
notations are listed in the last page.

II. CIRCULANT QUANTUM WALK ON GRAPHS

A. Setting of the graph and labeling

Let G = (V, A) be a connected digraph where V is the set
of the vertices and A is the set of arcs. If every arc a ∈ A
has the inverse arc ā ∈ A, we call this graph a symmetric
digraph. The terminal and origin vertices of a ∈ A are denoted
by t (a) and o(a), respectively. Let G0 = (V0, A0) be a finite
and connected symmetric digraph. To this original graph G0,
in this paper, we connect the semi-infinite path to every vertex.
This resulting infinite graph is denoted by G̃0 = (Ṽ0, Ã0). We
set the degree of vertex u ∈ V0 by

deg(u) := {a ∈ Ã0 | t (a) = u} = {a ∈ Ã0 | o(a) = u}.
The set of the boundary of G0; ∂A± is defined by

∂A+ = {t (a) ∈ V0, o(a) /∈ V0 },
∂A− = {o(a) ∈ V0, t (a) /∈ V0}.

In the following, we introduce the concept of the labeling,
which plays an important role in describing the time evo-
lution of the QWs treated here. Let Au ⊂ Ã0 be the set of
arcs whose terminal vertices are commonly u ∈ Ṽ0; that is,
Au = {a ∈ Ã0 | t (a) = u}.

Definition 1. Labeling of arcs : The labeling of the arcs of
G̃0 = (Ṽ0, Ã0) is defined by the series of the bijection maps
(ξu)u∈Ṽ0

. Here ξu is a bijection map such that

Au → {0, . . . , deg(u) − 1}.
Note that the number of choices of the labeling ξ = (ξu)u

of G̃0 is
∏

u∈V0
deg(u)!; we choose a labeling from one of these

choices.

B. Circulant quantum walk

In this subsection, we introduce the circulant QW on the
infinite graph G̃0 = (Ṽ0, Ã0) with the labeling ξ = (ξu)u∈Ṽ0

,
which has tails defined as described in the previous subsec-
tion. For a discrete set �, we define C� as the vector space
whose standard basis is described by each element of �; that
is, C� = span{δω | ω ∈ �}. Here δω is

δω(ω′) =
{

1 : ω = ω′
0 : ω �= ω′.

For a two-dimensional unitary matrix assigned at each vertex
u ∈ V0,

Hu =
[

au bu

cu du

]
,

we introduce the following deg(u)× deg(u)- circulant ma-
trix Circ(Hu) induced by the 2×2-matrix Hu, such that
[Circ(Hu)]deg(u)−1

i, j=0 = w
(u)
i− j , where i − j is the modulus of

deg(u); that is,

Circ(Hu)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w
(u)
0 w

(u)
deg(u)−1 w

(u)
deg(u)−2 · · · w

(u)
1

w
(u)
1 w

(u)
0 w

(u)
deg(u)−1 · · · w

(u)
2

w
(u)
2 w

(u)
1 w

(u)
0 · · · w

(u)
3

...
. . .

. . .
. . .

...

w
(u)
deg(u)−1 w

(u)
deg(u)−2 w

(u)
deg(u)−3 · · · w

(u)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(1)

Here w
(u)
� is defined by

w
(u)
0 = du + bucu

1 − aκ
u

aκ−1
u ,

w
(u)
� = bucu

1 − aκ
u

a�−1
u (� = 1, . . . , κ − 1).

Throughout this paper, we assume aubucudu �= 0 to avoid a
trivial dynamics of the QW.

Assumption 1. For any u ∈ V0, we assume aubucudu �= 0.
The deg(u) × deg(u) matrix; Circ(Hu), is a unitary matrix;

see Lemma 3 for more details.
To explain exactly how the QW iterates the time evolution

on the graph G̃0 with the labeling ξ driven by the circulant ma-
trix, let us introduce χu : CÃ → C[deg(u)] by the restriction to
C[deg(u)] such that (χuψ )(a) = ψ (ξu(a)). The adjoint operator
is described by

(χ∗
u f )(a) =

{
f (ξ−1(a)) : a ∈ Au

0 : a /∈ Au.

A matrix representation of the map χu is expressed by the
deg(u) × ∞ matrix,

χu
∼= [Ideg(u) | 0 ],

under the decomposition of the set of arcs into Au � (Ã \ Au).
Now we are ready to give the definition of the circulant QW
on graph G̃ with the labeling ξ .

Definition 2. Circulant QW on G̃0: QW (G0; {Hu}u∈V0 ;
{ξu}u∈Ṽ0

)
(i) The total vector space: CÃ0

(ii) The time evolution operator:

Ũ0 = U (G0; {Hu}u∈V0 ; {ξu}u∈Ṽ0
) = SC.

Here S is the flip flop shift operator such that (Sψ )(a) = ψ (ā)
for any ψ ∈ CÃ, a ∈ Ã, and C is defined by

C =
⊕
u∈Ṽ

χ∗
u Cuχu

under the decomposition of CÃ0 = ⊕u∈Ṽ0
CAu , where

Cu =
{

Circ(Hu) : u ∈ V0

σX : u /∈ V0,

and σX is the Pauli matrix.
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(iii) The initial state:

ψ0(a) =
{

1 : a /∈ A0, dist(o(a),V0) > dist(t (a),V0)
0 : otherwise.

We call this QW the circulant QW on G0.
It is possible to extend this initial state, for example, by

setting the inflow to each vertex represented by α ∈ CV such
that

ψ0(a) =
⎧⎨
⎩α(u) :

a ∈ A(Pu) (u ∈ V0),
dist(o(a),V0) > dist(t (a),V0)

0 : otherwise.

Here A(Pu) is the set of arcs of the tail connected to vertex
u ∈ V0. The QW with such an initial state also converges to a
stationary state [12–14]. In this paper, we fix the initial state
as the uniform for simplicity.

Let us explain the important points of the time iteration of
this QW. Let ψn be the nth iteration by ψn+1 = Ũ0ψn. The
dynamics on the tails is free such that if the arcs of a tail
are labeled by a0, a1, a2, . . . with o(a0) ∈ V0, t (a j ) = o(a j+1)
( j = 0, 1, 2, . . . ), then[

ψn+1(a j+1)
ψn+1(ā j )

]
= σX

[
ψn(ā j+1)
ψn(a j )

]
=

[
ψn(a j )

ψn(ā j+1)

]
. (2)

This means that a quantum walker is perfectly transmitting at
each vertex on the tails. Note that the free QW on the tails is
independent of the labeling of the vertices. On the other hand,
the QW in the internal graph depends on the labeling. At each
vertex on the internal graph G0, a quantum walker is scattered
by Circ(Hu) as follows:⎡

⎢⎣ ψn+1
(
ξ−1

u (0)
)

...

ψn+1
(
ξ−1

u (deg(u) − 1)
)
⎤
⎥⎦

= Circ(Hu)

⎡
⎣ ψn

(
ξ−1

u (0)
)

...

ψn
(
ξ−1

u (deg(u) − 1)
)
⎤
⎦ (3)

for any u ∈ V0. The initial state ψ0 is set so ψn(a) = ψ0(a)
for any n � 0 and a ∈ ∂A+. Therefore, a quantum walker is
provided to the internal graph G0 as the inflow from ∂A+ while
a quantum walker is consumed as the outflow to ∂A− at every
time step.

III. OPTICAL QUANTUM WALK
ON THE BLOW-UP GRAPHS

In this section, we introduce another QW on the blow-up
graph induced by G̃0 = (Ṽ0, Ã0) with the labeling ξ . This QW
is called the optical QW. As we will see, the optical QW is
implemented by a circuit of the optical polarizing elements in
theory. Moreover, the stationary state of the optical quantum
walk coincides with that of the circulant quantum walk under
some conditions.

To explain the implementation design and the condition in
greater detail, let us first introduce the definitions of the blow-
up graph and the optical quantum walk precisely.

A. Blow-up graph

Let G̃0 = (Ṽ0, Ã0) be the original graph with the
tails. Recall that the bijection map ξu : Au → [deg(u)] :=
{0, . . . , deg(u) − 1} is assigned at each vertex u as defined by
the previous section. The labeling is denoted by ξ := (ξu)u∈Ṽ0

.
Under this setting, the blow-up graph of G̃0 is defined as
follows. See also Fig. 3.

Definition 3. Blow-up graph of G̃0 with the labeling ξ :
G̃(BU,ξ )

0 = (Ṽ (BU,ξ )
0 , Ã(BU,ξ )

0 ).
The vertex and arc sets are defined as follows:

Ṽ (BU,ξ )
0 = V (BU)

0 ∪ (Ṽ0 \ V0), (4)

Ã(BU,ξ )
0 = A(BU,ξ )

0 ∪ (Ã0 \ A0). (5)

Here

V (BU)
0 := �u∈V0{(u; ξu(a)) | t (a) = u}

and A(BU,ξ )
0 is defined as follows. There is an arc from (u; j) ∈

V (BU,ξ )
0 to (v; �) ∈ V (BU,ξ )

0 in G̃(BU,ξ )
0 ; that is, ((u; j), (v; �)) ∈

A(BU,ξ )
0 , if and only if either of the following two conditions

hold:
(i) u = v and � = j + 1 in the modulus of deg(u) or
(ii) v = o(ξ−1

u ( j)) and u = o(ξ−1
v (�)) in G̃0.

Each tail connecting to vertex u ∈ V0 in the original graph
G̃0 is connected to the vertex (u; ξu(a)) with a ∈ ∂A+ in the
blow-up graph G̃(BU,ξ )

0 .
The blow-up graph is constructed by (i) blowing up each

vertex u ∈ V (G0) as the directed cycle following the labeling
ξu and by (ii) connecting to other oriented cycles by the
symmetric arcs following the original connection in G0. Then,
if vertices u and v are connected in G0, there are symmetric
arcs between the directed cycle of u obtained by (i) and that
of v in G̃0. We call the directed cycle of u in the new graph
G̃(BU,ξ )

0 obtained by (i) the island of u. The set of all the arcs
in all the islands is denoted by Acycle

0 , which is the set of arcs
of the oriented cycles by the blowing up. On the other hand,
since the arcs obtained by (ii) in Definition 3 are isomorphic
to Ã0, we denote this set by Ã0 itself to reduce the number of
notations.

Remark 1. The set of arcs Ã(BU,ξ )
0 is divided into

Ã(BU,ξ )
0 = Acycle

0 � Ã0.

The blow-up graph is not a symmetric-directed graph; that
is, the existence of the inverse arc is not ensured and it has
more vertices and arcs than the original graph, which would
seem to be suggest a complexity. On the other hand, it has the
following nice property.

Remark 2. The blow-up graph is a 2-regular digraph; that
is, for every vertex u ∈ Ṽ (BU,ξ )

0 , the in degree and the out
degree are two; one pair of in arc and out arc belongs to Acycle

0
and the other belongs to Ã0.

The reason for replacing the original vertex u in G̃0 with
island u in G̃(BU,ξ ) is to represent the two polarizations of
the optics as follows. A quantum optics is driven by two
polarizations represented by |V 〉 = [1, 0]� and |H〉 = [0, 1]�.
Instead of such a complexity of the blowing up graph, we
obtain a representation of the two internal degrees of freedom
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on every vertex in the blow-up graph because of the two-
regularity. The subset Ã0 keeps the fundamental structure of
the original graph. This fact will play an important role in
the implementation of the circulant QW on graph G̃0 by a
quantum optics.

B. Optical quantum walk and the motivation

The time evolution operator of the optical QW is deter-
mined by the parameters of the previous circulant QW. The
graph of the optical QW is the blow-up graph G̃(BU,ξ )

0 . Recall
that the in and out degrees of the blow-up graph are two. The
vector space of the time evolution is represented by CÃ(BU,ξ )

0 .
The scattering at each vertex (u; j) is expressed by Hu. More
precisely, we define the optical QW as follows.

Definition 4. Optical QW on G̃(BU,ξ)
0 :Opt(QW(G0; H; ξ )).

(i) The vector space: CÃ(BU,ξ )
0 .

(ii) The time evolution: Let ain ∈ Acycle
0 , bin ∈ Ã0 be the

arcs whose terminal vertices are (u; j), and aout ∈ Acycle
0 ,

bout ∈ Ã0 be the arcs whose origins are also (u; j). Then the
time evolution operator U (BU) is defined as follows:[

(U (BU)ψ )(aout )
(U (BU)ψ )(bout )

]
= Hu

[
ψ (ain )
ψ (bin )

]
(6)

for any ψ ∈ CÃ(BU,ξ )
0 . On the tails, the dynamics of the QW is

free; that is, it follows (2).
(iii) The initial state:

ψ0(a) =
⎧⎨
⎩1 :

a /∈ A(BU,ξ )
0 ,

dist
(
o(a),V (BU)

0

)
> dist

(
t (a),V (BU)

0

)
0 : otherwise.

Our interest is how the optical QW imitates the original
circulant QW. One of them can be implemented by a quantum
optics in theory. An experimental implementation of ψ

(BU)
∞ by

optical polarizing elements is proposed in Sec. IV. According
to Ref. [14], both of the stationary states for the circulant QW
and its induced optical QW exist:

Theorem 1 ([14]). Let ψn and ψ (BU)
n be the nth iterations

of the circulant QW and its induced optical QW. Then we have

∃ lim
n→∞ ψn =: ψ∞, ∃ lim

n→∞ ψ (BU)
n =: ψ (BU)

∞ .

We can then focus on their stationary states and the condi-
tion for the two stationary states to coincide.

Definition 5. Notion of the implementation in this paper
: We say that the optical QW implements the underlying
circulant QW if

ψ (BU)
∞ (a) = ψ∞(a) for any a ∈ Ã0.

In Sec. V, we give examples by numerical simulation.

IV. A CIRCUIT OF OPTICAL POLARIZING ELEMENTS
FOR THE OPTICAL QUANTUM WALK

In this section, we propose the design of the optical circuit
implementing the optical QW in an ideal environment where
the phase is matched in each interference and there is no
attenuation. Improvement points for a more realistic design
are discussed in the final section.

First, we introduce our idea for the implementation of the
island in G̃(BU,ξ )

0 by using the half wave plate (HWP) and
polarizing beam splitter (PBS) so the output to arbitrary input
of this optical circuit is represented by our circulant matrix.
Second, we explain how to connect each implemented circuit
to reproduce the dynamics on the optical QW.

A. Design of U (BU)|island u

In this subsection, we design the parts of the circuit for the
optical QW which will be placed on the islands in the blow-up
graph. The island u is represented by a directed cycle with the
tails. Let �CN be such a directed graph with N vertices. See
Fig. 1 for the N = 3 case. We introduce an implementation of
the QW restricted to the island �CN driven by 2 × 2 matrix H
by optical polarizing elements. Let us explain the implemen-
tation by the following three steps.

1. Direct implementation (N = 3).

First, let us focus on the implementation for the N = 3
case. The stationary state of the QW on the left side of Fig. 1,
�C3, is described as [

sk

ok

]
= H

[
sk−1

ik

]
(7)

for any k = 0, 1, 2. The middle of Fig. 1 depicts a direct im-
plementation approach in which the dynamics of the QW on
the island is mounted with optical elements. Each HWP in the
middle figure is sandwiched between two PBSs (surrounded
by dotted lines), which corresponds to one of the vertices of
�C3. There are two modes of polarization, H polarization and V
polarization. The fundamental idea of our implementation is
that we establish a correspondence between the arcs of �C3 and
the modes of polarization; that is, each arc of the triangle in the
left part of the figure corresponds to the V polarization while
each arc of the tail in the left part of the figure corresponds to
the H polarization. Since PBS is responsible for transmitting
an H polarization and reflecting a V polarization, the first PBS
in the vertex k (k = 1, 2, 3) represents the situation that the
vertex k receives the inflow of quantum walkers from both
inside (sk−1) and outside (ik) while the second PBS represents
the situation that the vertex k sends the outflow to both inside
(sk) and outside (ok). We have set the inflow vectors [sk−1 ik]�
and outflow vectors [sk ok]� (k = 1, 2, 3) in (7). With PBS
alone, there is no factor that can affect the polarization state.
Then we set the HWP between the two PBSs, which shifts the
phase of each polarization; as a consequence, input H polar-
ization results in a superposition of the H and V polarizations.
Thus, the sandwiched HWP represents the unitary operator H
in (7). In summary, the sandwiched HWP plays the role of
the operation of quantum coin H , while the first and second
PBSs play the role of giving the inflow of a quantum walker
to vertex k represented by [sk−1 ik]� and the outflow of a
quantum walker from the vertex k represented by [sk ok]� in
(7), respectively.

Note that it is possible to make an arbitrary unitary ma-
trix H by setting additional quarter-wave plates [24]. More
precisely, arbitrary two-dimensional unitary matrix H can be
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represented by

H = eiδ/2 exp
(− 1

2 iξσ2
)

exp
(

1
2 iησ3

)
exp

(− 1
2 iζσ2

)
,

with some real-valued four parameters δ, ξ , η, ζ . Such unitary
matrix can be implemented by two quarter-wave plates and
one HWP such that

H = eiδ/2Q̃

[
ξ

2
+ π

4

]
H̃

[
ξ + η − ζ

4
− π

4

]
Q̃

[
−ζ

4
+ π

4

]
,

(8)

[24], for example. Here H̃ [θ ] (respectively, Q̃[θ )]) corre-
sponds to the half- (respectively, quarter-) wave plate with
slow axis at θ angle, respectively, that is,

H̃ [θ ] = C[θ, π ], Q̃[θ ] = C[θ, π/2],

with

C[θ, η] := e−iθσ2

[
eiη/2 0

0 e−iη/2

]
eiθσ2 .

The phase shifter eiδ/2 is implemented by adjusting the optical
path length in the circuit, for example. Throughout this paper,
HWP denotes the set of two quarter-wave plates, one HWP,
and the phase shifter represented by (8), which implements the
unitary matrix H . Also note that there are fixed-end and free-
end reflections in PBSs. In the situation we are considering
here, the V polarization only appears on sk , corresponding to
the vertex k of the island. Therefore, at ik and ok , where V
polarization does not need to be taken into account, there is
no reflection at the PBS and the phase π is not affected by the
fixed end. For these reasons, the island shown on the right of
Fig. 1 should be mounted so the fixed-end faces the outside of
the island.

2. Economical implementation (N = 3)

In the second step, to reduce the optical elements, we intro-
duce an economical design as depicted on the right of Fig. 1.
Let us explain that we can omit the route between the first PBS
in the forward vertex and the second PBS in the backward
vertex in the middle of Fig. 1, which means that we combine
the PBS for the inflow placed in vertex k with the PBS for
the outflow placed in vertex k − 1 (k = 0, 1, 2). In the middle
of Fig. 1, let us focus on the optical route denoted by the arc
from the HWP to the second PBS placed in vertex 3. Let us
denote the state on this arc by w3. This state w3 is described
by a superposition of polarizations H and V. The outflow o3

corresponds to the V polarization while s3 corresponds to the
H polarization. The state s3 will be reflected on the first PBS
placed in vertex 1. Then the state between the first PBS and
HWP placed in vertex 1 is described by s3 + i1. Next, let us
focus on the corresponding optical route between the HWP
and the combined PBS on the right side of Fig. 1. The state
before the combined PBS on the right is w3 and the state after
the combined PBS is split into s3 + i1 as the inflow to vertex
1 and o3 as the outflow from vertex 3. Then the response to
the inflows on the left of the figure is isomorphic to that of
the middle. Note that the in- and outflows on each PBS derive
from the different vertices in this implementation.

3. Extension to N � 3

As a third step, the idea for N = 3 can be extended to a
general N � 3. In Fig. 2, we draw the resulting design for
general N . The island with the vertices N ; �CN , can be con-
sidered in the same way as the right of Fig. 1. Each location
of the HWP corresponds to each vertex of the island. Each
PBS takes both roles, receiving the inputs from the backward
vertex and from the outside, and sending the outputs to the
forward vertex and to the outside. Then, the input from the
outside corresponds to a quantum walker from the outside to
the forward vertex, while the output to the outside corresponds
to a quantum walker to the outside from the backward vertex.
This means that at each PBS, the vertex of the output to the
outside shifts that of the input from the outside by one. This
observation will be important to design the whole circuit.

B. Drawing the circuit

We build the circuit by combining the above parts (islands).
We introduce the method drawing the circuit so each outflow
from an island is switched to another inflow to a neighboring
island. In the following, the blow-up graph G̃(BU,ξ )

0 is de-
formed to G′ = (HWP � PBS, A′) to draw the circuit. After
drawing graph G′, we place the HWP on each HWP vertex
in the island u and the PBSs on each PBS vertex in G′. Now
let us explain how to draw graph G′ from the blow-up graph
G̃(BU,ξ )

0 .

1. Vertex set

We begin by drawing the circumscribed polygon to each
original island in G̃(BU,ξ )

0 . The vertex set of G′ is constructed
by all the corners of the circumscribed polygons and all the
sides of the circumscribed polygons. The vertex subset on the
corners is denoted by PBS, while the vertex subset on the sides
is denoted by HWP. The HWP vertex is in one-to-one corre-
spondence with the vertex set of the original graph G̃BU,ξ

0 .

2. Arc set

Following the orientation of each island, the sides of the
circumscribed polygon with the subdivision by HWP vertices
are replaced with the arcs in G′. Next, let us define the re-
maining arcs in G′. Let us set the arc from the islands u to v

in G̃(BU,ξ )
0 by a ∈ Ã0. The origin and terminal vertices of a in

G̃(BU,ξ )
0 are denoted by (u; ξu(v)) and (v, ξv (u)), respectively.1

In G′, the arc a is replaced with the arc whose origin vertex
is the PBS vertex located in the corner between (u; ξu(v))
and (u; ξu(v) + 1) and the terminus vertex is the PBS vertex
located in the corner between (v; ξv (u)) and (v; ξv (u) − 1).
The same reconnection procedure is done to every arc in Ã0.
Then the new graph G′ is obtained.

The reason for the reconnection procedure is as follows.
From the consideration of the economical design in Sec. IV A

1Originally, the domain of ξu was the arc set whose terminal ver-
tices are u in G̃0, but since there is a one-to-one correspondence
between the above arcs and their origin vertices if G0 is a simple
graph, we change the domain to the vertex set for readability.
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(see also Fig. 2), we know that the PBS vertex between the
HWP vertex (u; ξu(v)) and (u; ξu(v) + 1) must play the two
roles, receiving inflow from the islands ξ−1

u (ξu(v) + 1) and
sending outflow to the island v. It is implied that the forward
PBS vertex of the HWP vertex located at (u; ξu(v)) sends the
outflow to the island v while the backward PBS vertex of
the HWP vertex located in (u; ξu(v) − 1) receives the inflow
from the island v. By switching the situation of the islands
from u to v, we see that the forward PBS vertex sends the
outflow to island u while the backward vertex receives the
inflow from island u. Thus, in the optical circuit graph G′, the
arc from (u; ξu(v)) to (v; ξv (u)) in G̃(BU,ξ )

0 must be replaced
with the arc from the PBS vertex between the HWP vertices
ξu(v) and ξu(v) + 1 to the PBS vertex between the HWP
vertices ξv (v) − 1 and ξv (u) in the optical design graph G′.
Then we realize the situation that each outflow from an island
is switched to another inflow to a neighboring island by using
the designs of U (BU)|island u’s. A more realistic implementation
and arising problems will be discussed in the final section.

V. DEMONSTRATION BY NUMERICAL SIMULATIONS

In this section, we examine whether a circulant QW on
the complete graph with ten vertices, K10, is implemented
by the corresponding optical QW by changing H . The arc
whose terminus is i and origin is j is denoted by (i, j), and
the arc whose terminus is i and origin is located in the tail is
denoted by (i, i) in G̃0. The labeling ξ = (ξ0, . . . , ξ9) is given
as follows:

ξi((i, j)) = j (9)

for every i, j = 0, . . . , 9. We consider the following two
examples. First, we consider the case in which the the im-
plementation is realized, and then we consider the case where
the implementation fails. For this purpose, we define a relative

FIG. 5. Time course of μn for the circulant QW with a marked
vertex in the setting of Example 1: The horizontal and vertical lines
are the time step and the relative probability of each vertex. The
blue (upper) line is the time course of the relative probability of
the marked vertex, the other lines are the time courses of the other
vertices.

probability of the circulant QW by

μn( j) =
∑

a∈Ã0:t (a)= j

|ψn(a)|2.

We also set

μBU
n ( j) =

∑
a∈Ã0:t (a)= j

∣∣ψBU
n (a)

∣∣2
,

and chase their time courses μn and μBU
n simultaneously. Note

that the summation is taken over Ã0 in the definition of μ(BU)
n

because the implementation is determined at the original arcs
of G0 by Definition 5. The existence of limits of n → ∞ to
μn and μBU

n is ensured by Theorem 1. We call limn→∞ μn a
stationary measure of the circulant QW.

Example 1. K10 with a marked vertex: We choose the vertex
0 in the set of vertices {0, . . . , 9} as the marked vertex. The
circulant coin assigned at each vertex is denoted by Circ(Hj ).
Here Hj is set so a perturbation is given only at the marked
element 0 as follows:

Hj =

⎧⎪⎪⎨
⎪⎪⎩

[
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

]
: j = 0[

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
: otherwise

for j = 0, . . . , 9. The unitary matrix H0 can be imple-
mented by setting ξ = −ζ = 2 arccos

√
p, η = −π and δ =

π as the parameters of the half- and quarter-wave plates
and the phase shifter, respectively, in (8), while the uni-
tary matrix Hj for ( j �= 0) can be implemented by setting
ξ = ζ = −θ , η = 0 and δ = 0. Here p := (1 + 1/

√
2)/2.

Figure 5 shows the time course of the relative probability
at each vertex 0, . . . , 9. The blue (upper) curve describes
the time course of the relative probability of vertex 0,
which is the marked vertex. We observe that although the
timescales of the convergence are different, the station-
ary measures converge to the same value for every vertex
in Fig. 6. This is theoretically supported by Theorem 2

FIG. 6. Time course of μBU
n for the optical QW with a marked

vertex induced by the left circulant QW: The blue (upper) line is the
time course of the relative probability of the marked vertex, the other
lines are the time courses of the other vertices.
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FIG. 7. Time course of the relative probabilities of the uniform
circulant QW in the setting of Example 2.

because there are arcs in G(BU;ξ )
0 satisfying condition (ii) in

the corollary; these arcs are (0,1) and (0,9) and their inverses.
Example 2.(K10 with the uniform setting) We assign Hj’s

uniformly by

Hj =
[

1/
√

2 1/
√

2
1/

√
2 −1/

√
2

]

for any j = 0, . . . , 9. From the symmetry on the time evo-
lution with respect to each vertex, the stationary measure on
each vertex is the same. In Figs. 7 and 8, we observe that
although both the circulant QW and its induced optical QW
converge to some stationary measures, the convergence values
are different.

VI. MATHEMATICAL RESULTS

The following sufficient condition for the accomplishment
of the implementation is the key to our main results:

Proposition 1. Let H = (Hu)u∈V0 and ξ = (ξu)u∈V in the
setting of the circulant quantum walk QW(G0; H; ξ ) on G̃0.
If ker(1 − U (BU ) ) = {0}, then Opt(QW(G0; H; ξ )) on G̃(BU,ξ )

0
implements QW(G0; H; ξ ) on G̃0.

Proof. See Sec. VIII. �
The following theorem gives a sufficient condition for

ker(1 − U (BU)) = {0}, which illustrates two kinds of the set-
ting of the optical QW. See Figs. 9 and 10; a kind of symmetry
is broken around the boundary because (i) the rotational ori-
entations of the connected islands are opposite each other or
(ii) the assigned coins of the connected islands are different.

Theorem 2. (The symmetry-breaking designs for the im-
plementation.)

Assume that

Hu =
[

au bu

cu du

]

satisfies aubucudu �= 0 for any u ∈ V0. If there is an arc e ∈ A0

satisfying each of them:
(i) ξo(e)(ē) − ξo(e)(t ) = ξt (e)(e) − ξt (e)(τ ) = ±1 or
(ii) ξo(e)(ē) − ξo(e)(t ) = −(ξt (e)(e) − ξt (e)(τ )) = ±1 and

do(e) �= d∗
t (e),

FIG. 8. Time course of the relative probabilities of the uniform
optical QW induced by the left circulant QW.

where t, τ ∈ ∂A+ whose terminal vertices are located in the
islands o(e) and t (e), respectively, then Opt(QW(G0; H; ξ ))
implements QW(G0; H; ξ ). Here for a complex number z, z∗
is the conjugate of z.

Example 1 in Sec. V matches the setting of case (ii) in
Theorem 2. This is the reason that the stationary state of the
circulant QW coincides with that of its optical QW. Now we
give the proof using Proposition 1.

Proof. The arc in ∂A+ whose terminal vertex is u ∈ V0 is
denoted by τu. We set Bu ⊂ A(BU,ξ )

0 as the set of arcs whose
terminal or origin vertices are (u, ξu(τu)) (see Fig. 11):

Bu = {
a ∈ A(BU,ξ )

0 | o(a) = (u, ξu(τu)) or t (a) = (u, ξu(τu))
}
.

The eigenvector of eigenvalue 1 is denoted by ψ . Note that
ψ satisfies not only U BU,ξψ = ψ but also ||ψ ||2 < ∞. First,
let us see if the following fact holds:

supp(ψ ) ∩ (∪u∈V0 Bu) = ∅. (10)

In the tail, ψ (τu) = ψ (a1) = ψ (a2) = · · · and ψ (τ̄u) =
ψ (ā1) = ψ (ā2) = · · · (where o(τu) = t (a1), o(a1) =
t (a2), . . . ) holds. Then to ensure ||ψ || < ∞, the values
ψ (τu) and ψ (τ̄u) must be 0. From the definition of the time
evolution operator of this QW, letting e′

in, e′
out ∈ Bu, we

have [
ψ (e′

out)
ψ (τ̄u)

]
=

[
au bu

cu du

][
ψ (e′

in)
ψ (τ̄u)

]
,

which is equivalent to

ψ (τu) = (ψ (e′
out) − auψ (e′

in ))b−1
u ,

ψ (τ̄u) = cuψ (e′
in) + (ψ (e′

out ) − auψ (e′
in ))b−1

u du.

This implies that ψ (τu), ψ (τ̄u) = 0 if and only if
ψ (e′

out ), ψ (e′
in ) = 0. Then (10) holds.

Considering the contraposition of Proposition 1, we notice
that it is enough to show that if ker(1 − U BU) �= {0}, then
there are no arcs in A0 satisfying (i) or (ii). For a ∈ A0, let

022402-9



YUSUKE MIZUTANI et al. PHYSICAL REVIEW A 106, 022402 (2022)

FIG. 9. The symmetry breaking design in Theorem 2 (i) for the
implementation.

us put e1, e2 ∈ Acycle with t (e1) = (o(a); ξo(a)(ā)) and t (e2) =
(t (a); ξt (a)(a)) (see Fig. 11). Assume (i) holds, and consider
the +1 case. By (10), we have[

0
ψ (a)

]
=

[
ao(a) bo(a)

co(a) do(a)

][
ψ (e1)
ψ (ā)

]
,

[
0

ψ (ā)

]
=

[
at (a) bt (a)

ct (a) dt (a)

][
ψ (e2)
ψ (a)

]
.

From the unitarity of Ho(a) and Ht (a), we have ψ (a), ψ (ā) �= 0.
Taking the inverses of Ho(a) and Ht (a) to both equations, which
are the adjoints of them, we also have ψ (ā) = d∗

o(a)ψ (a) and
ψ (a) = d∗

t (a)ψ (ā). This implies |do(a)dt (a)| = 1. The unitarity
of Hu’s leads to |do(a)| = |dt (a)| = 1, which induces bu = cu =
0 (u ∈ {o(a), t (a)}). This is the contradiction to Assumption 1.
In the same way, the case for −1 in (i) can be proved. In the
next, let us assume (ii) holds. Consider +1 case. Then we have[

0
ψ (a)

]
=

[
ao(a) bo(a)

co(a) do(a)

][
ψ (e1)
ψ (ā)

]
,

[
ψ (ē2)
ψ (ā)

]
=

[
at (a) bt (a)

ct (a) dt (a)

][
0

ψ (a)

]
.

Taking the inverse, which is the adjoint of Ho(a), to the first
equation, we have d∗

o(a)ψ (a) = ψ (ā), while computing the
second equation directly, we have ψ (ā) = dt (a)ψ (a); which
implies ψ (ā)/ψ (a) = d∗

o(a) = dt (a). The −1 case also can be
done in the same way. �

VII. THE CONDITIONS OF ker(1 − UBU ) = 0 FOR KN CASE

In this section, let us consider the optical QW induced
by the circulant QW with the uniform circulant coin on the
complete graph with N vertices KN ; QW(KN ; H; ξ ). Here the
labeling ξ = (ξi )N−1

i=0 is the same as in (9) and the unitary
matrices H = (Hi )N−1

i=0 are denoted by

Hi = H =
[

a b
c d

]
,

with abcd �= 0. In this setting, we obtain a useful sufficient
condition to the parameters a, b, c, d of the circulant QW for
the implementation as follows.

Theorem 3. Let the circulant QW on KN be set as
described in the above. If d /∈ R or det(H )2N �= 1 for

FIG. 10. The symmetry-breaking design in Theorem 2 (ii) for the
implementation.

(N > 3), det(H )2N �= −1 for (N = 3), then the induced op-
tical QW implements the circulant QW.

In the setting of Example 2, the above condition is not
satisfied because det(H ) = −1 (a = b = c = −d = 1/

√
2).

Now let us move to the proof.
Proof. Let us first prepare the following key lemma for the

proof.
Lemma 1. Let N � 3 and � := det(H ). We have

dim ker(1 − U BU)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N/2 − 1 : d ∈ R, (−�)2N = 1, N is even

(N − 3)/2 :
d ∈ R, (−�)2N = 1, (−�)N �= 1,

N is odd

(N − 1)/2 : d ∈ R, (−�)N = 1, N is odd

0 : otherwise.

By Lemma 1, if d /∈ R or �2N �= 1, Theorem 1 implies that
the optical QW implements the underlying circulant QW. �

Now we focus on the proof of Lemma 1.
Proof of Lemma 1. Assume ker(1 − U BU) = 0. The label-

ing ξ satisfies with condition (ii) in Theorem 2. Then with the
(2,2) element of H ; d must be a real number. Let U BU� = �

and supp(�) be included in the internal blow-up graph. Each
vertex in G̃BU,ξ

0 is labeled by (�, m). Here � represents the
island and m represents the island heading from the island
�. The arc whose origin is (�, m) and terminus is (�, m + 1)
belongs to Acycle

0 , where m + 1 is the modulus of N , while the
arc whose origin and terminus are (�, m), (m, �), respectively,

FIG. 11. The vertex colored white is the vertex connecting to a
tail. The eigenvector of eigenvalue 1 does not overlap to Bu, for any
island u.
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belongs to Ã0. We define (�, �) as the vertex connecting to the
tail. We also define ((�, �), (�, �)) as the arc from (�, �) to the
tail. We set

�((�, m−1), (�, m)) =:z(�)
m , and �((�, m), (m,�)) =:x�,m.

Note that since the support of � is included in the internal
graph, x�,� = 0 for any � = 0, . . . , N − 1. All the indexes of
z and x are the modulus of N . Then we have the following
useful lemma.

Lemma 2. We have[
x�,m

xm,�

]
= 1

b

[
d 1
1 d

][
z(�)

m+1

−�z(�)
m

]
, (11)

[
z(�)

m+1

−�z(�)
m

]
= σX

[
z(m)
�+1

−�z(m)
�

]
(12)

for any �, m = 0, . . . , N − 1.
Proof. By inserting the time evolution of the optical QW

in Definition 4 into the eigenequation U BU� = �, we have[
z(�)

m+1
x�,m

]
=

[
a b
c d

][
z(�)

m
xm,�

]
,

[
z(m)
�+1

xm,�

]
=

[
a b
c d

][
z(m)
�

x�,m

]
. (13)

Solving x�,m and xm,� from each equation, we obtain[
x�,m

xm,�

]
= 1

b

[
d −�

1 −�d

][
z(�)

m+1

z(�)
m

]
,

[
xm,�

x�,m

]
= 1

b

[
d −�

1 −�d

][
z(m)
�+1

z(m)
�

]
. (14)

Here we used a = �d̄ = �d which derives from the unitarity
of H and Theorem 2. Then putting z(�)

m := [z(�)
m+1, z(�)

m ]�, we
have

1

b

[
d −�

1 −�d

]
z(�)

m = σX
1

b

[
d −�

1 −�d

]
z(m)
�

⇔
[

d 1
1 d

][
1 0
0 −�

]
z(�)

m = σX

[
d 1
1 d

][
1 0
0 −�

]
z(�)

m

⇔
[

1 0
0 −�

]
z(�)

m =
[

d 1
1 d

]−1

σX

[
d 1
1 d

][
1 0
0 −�

]
z(m)
�

⇔
[

1 0
0 −�

]
z(�)

m = σX

[
1 0
0 −�

]
z(m)
� .

Here we used [
1 d
d 1

]
σX = σX

[
1 d
d 1

]

in the last equivalence. �
From this lemma, we obtain two observations.
Observation 1.
Inserting � = m in (14), we have z(�)

�+1 = z(�)
� = 0 since

x�,� = 0. This is consistent with Theorem 2 in the case of (ii).
Observation 2.
Since �, m are arbitrarily chosen from 0, . . . , N − 1,

Eq. (12) is equivalent to z(�)
m = (−�)z(m−1)

� for any �, m =

0, . . . , N − 1. Starting from this, we recursively obtain

z(�)
m = (−�)z(m−1)

� = (−�)2z(�−1)
m−1

= (−�)3z(m−2)
�−1 = (−�)4z(�−2)

m−2

= · · ·
= (−�)2N−1z(m−N )

�−N+1 = (−�)2N z(�−N )
m−N = (−�)2N z(�)

m .

(15)

Then we have (−�)2N = 1 or z(�)
m = 0. If (−�)2N = 0, then

z(�)
m = 0 for all �, m and (12) implies x�,m = 0 for all �, m. This

is contradiction. Thus, at least (�)2N = 1 must be satisfied.
In the set of pairs of superscript and subscript [i, j] ∈

{[� − k, m − k] | k = 0, . . . , N} of z in the third column of
the above equations, the pair [�, m] first appears again as
[m − N, � − N]; on the other hand, in the second column,
there might be a k < N such that [� − k, m − k − 1] = [m, �]
in the modulus of N . But such a k can be identified with k =
� − m = (N − 1)/2. Thus, if such an appearance of k hap-
pens, the size N must be odd and the arc of z(�)

m is located in the
front of the vertex (�, �). In particular, if N = 3, since z(�)

�+1 =
z(�)
� , by the observation 1, every arc in the support of � living

in Acycle
0 is located in the front of the vertex (�, �) (� = 0, 1, 2).

Therefore, (−�)2k+1 = (−�)N must be 1 for N = 3. If N > 3
and N is even, the length of such a cycle is 2N from (15). This
means that we obtain the eigenvector which is constructed by
the orbit of 2N-length closed path starting from the arc of z(�)

m

and returning back to this arc. The number of arcs in A(cycle)
0

is N2, but Observation 1 implies the 2N arcs are eliminated as
the support of �. Then we have (N2 − 2N )/(2N ) = N/2 − 1
linearly independent eigenvectors of eigenvalue 1; that is,
dim ker(1 − U BU) = N/2 − 1 if N > 3 is even, and (�)2N =
1. On the other hand, if N > 3 and � − m �= (N − 2)/2, then
the length of the orbit of the closed path represented by (15) is
2N . Then, if N > 3 is odd and (−�)2N = 1 but (−�)N �= 1,
we have (N2 − (2N + N ))/(2N ) linearly independent eigen-
vectors of eigenvalue 1; while N > 3 is odd and (−�)N =
1, we have (N2 − (2N + N ))/(2N ) + 1 linearly independent
eigenvectors of eigenvalue 1. We have completed the proof of
Lemma 1. �

VIII. PROOF OF KEY STATEMENT (PROPOSITION 1)

Let us consider the stationary state of the optical QW ψBU

that satisfies U BUψBU = ψBU. The arcs of the island u in
G̃BU,ξ

0 are denoted by

Acycle
0,u := {

a ∈ Acycle
0 | t (a) = u in G̃0

}
= {

f0, . . . , fdegG̃0
(u)−1

} ⊂ Ã(BU,ξ )
0 .

Here we set t ( f j ) = (u; j) in G̃BU,ξ
0 for j = 0, . . . , degG̃0

(u)
(see Fig. 12). The restriction to the island u is defined by

ηu : CÃ(BU,ξ )
0 → CAcycle

0,u such that (ηuψ )(a) = ψ (a) for any a ∈
Acycle

0,u and ψ ∈ CÃ(BU,ξ )
0 ; the adjoint is

(η∗
u f )(a) =

{
f (a) : a ∈ Acycle

0,u
0 : otherwise.
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FIG. 12. Labeling of the arcs of island u in the proof of Lemma 3.

Note that ηuη
∗
u is the identity operator on CAcycle

0 while η∗
uηu is

the projection operator. Then we have

U BUψBU = ψBU

⇒ ηuU
BUψBU = ηuψ

BU

⇔ ηuU
BU(η∗

uηu + (1 − η∗
uηu))ψBU = ηuψ

BU

⇔ Euϕu,0 + ρu = ϕu,0,

where Eu := ηuU BUη∗
u , ϕu,0 := ηuψ

BU, and ρu := ηuU BU(1 −
η∗

uηu)ψBU . Let Pu be the cyclic permutation matrix on
C[κ] such that (Puφ)( j) = φ( j + 1) in the modulus of κ =
degG̃0

(u). Then it is easy to see that Eu is isomorphic to auPu.
Since |au| < 1, the inverse matrix of (1 − Eu) exists. Then we
have

ϕu,0 = (1 − Eu)−1ρu, (16)

where if we label the κ := degG̃0
(u) arcs from the outside

of island u whose terminal vertices in G̃BU,ξ
0 are (u; 0),

(u; 1), . . . , (u; κ − 1) by e0, . . . , eκ−1, respectively (see
Fig. 12), then the inflow penetrating into Acycle

u is represented
by

ρu = Pu[bu ψBU(e0), . . . , bu ψBU(eκ−1)]�.

Recall that the arcs in the island u are denoted by f0, . . . , fκ−1

and the arcs from the outside of island u are denoted by
e0, . . . , eκ−1. Then we have the following lemma.

Lemma 3. Let ψBU be a generalized eigenvector of U BU

satisfying U BUψBU = ψBU. Set

ϕu,in = [ψBU(e0), . . . , ψBU(eκ−1) ]�,

ϕu,out = [ψBU(ē0), . . . , ψBU(ēκ−1)]�,

ϕu,0 = [ψBU( f0), . . . , ψBU( fκ−1)]�.

Then we have

ϕu,out = Circ(Hu)ϕu,in, (17)

ϕu,0 = 1

cu
(Circ(Hu) − duIu)ϕu,in. (18)

Proof. It holds that

ϕu,out( j) = cuϕu,0( j) + duϕu,in( j)

= cu((1 − Eu)−1ρu)( j) + duϕu,in( j)

= cu((1 − Eu)−1Pubuϕu,in )( j) + duϕu,in( j). (19)

Then we have

ϕu,out = (bucu(1 − Eu)−1Pu + du)ϕu,in.

The inverse of (1 − Eu) can be expressed by

(1 − Eu)−1 = 1 + auPu + (auPu)2 + · · ·
= 1 + (

au + aκ+1
u + a2κ+1

u

)
Pu

+ (
a2

u + aκ+2
u + a2κ+2

u + · · · )P2
u

+ · · · + (
aκ−1

u + aκ+κ−1
u + a2κ+κ−1

u +· · · )Pκ−1
u

= 1+ au

1 − aκ
u

Pu+ a2
u

1 − aκ
u

P2
u +· · · + aκ−1

u

1 − aκ
u

Pκ−1
u .

Then inserting the above expression for (1 − E )−1 into
bucu(1 − Eu)−1, we obtain Circ(Hu) = bucu(1 − Eu)−1Pu +
duIu, which completes the proof of (17). We obtain (18) by
combining (19) with (17). �

Thus Circ(Hu) represents the local scattering matrix of the
n-directed cycle with n boundaries for the in- and outflow.
The unitarity of Circ(Hu) is ensured by Refs. [12,13] in more
general settings.

Next, let us introduce the restriction ι : CÃ(BU,ξ )
0 → CÃ0

such that (ιψ )(a) = ψ (a) for any a ∈ Ã0. A matrix represen-
tation of ι is given by

ι ∼= [
IÃ0

|0]
under the decomposition of Ã(BU,ξ )

0 into Ã0 � Acycle
0 .

Then we have the following proposition.
Proposition 2. For any ψ ∈ CÃ(BU,ξ )

0 satisfying a genralized
eigenequation U BUψ = ψ , we have

U0ιψ = ιψ.

Proof. By (17) in Lemma 3, we immediately obtain the
conclusion. �

We expect that ιψ is the stationary state of the circulant
QW, but unfortunately, it is not true in general. See Example
2 in Sec. V. So in the following, let us consider when ιψ

coincides with the stationary state of the circulant QW. To this
end, we prepare the following two propositions.

Proposition 3. ker(1 − U0) �= {0} if and only if ker(1 −
U BU) �= {0}.

Proof. Assume ker(1 − U0) �= {0}, that is, there exists φ �=
0 such that U0φ = φ and supp(φ) ⊂ A0. Let

{e0, . . . , eκ−1} = {a ∈ Ã0 | t (a) = u}
and

ϕu,in = [φ(e0), . . . , φ(eκ−1)]�.

Then let us define ψ ∈ CÃ(BU,ξ )
0 by

ψ (a) =
{

φ(a) : a ∈ Ã0

1
cu

((Circ(Hu) − duIu)ϕu,in )(a) : a ∈ Acycle
0,u , u ∈ V0.

(20)
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By Lemma 3, we have U BUψ = ψ , and the support of
ψ does not have the overlap with the tails, which implies
that ||ψ || < ∞. Next, let us consider the converse direc-
tion. Note that spec(Eu) ⊂ {z ∈ C | |z| < 1}. Then the support
of the eigenvectors of eigenvalue 1 must have the overlap
to Ã0. Then, from Proposition 2, we obtain the converse
direction. �

Remark 3. Proposition 3 implies that the eigenvectors of
ker(1 − U0) have one-to-one correspondence to those of
ker(1 − U BU).

Proposition 4. Assume ker(1 − U0) = {0}. Then for ar-
bitrary s0 ∈ C∂A+ , the following generalized eigenfunction
satisfying the boundary condition ψ |∂A+ = s0 is uniquely de-
termined:

(1 − U0)ψ = 0, ψ |∂A+ = s0.

Proof. Let ζ : CÃ0 → CÃ0\tails such that (ζφ)(a) = φ(a)
for any a ∈ CÃ0\tails. Putting ζU0ζ

∗ = E , we have

(1 − E )ζψ = ρ,

where ρ = ζU0(1 − ζ ∗ζ )ψ . Let us see that (1 − E )−1 exists
as follows. Assume there is a f �= 0 such that E f = f . Tak-
ing the operation ζ ∗ to both sides, we have ||ζ ∗ζU0ζ

∗ f ||2 =
||ζ ∗ f ||2. On the other hand, by the unitarity of U0,
we have ||U0ζ

∗ f ||2 = ||ζ ∗ f ||2. Then we have ||U0ζ
∗ f || =

||ζ ∗ζU0ζ
∗ f ||. Since ζ ∗ζ is a projection onto the internal

graph, this implies that the support of U0ζ
∗ f is included

in the internal graph; that is, (1 − ζ ∗ζ )U0ζ
∗ f = 0. This is

equivalent to U0ζ
∗ f − ζ ∗E f = 0. Since E f = f , we have

(1 − U0)ζ ∗ f = 0. Thus ζ ∗ f ( �=0) is an (+1) eigenvector of
U0, which contradicts the the assumption ker(1 − U0) = {0}.
Therefore we have ζψ = (1 − E )−1ρ, which implies that
ζ ∗ζψ = ξ (1 − E )−1ρ. Thus the restriction of ψ to the in-
ternal graph is uniquely determined. On the other hand, the
restriction of ψ to the tails is uniquely determined as s0 for
the inflow and (1 − ζ ∗ζ )Uζ ∗ζψ for the outflow. �

Now we are ready for the proof of Proposition 1: If
ker(1 − U BU) = {0}, then Opt(QW(G0; H; ξ )) implements
QW(G0; H; ξ ).”

Proof of Proposition 1. Let � be the stationary state of the
optical QW. We set the boundary condition by �|∂A+ = s0.
The assumption of Proposition 1 is equivalent to ker(1 −
U0) = {0} by Proposition 3, which is the assumption of Propo-
sition 4. Then by Proposition 4, the unique solution of (1 −
U0)ψ = 0 with ψ |∂A+ = s0 is nothing but the stationary state
of the circulant QW with the inflow represented by s0. On the
other hand, by Proposition 2, we have U0ι� = ι�. In partic-
ular, ι�|∂A+ = �|∂A+ = s0. Therefore, the unique solution ψ

is described by ι�, which implies that the stationary state for
the circulant QW is equivalent to ψ = ι�. �

Remark 4. In general, the stationary state of QWs must be
orthogonal to every eigenspace of the time evolution operators
in the whole space [14]. Let ψ

(BU)
∞ be the stationary state of

the optical QW. Then for any φ ∈ ker(1 − U (BU,ξ ) ), we have

〈
ψ (BU)

∞ , φ
〉 = 0.

However, in general, it is not ensured that〈
ιψ (BU)

∞ , ιφ
〉 = 0. (21)

This is the reason that the optical QW does not implement
the underlying QW in Example 2 since the optical QW has
eigenvalue 1 and does not satisfy (21).

Remark 5. Conversely, if ker(1 − U0) = {0}, then the sta-
tionary state ψ∞ implements the stationary state of ψ

(BU)
∞

by the manner of deformation of ψ∞ given by (20) in
Proposition 3. This means that two stationary states on G̃0

and G̃(BU,ξ ) implement each other under the condition of
ker(1 − U0) = {0}.

IX. SUMMARY AND DISCUSSION

In this paper, we considered an optical implementation of
QW on a graph driven by a circulant matrix, namely, the
circulant QW. To this end, we introduced another kind of
QW on the blow-up graph of the original graph induced by
the circulant QW; this was the optical QW. The blow-up
graph is a two-regular directed graph. Then making a corre-
spondence between the two incoming edges to each vertex
and the vertical and horizontal polarizations, we heuristically
showed that the optical QW can be implemented by the optical
circuit in theory and also proposed the design of the optical
circuit for the general graph. We suggested a kind of search
of a perturbed vertex using our circulant QW. A high relative
probability of the perturbed vertex is asymptotically stable,
while such a probability is asymptotically periodic in the usual
quantum search algorithm driven by QWs. The analysis on
this convergence speed has the potential to consider a QW
version of the cutoff phenomena [2,3] in the future. We also
mathematically showed a sufficient condition for the coinci-
dence of the stationary states of the circulant QW and its
induced optical QW. From this condition, we gave a useful
setting for the circulant QW that can be implemented by the
induced optical QW.

Finally, let us discuss the design of the optical circuit in
Sec. IV, as an experimental approach to potential problem in
the future. In Sec. IV, we designed the optical circuit under
ideal conditions where the phases are matched, but experi-
mentally the phases are not matched due to the noise arising
from complex environmental fluctuation, so the expected op-
eration does not occur in HWPs. To solve this problem, we
propose an experimental method. In an optical circuit such
as that in Sec IV 1, it is necessary to make the optical path
length of one round trip of V-polarized light be an integer
multiple of the wavelength to obtain constructive interference
with the light from previous laps. It is also necessary to match
the phases of waves at each PBS. To meet these requirements,
we stabilize the optical path length between each pair of
PBSs. Experimentally, stabilization of the length of the optical
circuit can be achieved by a feedback control by using a
reference laser and a piezoelectric transducer which can be
attached to a mirror consisting of the optical circuit [25]. If
necessary, the phase of the incoming signal is also stabilized
by a similar procedure. Also, in Sec. IV 2, each pair of islands
is connected together following the original graph connection;
the resulting design is described by G′. The ideal design G′ is
implemented with optical elements as shown on the right of
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Fig. 4. The polarized light that flows out from G′ does not
return to G′, so there is no need to consider the optical path
length. On the other hand, H-polarized light flowing out from
one island to another interferes with V-polarized light at the
PBS of the destination island, so the optical path length needs
to be stabilized by the same feedback control. However, in
the above method, we should measure the outflow from each
PBS to perform feedback control in the optical path between
each PBS. Then, a trade-off problem remains in that the more
accurately we try to get the interference inside the island, the
more we lose the output outside the island. We expect that
such realistic experimental problems based on our proposed

optical circuit under very ideal conditions will be improved in
the future.
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