
PHYSICAL REVIEW A 106, 022401 (2022)

Relation between quantum coherence and quantum entanglement in quantum measurements
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Quantum measurement is a class of quantum channels that sends quantum states to classical states. We set up
resource theories of quantum coherence and quantum entanglement for quantum measurements and find relations
between them. For this, we conceive a relative entropy-type quantity to account for the quantum resources of
quantum measurements. The quantum coherence of a quantum measurement can be converted into the entan-
glement in a bipartite quantum measurement through coherence nongenerating transformations. Conversely, a
quantum entanglement monotone of quantum measurements induces a quantum coherence monotone of quantum
measurements. Our results confirm that the understanding on the link between quantum coherence and quantum
entanglement is valid even for quantum measurements which do not generate any quantum resource.
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I. INTRODUCTION

Quantum superposition or quantum coherence is at the
heart of quantum theory; it is indispensable to describe quan-
tum features such as the double-slit experiment. Distinct from
the coherence of classical lights, quantum coherence of optical
fields has been the main subject of quantum optics since
the foundational works [1–3]. Quantum information science
provided rigorous concepts and tools to explore quantum
coherence of finite-dimensional systems as well as optical
modes in the name of the quantum resource theory [4–6].
Quantum coherence has been studied for a fixed basis [7–9],
for subspaces [10], for a set of linearly independent states
[11,12], or concerning an enlarged space for a quantum mea-
surement [13,14]. Quantum coherence is also investigated in
the continuous variable systems related to the nonclassicality
of light [11,15].

Quantum entanglement, the typical quantum correlation
[16–21], is known to have a close relation to quantum co-
herence even from the early works in quantum optics; the
nonclassicality of light was shown to be a source of quantum
entanglement [22,23]; the relation between nonclassicality
of lights and entanglement is further established [24–26].
For finite-dimensional systems, quantitative relations between
quantum coherence and quantum correlations were estab-
lished [10,27–32]. In particular, it was confirmed that the
quantum coherence of a quantum state could be converted to
quantum entanglement without supplying further quantum co-
herence [33], which also implied that a quantum entanglement
monotone could induce a quantum coherence monotone for
quantum states.

Quantum dynamics enter the scene by changing quan-
tum resources either in quantum states or in other quantum
dynamics [34–45]. The intimate relation between quantum
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coherence and quantum entanglement continues to hold for
quantum dynamics: specifically, it was shown that a quantum
channel’s quantum coherence generating power converts to
the quantum entanglement generating power without addi-
tional quantum coherence in the process [46]. In fact, quantum
channels have various aspects concerning quantum resources
other than resource generating powers; a quantum channel can
increase, decrease, erase, or preserve the quantum resources
of a quantum state [47–61]. Does quantum coherence of a
quantum channel convert to quantum entanglement in all such
aspects as in the case of quantum states?

To shed light on this problem, we focus on quantum
measurements that send quantum states to classical states
as quantum channels. The classical output of quantum mea-
surements implies that they can generate neither quantum
coherence nor quantum entanglement. However, it is known
that entangled quantum measurements are useful to certify
quantum resources [62–66]. This paper investigates quantum
coherence and quantum entanglement of quantum measure-
ments using resource theory framework. We find that, despite
the classical outputs, quantum resources of quantum mea-
surements can be formulated without relying upon resources
of quantum states, and yet they share analogous intimate
relations. Understanding the quantum resources of quantum
dynamics would enable us to design more effective algorithms
and efficient quantum dynamics for the implementation of a
quantum computer in the NISQ era [67].

II. RESOURCE THEORY OF QUANTUM MEASUREMENTS

We briefly review quantum measurements and their trans-
formations, and the resource theory of them with respect to
the quantum coherence and the quantum entanglement.

A quantum measurement MA on a system A with n
outcomes is often described by a positive operator-valued
measure (POVM) MA = {Mx � 0 :

∑n−1
x=0 Mx = IA, x =

0, . . . , n − 1}, which, by Born’s rule, determines the outcome
statistics of an input state ρA as {px = TrA ρAMx : x =
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FIG. 1. Transformation of a quantum measurement MA to a
quantum measurement NA through a preprocessing channel EA and a
classical postprocessing channel SR. The double line means classical
data.

0, . . . , n − 1}. The quantum measurement MA is equivalently
described as a quantum-classical channel that sends a
quantum state to a classical state as

MA(XA) =
n∑

x=1

Tr (MxXA)|x〉〈x|R, (1)

where the system R is a classical register system [68]; we
use the same calligraphic letter MA both for the POVM
and for the above measurement channel with a slight abuse
of notation. The convex set of quantum measurements on d
dimensional systems with n outcomes is denoted by M(d, n)
[69]; in the following, any single system is assumed to be
d dimensional, and quantum measurements on each system
are assumed to have n outcomes for simplicity. A quan-
tum measurement MA can be converted to another quantum
measurement by a preprocessing channel EA and a classical
postprocessing channel SR as shown in Fig. 1 [70,71]. A
classical postprocessing on the outcome effectively results in
statistical mixing among the POVM elements of the quan-
tum measurement [70]: consider a classical postprocessing
channel SR that sends an outcome x to an outcome y with
a probability p(y|x), where

∑
y p(y|x) = 1 for all x. It trans-

forms a quantum measurement MA = {Mx}n−1
x=0 as follows:

SR ◦ MA(ρA) =
∑

x

TrA(MxρA)
∑

y

p(y|x) |y〉〈y|R (2)

=
∑

y

TrA
(
M ′

yρA
) |y〉〈y|R , (3)

where M′
A = {M ′

y = ∑
x p(y|x)Mx}n−1

y=0 is a valid quantum
measurement satisfying that M ′

y � 0 and
∑

y M ′
y = IA.

A preprocessing channel EA for a quantum measurement
MA can also be described by its action on the POVM elements
considering the output statistics as follows:

px = TrA [MxEA(ρA)] = TrA[E†
A(Mx )ρA], (4)

where E†
A is the adjoint map of EA [72]. Therefore, a quantum

measurement MA with a preprocessing channel EA is the same
as a quantum measurement M̃A:

M̃A ≡ MA ◦ EA = {E†
A(Mx )}. (5)

In the resource theory of quantum coherence, one quanti-
fies quantum coherence with respect to a chosen basis {|i〉},
the so-called incoherent basis. A quantum state and an opera-
tor are incoherent if they are diagonal in the incoherent basis.
A quantum measurement MA = {Mx}n−1

x=0 is called incoherent
if all its POVM elements are incoherent, i.e., �AMx = Mx for
all x where �A is the dephasing channel in the incoherent

basis [73,74]. We denote the set of the n outcome incoherent
measurements on d dimensional systems as I(d, n). We take
the set of the incoherent measurements as the free resource for
quantum coherence of quantum measurements. Operationally,
an incoherent measurement MA on an input state ρA results in
an output statistics independent of the quantum coherence of
the state as

px = TrA(ρAMx ) (6)

= TrA[ρA�(Mx )] (7)

= TrA[�(ρA)Mx]. (8)

That is, the output statistics depends only on the incoherent
part of the input state [74].

For quantum entanglement, a quantum measurement with
all its POVM elements being separable operators is called
separable; the set of separable measurements is strictly larger
than the set of local operations and classical communica-
tion measurements [75,76]. We take the set of the separable
measurements as a free resource [73]; the set of separable
measurements on d dimensional systems A and B is denoted
as SepM(A :B). Note that entanglement theory does not have
any resource destroying channel which destroys entanglement
while preserving any separable state [51,77], analogous to
the dephasing channel in the resource theory of quantum
coherence. This disallows the operational interpretation of
the separable measurements by its outcome statistics’ de-
pendence on the entanglement of input states, distinct from
the case of the incoherent measurements. However, when the
separable measurement is regarded as free, one can still quan-
tify quantum entanglement necessary to implement bipartite
measurements which are not separable measurements; such a
measure is shown to have operational meanings such as an
advantage in the distributed state discrimination [78].

Next we ask for the set of free transformations for quan-
tum resources. First, one can easily check that an incoherent
measurement stays incoherent under a statistical mixing by a
classical postprocessing channel; the same holds for the sep-
arable measurements. For preprocessing channels, note that
the output register system R of any measurement is treated as
being classical; thus we take the register states {|x〉R}n−1

x=0 as the
incoherent basis of the system R. Then we figure out the free
preprocessing channels for quantum coherence of quantum
measurements as follows [74]:

Proposition 1. The set of preprocessing quantum channels
that preserves incoherent measurements is the set of detection-
incoherent channels EA which is characterized by

�A ◦ EA = �A ◦ EA ◦ �A. (9)

For readability, we defer all proofs to the Appendices here-
after.

III. RESOURCE MONOTONES

Quantum resources of a quantum channel can be measured
by various resource monotones regarding quantum resources
in quantum states [79]. For quantum measurements, from the
definitions of the incoherent measurements and the separable
measurements, it is clear that the quantum resources of the
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POVM elements are essential to the quantum resources in
quantum measurements. So we conceive a different relative
entropy-type quantity between two quantum measurements
that aims to measure the quantum resources of the POVM
elements. We define the measurement relative entropy be-
tween quantum measurements MA = {Mx}x and NA = {Nx}x

as follows:

Dm(MA‖NA) := 1

d
D(⊕xMx‖ ⊕x Nx ) (10)

= 1

d

∑
x

D(Mx‖Nx ), (11)

where D(·‖·) is the quantum relative entropy [68,80,81] de-
fined as

D(M‖N ) :=
{

Tr{M(log M − log N )} im M ⊆ im N
∞ else (12)

for positive semidefinite operators M and N ; im M is the
image of M. We use the logarithm base two.

The measurement relative entropy satisfies the following
properties.

Lemma 2. Let MA,NA,KA,LA ∈ M(d, n) be measure-
ment channels, EA a unital quantum channel, and UA a unitary
channel. Let SR be a classical channel that sends |x〉R to |y〉R
with a probability p(y|x) that satisfies

∑
y p(y|x) = 1 for all x.

Let 0 � p � 1. The following holds.
(1) Dm(MA‖NA) � 0; the equality holds if and only if

MA = NA.
(2) Dm(MA ◦ EA‖NA ◦ EA) � Dm(MA‖NA).
(3) Dm(MA ◦ UA‖NA ◦ UA) = Dm(MA‖NA).
(4) Dm(SR ◦ MA‖SR ◦ NA) � Dm(MA‖NA).
(5) Dm(MA ⊗ NB‖KA ⊗ LB) = Dm(MA‖KA) +

Dm(NB‖LB).
(6) Dm(pMA + (1 − p)NA‖pKA + (1 − p)LA) �

pDm(MA‖KA) + (1 − p)Dm(NA‖LA).
We conceive quantum resource monotones for quantum

coherence and quantum entanglement, respectively:

Cm(MA) := min
FA∈I(d,n)

Dm(MA‖FA), (13)

Em(MAB) := min
FAB∈SepM(A:B)

Dm(MAB‖FAB). (14)

Both Cm and Em are non-negative and faithful thanks to the
property of the measurement relative entropy. The monotonic-
ity of Cm under free transformations can be seen as follows:
for any unital detection-incoherent channel EA and a classical
channel SR,

Cm(SR ◦ MA ◦ EA)

= min
FA∈I(d,n)

Dm(SR ◦ MA ◦ EA‖FA)

� min
FA∈I(d,n)

Dm(SR ◦ MA ◦ EA‖SR ◦ FA ◦ EA)

� min
F ′

A∈I(d,n)
Dm(MA‖F ′

A), (15)

where the first inequality is due to the fact that an incoherent
measurement remains incoherent after free transformations,
and the second inequality is from the monotonicity of the
measurement relative entropy. Furthermore, the quantum co-
herence monotone can be explicitly calculated.

FIG. 2. Building a bipartite quantum measurement M′
AB from

two quantum measurements MA and EB with a preprocessing chan-
nel NAB and a classical postprocessing channel SR. The double line
means classical data.

Proposition 2. The quantum coherence monotone of a
quantum measurement MA = {Mx} is given by

Cm(MA) = 1

d

∑
x

{S(�Mx ) − S(Mx )}, (16)

where S(·) is the von Neumann entropy.
Thus, if we regard S(�Mx ) − S(Mx ) as the quantum co-

herence of the POVM element Mx, the quantum coherence
monotone Cm(MA) amounts to the sum of the quantum co-
herence of all the POVM elements in MA.

Because entanglement theory does not possess a resource
destroying channel [77], the entanglement monotone Em does
not possess an analogous expression as Eq. (16). However,
one can still compute the entanglement monotone for some
cases, such as the Bell measurement and the Werner measure-
ment: we defer the results to the Appendices for interested
readers.

To summarize, taking the set of incoherent measurements
as free resource, we regard unital detection-incoherent pre-
processing channels with classical postprocessing channels as
the free transformations; the quantum coherence and entan-
glement of quantum measurements are quantified by Cm and
Em, respectively.

IV. QUANTUM COHERENCE CONVERSION TO
QUANTUM ENTANGLEMENT

We are now in a position to restate our problem concerning
whether quantum coherence of a quantum measurement can
be converted into quantum entanglement of a bipartite quan-
tum measurement as depicted in Fig. 2. Here is our first result.

Theorem 3. Let MA ∈ M(d, n) be a quantum measure-
ment. For any ancillary incoherent measurement EB ∈ I(d, n)
and a unital detection-incoherent preprocessing channel NAB,
it holds that

Cm(MA) � Em(MA ⊗ EB ◦ NAB). (17)

This shows that the quantum coherence of a quantum mea-
surement MA is an upper bound on the quantum entanglement
of any resultant bipartite quantum measurement under the free
transformations. Note that a classical postprocessing channel
is unnecessary in the right-hand side of Eq. (17) since it
just deteriorates quantum resources as argued before. While
it is not always the case that quantum coherence of a quan-
tum measurement fully converts to quantum entanglement, a
proper choice of free transformation might achieve the con-
version completely as shown in the next result.
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Theorem 4. Let MA ∈ M(d, n) be a quantum measure-
ment. Let EB ∈ I(d, n) be an incoherent measurement given
by

EB =
{{E0, . . . , Ed−1, 0, . . . , 0} n � d,

{E0, . . . , En−2, IB − ∑n−2
x=0 Ex} n < d,

(18)

where Ex = |x〉〈x|B. For n � d , the following holds:

sup
NAB∈UDI

Em(MA ⊗ EB ◦ NAB) = Cm(MA), (19)

where UDI is the set of unital detection-incoherent channels;
an optimal preprocessing channel NAB is given by the adjoint
channel of the generalized CNOT gate. For n < d , the follow-
ing holds:

n − 1

d
Cm(MA) � sup

NAB∈UDI
Em(MA ⊗ EB ◦ NAB)

� Cm(MA). (20)

When there is a large enough number of measurement
outcomes, that is, n � d , the quantum coherence completely
converts to quantum entanglement for quantum measure-
ment; the class of informationally complete measurements
corresponds to this because an informationally complete mea-
surement needs at least n � d2 outcomes [68,82]. In the case
of a small number of outcomes n < d , the quantum coher-
ence of a quantum measurement MA provides an upper and
a lower bound on the quantum entanglement of a bipartite
quantum measurement obtained from MA without additional
coherence: an extreme case of n = 1 corresponds to the triv-
ial measurement MA = {IA} that does not possess quantum
coherence.

A typical example of the above result is given by MA =
{|±〉〈±|A : |±〉 = 1√

2
(|0〉A ± |1〉A)}, EB = {|0〉〈0|B, |1〉〈1|B},

and the adjoint channel of the controlled-NOT (CNOT)
gate as a preprocessing channel, for which we observe
that MA ⊗ EB ◦ U†

CNOT = {|�±〉〈�±|AB, |�±〉〈�±|AB},
where |�±〉AB = 1√

2
(|00〉AB ± |11〉AB) and |�±〉AB =

1√
2
(|01〉AB ± |10〉AB); The quantum resources are given

by Cm(MA) = Em(MA ⊗ EB ◦ U†
CNOT) = 1.

We emphasize that outputs of any quantum measurements
are classical states having no quantum resources; this clearly
distinguishes the above results from those on the quantum
resource generating powers [46].

V. COHERENCE MONOTONES FROM ENTANGLEMENT
MONOTONES

We have seen that the quantum coherence of a quantum
measurement can be converted into the quantum entangle-
ment of a bipartite quantum measurement. This implies that,
given a quantum entanglement monotone for bipartite quan-
tum measurements, one can utilize it to construct a quantum
coherence monotone of a quantum measurement by the con-
vertible amount of the quantum entanglement [83]. In the
following we show this quantitatively. A quantum coherence
monotone is required to satisfy the following properties, that
is, non-negativity, faithfulness, monotonicity, and convexity
[5,84]: for a quantum measurement MA, any unital detection-
incoherent channel FA, and any classical channel SR,

(1) C(MA) � 0; C(MA) = 0 if and only if MA ∈ I(d, n).
(2) C(SR ◦ MA ◦ FA) � C(MA).
(3) C(

∑
i piM(i)

A ) � ∑
i piC(M(i)

A ), where pi � 0,∑
i pi = 1, and M(i)

A ’s are quantum measurements.
Similarly a quantum entanglement monotone E is required

to satisfy the following conditions as well: for a quantum
measurement MAB, any preprocessing channel FAB that pre-
serves SepM(A :B), and any classical channel SR acting on
the system A and B,

(1) E (MAB) � 0; E (MAB) = 0 if and only if MAB ∈
SepM(A :B).

(2) E (SR ◦ MAB ◦ FAB) � E (MAB).
(3) E (

∑
i piM(i)

AB) � ∑
i piE (M(i)

AB), where pi � 0,∑
i pi = 1, and M(i)

AB’s are quantum measurements.
We figure out that once a quantum entanglement monotone

for quantum measurements is given one can construct a quan-
tum coherence monotone as follows.

Theorem 5. Let MA ∈ M(d, n) be a quantum measure-
ment with n > 1. Let EB ∈ I(d, n) be an incoherent measure-
ment given by

EB =
{{E0, . . . , Ed−1, 0, . . . , 0} n � d,

{E0, . . . , En−2, IB − ∑n−2
x=0 Ex} n < d,

(21)

where Ex = |x〉〈x|B. A quantum entanglement monotone E
for a quantum measurement induces a quantum coherence
monotone for a quantum measurement as follows:

C(MA) := sup
FAB∈UDI

E (MA ⊗ EB ◦ FAB), (22)

where UDI is the set of unital detection-incoherent channels.
This shows that the idea to measure quantum coherence or

nonclassicality of a quantum state by its potential to transform
to quantum entanglement still holds for the case of quantum
measurements [24,29,33].

VI. CONCLUSION

The quantum coherence of a quantum measurement can be
converted to the quantum entanglement of a bipartite quan-
tum measurement without additional quantum coherence. We
establish this by taking the set of the incoherent measure-
ments as free resources. The set of unital detection-incoherent
preprocessing channels with the classical postprocessing
channels consists of the free transformations for the quantum
coherence of quantum measurements. We take the set of the
separable measurements as the free resources for entangle-
ment. These quantum resources are measured by resource
monotones built upon the measurement relative entropy that
we introduce: the measurement relative entropy between two
quantum measurements is a sum of the relative entropy be-
tween the POVM elements of the quantum measurements so
that it helps to capture the quantum resources in each POVM
element. Thus, under the free transformations, a quantum
measurement could transform to a bipartite quantum measure-
ment of which quantum entanglement is upper bounded by
the quantum coherence of the input quantum measurement;
quantum coherence of a quantum measurement completely
converts to quantum entanglement of a bipartite quantum
measurement under the adjoint channel of the generalized
CNOT gate as the preprocessing channel.
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We also show that the above fact indicates that a quantum
entanglement monotone of a quantum measurement induces a
quantum coherence monotone of quantum measurements.

Our results strengthen the close relation between quantum
coherence and quantum entanglement at the level of quan-
tum dynamics. In the previous work [46], it was unavoidable
to use the dephasing channel as a preprocessing channel
to pinpoint quantum resource generating powers. However,
quantum measurements do not generate any quantum resource
as outputs; thus, our results enlarge our understanding further
in yet another aspect of quantum dynamics. Furthermore, our
resource monotones only depend on the quantum measure-
ment without any reference to quantum states distinct from
typical dynamical resource monotones [79]. Meanwhile, it is
desirable to find operational meanings of the measurement
relative entropy and resource monotones built on it.

We hope that our research sheds light on the properties of
quantum resources of quantum dynamics; the more profound
the understanding is, the more effective we can utilize the
quantum resources in quantum dynamics for quantum infor-
mation tasks such as quantum computation in the NISQ era.
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APPENDIX A: RESOURCE THEORY OF QUANTUM
MEASUREMENTS

We assume that the outcome register of a quantum mea-
surement channel is a classical system, so we take the
measurement outcome basis {|x〉R} as the incoherent basis
of the register system R. Upon this assumption the set of
preprocessing channels that keeps incoherent measurements
is given by the detection-incoherent channels [74].

Proposition 6. The set of preprocessing quantum channels
that keeps incoherent measurements is the set of detection-
incoherent channels E which is characterized by

� ◦ E = � ◦ E ◦ �. (A1)

Proof. A quantum channel EA is detection incoherent if

E†
A ◦ � = � ◦ E†

A ◦ �, (A2)

where E†
A is the adjoint map of EA. Assume that a preprocess-

ing channel EA keeps incoherent POVM elements incoherent
such that, for Mx = �Mx, it holds that E†

A(Mx ) = � ◦ E†
A(Mx ).

Then for an arbitrary POVM element Nx, it follows that

E†
A ◦ �(Nx ) = E†

A(�Nx ) (A3)

= � ◦ E†
A(�Nx ) (A4)

= � ◦ E†
A ◦ �(Nx ). (A5)

Thus, we conclude that the set of preprocessing channel
that keeps incoherent measurements is the set of detection-
incoherent channels.

Being regarded as a quantum channel, an incoherent mea-
surement channel also belongs to a more stringent class of
channels that do not even allow preserving quantum coher-
ence.

Proposition 7. A measurement channel M ∈ M(d, n) is
a classical channel characterized by � ◦ M ◦ � = M if and
only if it is an incoherent measurement, i.e., �(Mx ) = Mx for
all x.

Proof. The outcome register of a quantum measurement
channel is a classical system so that we have that � ◦ M =
M for any measurement channel M ∈ M(d, n). If M is a
classical channel, that is, M = � ◦ M ◦ �, it follows that

M = � ◦ M ◦ � (A6)

= M ◦ � (A7)

=
∑

x

Tr(Mx�(·))|x〉〈x|R (A8)

=
∑

x

Tr(�(Mx )·)|x〉〈x|R. (A9)

Thus we have that M = {Mx} = {�(Mx )}. Conversely, if M
is an incoherent measurement channel, then tracing back the
above equations proves the statement. This completes the
proof.

In addition, a measurement channel is a maximally in-
coherent operation by definition: hence any measurement
channel does not generate coherence.

Proposition 8. All the effects of a bipartite incoherent
measurement are separable operators.

Proof. A POVM element Mxy of a bipartite incoherent
measurement satisfies

�AB(MAB) =
∑
x′,y′

〈x′, y′| Mxy |x′, y′〉AB |x′〉〈x′|A ⊗ |y′〉〈y′|B,

(A10)
thus being a separable operator.

Measurement relative entropy and resource monotones

We utilize the quantum relative entropy between measure-
ments to construct measurement resource monotones. For
M = {Mx} ∈ M(d, n) and N = {Nx} ∈ M(d, n), we define
the measurement relative entropy as

Dm(M‖N ) := 1

d
D(⊕xMx‖ ⊕x Nx ) (A11)

= 1

d

∑
x

D(Mx‖Nx ), (A12)

where, for M � 0 and N � 0,

D(M‖N ) :=
{

Tr{M(log M − log N )} if im M ⊆ im N
∞ else

(A13)
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is the quantum relative entropy between positive semidefinite
operators and im M is the image of an operator M [68].

The measurement relative entropy satisfies the following
properties:

Lemma 9. Let M,N ,K,L ∈ M(d, n) be measurement
channels, E a unital quantum channel, and U a unitary chan-
nel. Let SR be a classical channel that sends |x〉R to |y〉R with
a probability p(y|x) that satisfies

∑
y p(y|x) = 1 for all x. Let

0 � p � 1. The following holds.
(1) Dm(MA‖NA) � 0; the equality holds if and only if

MA = NA.
(2) Dm(MA ◦ EA‖NA ◦ EA) � Dm(MA‖NA).
(3) Dm(MA ◦ UA‖NA ◦ UA) = Dm(MA‖NA).
(4) Dm(SR ◦ MA‖SR ◦ NA) � Dm(MA‖NA).
(5) Dm(MA ⊗ NB‖KA ⊗ LB) = Dm(MA‖KA) +

Dm(NB‖LB).
(6) Dm(pMA + (1 − p)NA‖pKA + (1 − p)LA) �

pDm(MA‖KA) + (1 − p)Dm(NA‖LA).
Proof. (1) The non-negativity and the faithfulness of the

measurement relative entropy follow from the properties of
the quantum relative entropy.

(2) The measurement relative entropy is monotone under
any unital preprocessing channel E :

Dm(MA ◦ EA‖NA ◦ EA) = 1

d

∑
x

D(E†
A(Mx )‖E†

A(Nx ))

(A14)

� Dm(MA‖NA), (A15)

where we interpreted the action of the preprocessing channel
E through its adjoint channel on the POVM elements regard-
ing the measurement outcome probabilities. Since E is a unital
quantum channel, its adjoint map E† is also a unital quantum
channel. So the inequality follows from the monotonicity of
the quantum relative entropy.

(3) The measurement relative entropy is invariant under
any unitary preprocessing channel U due to the invariance of
the quantum relative entropy under isometries.

(4) The measurement relative entropy is monotone decreas-
ing under a classical postprocessing channel:

Dm(SR ◦ MA‖SR ◦ NA)

= 1

d

∑
y

D

(∑
x

p(y|x)Mx‖
∑

x

p(y|x)Nx

)
(A16)

� 1

d

∑
y

∑
x

D(p(y|x)Mx‖p(y|x)Nx ) (A17)

= 1

d

∑
y

∑
x

p(y|x)D(Mx‖Nx ) (A18)

= 1

d

∑
x

D(Mx‖Nx ) (A19)

= Dm(MA‖NA), (A20)

where the first inequality and the third line follow from

D(P0 + P1‖Q0 + Q1) � D(P0‖Q0) + D(P1‖Q1), (A21)

D(αP0‖βQ0) = αD(P0‖Q0) + (α log α/β ) Tr P0 (A22)

for any positive semidefinite operators P0, P1, Q0, and Q1, and
α, β > 0; the fourth line comes from

∑
y p(y|x) = 1 for all x.

(5) The measurement relative entropy is additive for the
tensor product:

Dm(MA ⊗ NB‖KA ⊗ LB)

= 1

d2

∑
x,y

D(Mx ⊗ Ny‖Kx ⊗ Ly) (A23)

= 1

d2

∑
x,y

{(TrB Ny)D(Mx‖Kx )

+ (TrA Mx )D(Ny‖Ly)} (A24)

= 1

d

∑
x

D(Mx‖Kx ) + 1

d

∑
y

D(Ny‖Ly) (A25)

= Dm(MA‖KA) + Dm(NB‖LB). (A26)

(6) The measurement relative entropy is jointly convex due
to the joint convexity of the quantum relative entropy:

Dm(pMA + (1 − p)NA‖pKA + (1 − p)LA) (A27)

= 1

d

∑
x

D(pMx + (1 − p)Nx‖pKx + (1 − p)Lx ) (A28)

� 1

d

∑
x

{pD(Mx‖Kx ) + (1 − p)D(Nx‖Lx )} (A29)

= pDm(MA‖KA) + (1 − p)Dm(NA‖LA). (A30)

Now we construct a quantum coherence and quantum en-
tanglement monotones for quantum measurement channels
using the measurement relative entropy as follows:

Cm(MA) := min
FA∈I(d,n)

Dm(MA‖FA), (A31)

Em(MAB) := min
FAB∈SepM(A:B)

Dm(MAB‖FAB), (A32)

where SepM(A :B) is the set of separable measurements.
The above resource monotones are non-negative and

faithful since the quantum relative entropy is non-negative
and faithful. The same holds for Em for separable mea-
surements. The quantum coherence monotone Cm is also
monotone decreasing under any unital detection-incoherent
(UDI) preprocessing channels and the classical postpro-
cessing channels: for a UDI channel EA and a classical
postprocessing channel SR, it follows that

Cm(SR ◦ MA ◦ EA)

= min
FA∈I(d,n)

Dm(SR ◦ MA ◦ EA‖FA) (A33)

� min
FA∈I(d,n)

Dm(SR ◦ MA ◦ EA‖SR ◦ FA ◦ EA) (A34)

� min
FA∈I(d,n)

Dm(MA‖FA), (A35)

where we used the monotonicity of Dm in the last inequality.
Note that the quantum coherence monotone for measure-

ment channels can be explicitly calculated.
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Proposition 9. The quantum coherence of a quantum mea-
surement MA = {Mx} is given as follows:

Cm(MA) = 1

d

∑
x

D(Mx‖�Mx ) (A36)

= 1

d

∑
x

{S(�Mx ) − S(Mx )} (A37)

= 1

d

∑
x

pxCr (ρx ), (A38)

where S(·) is the von Neumann entropy, Cr (ρ) is the relative
entropy of coherence for quantum states, and ρx ≡ Mx/ Tr Mx

for all x.
Proof. Let Mx = pxρx with px = Tr Mx. During the deriva-

tion, we also denote Fx = qxσx with qx = Tr Fx:

Cm(MA) = min
FA∈I(d,n)

Dm(MA‖FA) (A39)

= min
FA∈I(d,n)

1

d

∑
x

D(Mx‖Fx ) (A40)

= min
FA∈I(d,n)

1

d

∑
x

D(pxρx‖qxσx ) (A41)

= min
FA∈I(d,n)

1

d

∑
x

{
pxD(ρx‖σx ) + px log

px

qx

}
(A42)

= min
FA∈I(d,n)

1

d

{∑
x

pxD(ρx‖σx ) + D( �p‖�q)

}
. (A43)

The last line implies that the minimization is achieved by
incoherent measurements FA such that Tr Fx = Tr Mx, that is,
qx = px for all x due to the non-negativity of the quantum
relative entropy. Applying this fact, we conclude that

Cm(MA) = 1

d

∑
x

pxD(ρx‖�ρx ) (A44)

= 1

d

∑
x

D(Mx‖�Mx ) (A45)

= 1

d

∑
x

{S(�Mx ) − S(Mx )}. (A46)

As some examples of quantum measurements regard-
ing quantum resources, a quantum measurement MA =
{|±〉〈±|A : |±〉 = 1√

2
(|0〉 ± |1〉)} has Cm(MA) = 1, while an

incoherent measurement EA = {|0〉〈0|A, |1〉〈1|A} has Cm(EA) =
0.

For quantum entanglement, the Bell measurement MAB =
{�±

AB, �±
AB} has Em(MAB) = 1 with an optimal free measure-

ment:

FAB =
{

1

2
(|00〉〈00|AB + |11〉〈11|AB),

1

2
(|00〉〈00|AB + |11〉〈11|AB),

1

2
(|01〉〈01|AB + |10〉〈10|AB),

1

2
(|01〉〈01|AB + |10〉〈10|AB)

}
. (A47)

As another example, we consider a class of two-qubit Bell-
diagonal measurements given by

BAB = {
UA(p1�

+
AB + p2�

−
AB + p3�

+
AB + p4�

−
AB) :

UA ∈ {
IA, σ X

A , σY
A , σ Z

A

}}
, (A48)

where p1, p2, p3, p4 � 0,
∑4

i=1 pi = 1, and σ X
A , σY

A , σ Z
A are

the Pauli operators. Without loss of generality, we assume that
maxi pi = p1. Each POVM element is the Bell-diagonal state
which is known to be entangled if and only if p1 > 1

2 [85,86].
For p1 > 1

2 , one can compute the entanglement monotone of
BAB utilizing the relative entropy of entanglement for each
POVM element [87] as Em(BAB) = 1 − h(p1), where h(p1) =
−p1 log p1 − (1 − p1) log(1 − p1) is the binary entropy. An
optimal separable measurement is given by

FAB =
{
UA

(
1

2
�+

AB + p2

2(1 − p1)
�−

AB + p3

2(1 − p1)
�+

AB

+ p4

2(1 − p1)
�−

AB

)
: UA ∈ {IA, σ X

A , σY
A , σ Z

A }
}
. (A49)

An example of the above class is a two-qubit measurement
given by

WAB =
{

p�±
AB + 1 − p

4
IAB, p�±

AB + 1 − p

4
IAB

}
, (A50)

where 0 � p � 1. The POVM elements of the measurement
are equal to the Werner state up to local unitary opera-
tions so that each of them is known to be entangled for
p > 1

3 . The entanglement monotone of the measurement for
p > 1

3 is computed as Em(WAB) = 1 − h(λ), where λ = 1+3p
4 ;

Em(WAB) = 0 for p � 1
3 . An optimal free POVM element for

WAB is given by { 1
3�±

AB + 1
6 IAB, 1

3�±
AB + 1

6 IAB}.
Another example of the above class is a two-qubit mea-

surement given by

IAB =
{
UA

(
p�+

AB + 1 − p

3
(IAB − �+

AB)

)
:

UA ∈ {
IA, σ X

A , σY
A , σ Z

A

}}
, (A51)

where 0 � p � 1. The POVM elements of the measurement
are equal to the isotropic state up to local unitary operations
so that each of them is known to be entangled for p > 1

2 .
The entanglement monotone of the measurement for p > 1

2
is computed as Em(IAB) = 1 − h(p); Em(IAB) = 0 for p � 1

2 .
An optimal free POVM element for IAB is given by

FAB =
{
UA

(
1

2
�+

AB + 1

6
(IAB − �+

AB)

)
:

UA ∈ {
IA, σ X

A , σY
A , σ Z

A

}}
. (A52)
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APPENDIX B: QUANTUM COHERENCE CONVERSION
TO QUANTUM ENTANGLEMENT

The quantum coherence of a measurement MA upper
bounds the quantum entanglement of a composite measure-
ment that is constructed from MA using free resources.

Theorem 10. Let MA ∈ M(d, n) be a quantum measure-
ment. For any ancillary incoherent measurement EB ∈ I(d, n)
and a unital detection-incoherent preprocessing channel NAB,
it holds that

Cm(MA) � Em(MA ⊗ EB ◦ NAB). (B1)

Proof. Let an optimal incoherent measurement for
Cm(MA) be F∗

A . It follows that

Cm(MA) = min
FA∈I(d,n)

Dm(MA‖FA) (B2)

= Dm(MA‖F∗
A ) (B3)

= Dm(MA ⊗ EB‖F∗
A ⊗ EB) (B4)

� Dm(MA ⊗ EB ◦ NAB‖F∗
A ⊗ EB ◦ NAB) (B5)

� min
F ′

AB∈SepM(A:B)
Dm(MA ⊗ EB ◦ NAB‖F ′

AB) (B6)

= Em(MA ⊗ EB ◦ NAB), (B7)

where we used the fact that F∗
A ⊗ EB ◦ NAB ∈ I(d × d, n ×

n) ⊂ SepM(A :B) in the last inequality.
Note that it is unnecessary to consider a classical post-

processing channel since it does not increase quantum
entanglement.

Before moving into the main result, we extend the rela-
tive entropy of entanglement for bipartite states to positive
semidefinite bipartite operators, or un-normalized bipartite
states in other words. Recall that the von Neumann entropy
and the quantum relative entropy are defined over positive
semidefinite operators [68]:

ER(XAB) := min{D(XAB‖YAB) :

YAB ∈ Sep(A : B), TrAB YAB = TrAB XAB}, (B8)

where Sep(A :B) denotes the set of separable operators. We
first extend some of the results in [88] to the set of positive
semidefinite operators.

Lemma 11. For a positive semidefinite operator XAB and a
separable operator YAB, it holds that

S(XA) − S(XAB) � D(XAB‖YAB) − D(XA‖YA), (B9)

S(XB) − S(XAB) � D(XAB‖YAB) − D(XB‖YB). (B10)

Proof. The map 
B(ZB) = TrB(ZB)IB − ZB is positive but
not completely positive [89]. Since YAB is separable, it is
undistillable so that it satisfies IdA ⊗ 
B(YAB) = YA ⊗ IB −
YAB � 0, where IdA is the identity channel. From this, we have
that

logYA ⊗ IB � logYAB, (B11)

TrAB XAB logYA ⊗ IB � TrAB XAB logYAB, (B12)

−S(XAB) + S(XA) − S(XA) − TrAB XAB logYA ⊗ IB

� −S(XAB) − TrAB XAB logYAB, (B13)

S(XA) − S(XAB) � D(XAB‖YAB) − D(XA‖YA). (B14)

The second one can be derived similarly.
Lemma 12. For a positive semidefinite matrix XAB, it holds

that

ER(XAB) � max{S(XA) − S(XAB), S(XB) − S(XAB)}. (B15)

Proof. Let ER(XAB) = D(XAB‖Y ∗
AB). Then

S(XA) − S(XAB) � D(XAB‖Y ∗
AB) − D(XA‖Y ∗

A ) (B16)

� D(XAB‖Y ∗
AB) (B17)

= ER(XAB). (B18)

The remaining one can be shown similarly.
Upon the above lemmata, we obtain the following result.
Lemma 13. Let MA ∈ M(d, n) be a quantum measure-

ment and UCNOT = ∑
i, j |i, j ⊕ i〉〈i, j| the generalized CNOT

gate [90]. Let EB ∈ I(d, n) be an incoherent measurement
given by

EB =
{{E0, . . . , Ed−1, 0, . . . , 0} n � d,

{E0, . . . , En−2, IB − ∑n−2
x=0 Ex} n < d,

(B19)

where Ex = |x〉〈x|B. The following holds:

Em(MA ⊗ EB ◦ U†
CNOT) �

{
Cm(MA) n � d,
n − 1

d
Cm(MA) n < d.

(B20)
Proof. Note that the composite measurement consisting of

MA ∈ I(d, n) and NB ∈ I(d, n) is an element of I(d × d, n ×
n). U†

CNOT is a unital detection-incoherent channel since its
adjoint channel is a maximally incoherent operation. The case
of n � d can be proven as follows:

Em(MA ⊗ EB ◦ U†
CNOT)

= min
FAB∈SepM(A:B)

Dm
(
MA ⊗ EB ◦ U†

CNOT‖FAB
)

(B21)

= min
FAB∈SepM(A:B)

1

d2
D(⊕x,yUCNOT(Mx ⊗ Ey)‖ ⊕x,y Fxy)

(B22)

= min
FAB∈SepM(A:B)

1

d2

n−1∑
x,y=0

D(UCNOT(Mx ⊗ Ey)‖Fxy) (B23)

� 1

d2

n−1∑
x,y=0

ER(UCNOT(Mx ⊗ Ey)) (B24)

= 1

d

n−1∑
x=0

ER(UCNOT(Mx ⊗ E0)) (B25)

� 1

d

n−1∑
x=0

{S(�Mx ) − S(Mx )} (B26)

= Cm(MA), (B27)

where the fifth line follows from the fact that ER(UCNOT(Mx ⊗
Ey)) = ER(UCNOT(Mx ⊗ E0)) for all y because of

UCNOT(Mx ⊗ Ey) = IdA ⊗ Sy ◦ UCNOT(Mx ⊗ E0) (B28)
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with the (unitary) shift channel Sy = ∑
i |i ⊕ y〉〈i| (or the gen-

eralized Pauli X channel); the inequality follows from Lemma
12. For n < d , it can be seen in a similar way:

Em(MA ⊗ EB ◦ U†
CNOT)

= min
FAB∈SepM(A:B)

Dm
(
MA ⊗ EB ◦ U†

CNOT‖FAB
)

(B29)

� 1

d2

n−1∑
x,y=0

ER(UCNOT(Mx ⊗ E0)) (B30)

� n − 1

d2

n−1∑
x=0

ER(UCNOT(Mx ⊗ E0)) (B31)

� n − 1

d2

n−1∑
x=0

{S(�Mx ) − S(Mx )} (B32)

= n − 1

d
Cm(MA). (B33)

This completes the proof.
Note that for information complete measurements it holds

that n � d2. Upon the above results, we arrive at the main
result [91].

Theorem 14. Let MA ∈ M(d, n) be a quantum measure-
ment. Let EB ∈ I(d, n) be an incoherent measurement given
by

EB =
{{E0, . . . , Ed−1, 0, . . . , 0} n � d,

{E0, . . . , En−2, IB − ∑n−2
x=0 Ex} n < d,

(B34)

where Ex = |x〉〈x|B. For n � d , the following holds:

sup
NAB∈UDI

Em(MA ⊗ EB ◦ NAB) = Cm(MA), (B35)

where UDI denotes the set of unital detection incoherent
channels: an optimal preprocessing channel NAB is given by
the adjoint channel of the generalized CNOT gate. For n < d ,
the following holds:

n − 1

d
Cm(MA) � sup

NAB∈UDI
Em(MA ⊗ EB ◦ NAB)

� Cm(MA). (B36)

Proof. Theorem 10 shows that

Em(MA ⊗ EB ◦ NAB) � Cm(MA) (B37)

for any unital detection-incoherent channel NAB. On the other
hand, using U†

CNOT as the preprocessing channel, Lemma 13
indicates that

Em(MA ⊗ EB ◦ U†
CNOT)

{� Cm(MA) n � d,

� n − 1

d
Cm(MA) n < d.

(B38)

Combining the two results completes the proof.

APPENDIX C: COHERENCE MONOTONES FROM
ENTANGLEMENT MONOTONES

A quantum entanglement monotone of quantum measure-
ments induces a quantum coherence monotone of quantum
measurements. We require that a quantum coherence mono-
tone C satisfies the following conditions.

(1) C(NA) � 0; C(NA) = 0 if and only if NA ∈ I(d, n).
(2) C(SR ◦ NA ◦ FA) � C(NA) for any preprocessing

channel FA ∈ UDI and a classical postprocessing channel SR.
(3) C(

∑
i piN (i)

A ) � ∑
i piC(N (i)

A ).
We require similar conditions for a quantum entanglement

monotone E as well.
(1) E (NAB) � 0; E (NAB) = 0 if and only if NAB ∈

SepM(A :B).
(2) E (SR ◦ NAB ◦ FAB) � E (NAB) for any preprocessing

channel FAB that does not generate quantum entanglement
from SepM(A :B) and a classical postprocessing channel SR

acting on the system A and B.
(3) E (

∑
i piN (i)

AB ) � ∑
i piE (N (i)

AB ).
The following result establishes the existence of the

induced quantum coherence monotone for quantum measure-
ments.

Theorem 15. Let MA ∈ M(d, n) be a quantum measure-
ment. Let EB ∈ I(d, n) be an incoherent measurement given
by

EB =
{{E0, . . . , Ed−1, 0, . . . , 0} n � d,

{E0, . . . , En−2, IB − ∑n−2
x=0 Ex} n < d,

(C1)

where Ex = |x〉〈x|B. For n > 1, a quantum entanglement
monotone E for quantum measurements induces a quantum
coherence monotone for quantum measurements as follows:

C(MA) := sup
FAB∈UDI

E (MA ⊗ EB ◦ FAB). (C2)

Proof. We verify the condition for C being a quantum
coherence monotone.

(1) First, note that C(·) � 0 due to E (·) � 0. To show that
C(NA) = 0 for NA ∈ I(d, n), I(d × d, n × n) ⊂ SepM(A :B)
proves the “if” direction, while Theorem 14 assures the other
direction.

(2) For any FA ∈ UDI and a classical postprocessing chan-
nel SR acting on the system A and B, the monotonicity holds
as follows:

C(SR ◦ NA ◦ FA) = sup
GAB∈UDI

E ((SR ◦ NA ◦ FA) ⊗ EB ◦ GAB)

(C3)

� sup
F ′

AB∈UDI
E (SR ⊗ IdB ◦ NA ⊗ EB ◦ F ′

AB)

(C4)

� sup
F ′

AB∈UDI
E (NA ⊗ EB ◦ F ′

AB) (C5)

= C(NA), (C6)

where we used the monotonicity of E and that FA ⊗ IdB ◦
GAB ∈ UDI for GAB ∈ UDI.

(3) The convexity of the dynamic coherence monotone can
be seen as below:

C

(∑
i

piN (i)
A

)
= E

(∑
i

piN (i)
A ⊗ EB ◦ F∗

AB

)
(C7)

�
∑

i

piE
(
N (i)

A ⊗ EB ◦ F∗
AB

)
(C8)

�
∑

i

pi sup
F (i)

AB∈UDI

E
(
N (i)

A ⊗ EB ◦ F (i)
AB

)
(C9)
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�
∑

i

piC
(
N (i)

A

)
, (C10)

where we assumed and used the convexity of E in the first
inequality.

We finally remark that a single outcome measurement (n =
1) is the trivial measurement MA = {IA} that does not have
any quantum resources.
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