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Dynamical triplet unraveling : A quantum Monte Carlo algorithm for reversible dynamics
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We introduce a quantum Monte Carlo method to simulate the reversible dynamics of correlated many-body
systems. Our method is based on the Laplace transform of the time-evolution operator, which, as opposed to
most quantum Monte Carlo methods, makes it possible to access the dynamics at longer times. The Monte Carlo
trajectories are realized through a piecewise stochastic-deterministic reversible evolution where free dynamics
is interspersed with two-process quantum jumps. The dynamical sign problem is bypassed via the so-called
deadweight approximation, which stabilizes the many-body phases at longer times. We benchmark our method
by simulating spin excitation propagation in the one-dimensional (1D) XXZ spin chain, dynamical confinement in
the 1D quantum Ising model and quenched magnetization dynamics in the two-dimensional square Ising model.
Finally, we also show how to extract dynamical information directly from the Laplace representation.
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I. INTRODUCTION

Recent years have witnessed an ever-growing interest in the
many-body dynamics of strongly correlated quantum systems
[1,2]. Technical advancements in quantum state preparation,
control, and measurement have made it possible to observe
the real-time evolution of typical systems in condensed mat-
ter physics at very low temperatures. Several experimental
platforms, ranging from cold atoms in optical lattices [3–7]
to trapped ions [8,9] and superconducting circuits [10,11],
have emerged as quantum simulators and different many-
body Hamiltonians have been realized. The plethora of
phenomena that were investigated is very rich and includes
many-body equilibration versus localization [12–14], many-
body dissipation, dynamics of quantum correlations [15–17],
quenched many-body dynamics, and dynamical phase transi-
tions [18–20].

Parallel to the abundance of experimental investigations,
numerical methods [19,21,22] were developed to simulate
condensed matter systems efficiently, including molecular and
atomic gases in optical lattices. At the intersection between
many-body physics and quantum information theory, tensor
networks were extensively explored in one-dimensional (1D)
systems, and nowadays, they are considered as a univer-
sal representation of low-energy, weakly entangled quantum
states. Within this framework, time-dependent density matrix
renormalization group [23–26] has proven very effective in
handling large particle systems and has established itself as
a reliable standard tool. For higher-dimensional systems and
longer simulation times, nonequilibrium dynamical mean-
field theory [27,28] has been successfully applied to study
spectroscopy [29], nonlinear optics [30], and transport in
solid-state physics [31] as well as quenches [32] and re-
laxation dynamics in cold atoms in optical lattices [33,34].
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Finally, other computationally efficient methods found a mul-
titude of applications in quantum chemistry, with prominent
examples being the time-dependent Hartree-Fock [35], multi-
configurational time-dependent Hartree-Fock [36], in which
some electron-electron correlations are also included, and
density functional theory [37].

Most of the above techniques rely explicitly on sym-
metries in the Hamiltonian to cope with the large size of
the Hilbert space. As opposed to deterministic techniques,
quantum Monte Carlo methods (QMC) sample stochastic tra-
jectories in a configuration space, onto which the original
Hilbert space is directly mapped, and proved very reliable in
a number of different applications [38–43]. Although QMC
methods were originally formulated to study ground-state
and equilibrium properties, dynamical adaptations have also
been put forward that are based on stochastic sampling of
diagrammatic expansions of many-body Green’s functions de-
fined along a Keldysh contour [40,44,45]. All these methods,
however, were limited in accessing long-time behavior by
the well-known dynamical sign problem. Notable exceptions
were the inchworm algorithm presented in [46] and real-time
full configuration interaction QMC algorithm [39]. The first
technique can access medium-to-long-time t ∼ 10 dynamical
properties due to corrections of short-time diagrams, whereas
the second can allow for simulation times up to t ∼ 40, al-
though at the expense of probability conservation.

Here, we present a QMC algorithm that allows us to
simulate the reversible dynamics of a quantum many-body
system at long times. In some technical aspects, this method
draws from the fixed point quantum Monte Carlo method
(FPQMC), which was first introduced in [47] for ground-
state calculations. The reversible dynamics, as dictated by
the von Neumann equation, is reformulated in the Laplace
representation and unraveled by stochastic trajectories. These
are generated by a piecewise deterministic-stochastic evo-
lution where the free part of the many-body Hamiltonian
is solved exactly, while particle-particle interactions are
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simulated using two-process quantum jumps. The QMC walk-
ers sampling the configuration space are called triplets and
consist of two state vectors and a statistical weight. Depending
on this weight, a triplet might spawn a new triplet via a
two-process quantum jump or be removed from the simula-
tion altogether. Two key ingredients are introduced. First, the
deadweight approximation, which stabilizes the phases orig-
inating from fast oscillating exponentials that are responsible
for the dynamical sign problem. Second, as previously formu-
lated in FPQMC and relying on the dynamic norm, importance
sampling guarantees fast convergence of the time-dependent
quantities under scrutiny. Near-exact trace conservation of the
density matrix is guaranteed for the entire duration of the
simulation. We benchmark our algorithm against three case-
studies on quantum lattices: (i) dynamics of a spin excitation
following a quench in the 1D Heisenberg XXZ chain; (ii) ex-
citation confinement in the 1D quantum Ising model [48–50];
and (iii) dynamics of magnetization following a quench in
the two-dimensional (2D) Ising mode. In all three cases we
find results in excellent agreement with previously established
literature whenever a comparison is possible.

This paper is organized as follows. In Sec. II, we present
the theoretical background for our numerical method and in-
troduce some physical quantities of interest. In Sec. III, we
break down the algorithm itself and explain in detail all its
major components. In Sec. IV, we test our method for the case
studies mentioned earlier and analyze the results. Finally, we
draw some conclusions and illustrate some open perspectives
in Sec. V.

II. THEORETICAL BASIS

A. Dynamics in the Laplace space

We focus on many-body systems whose Hamiltonian H
can be split into a free part and an interacting part, that is,
H = H free + H int. The adjectives “free” and “interacting” do
not necessarily refer to the actual kinetic energy versus inter-
actions within the Hamiltonian, but rather to whether the exact
eigenstates are known a priori, which is assumed to be always
the case for H free. The time evolution is dictated by the von
Neumann equation

d

dt
ρ = Lρ ≡ −i[H, ρ], (1)

where [·, ·] denotes the commutator and ρ the density matrix
of the many-body system. If the total Hamiltonian is time
independent, the formal solution of Eq. (1) reads

ρt = Etρ0 = etLρ0, (2)

for some initial state ρ0. To use the framework developed in
[47], we transform the time-evolution superoperator Et in the
Laplace domain, that is,

Rs =
∫ ∞

0
Et e

−st dt . (3)

We define the superoperators

Lfreeρ = −i[H free, ρ], Lintρ = −i[H int, ρ], (4)

generating the dynamics described by the superoperators Rfree
s

and Rint
s , respectively. By first Laplace-transforming the for-

mal solution of Eq. (1) and then applying the geometric
series (see [51] for details), one arrives at the following
expression for the Laplace transform of the total evolution
superoperator Rs:

Rs =
∞∑

m=0

rm

[
Rfree

s+r

(
1 + Lint

r

)]m

Rfree
s+r, (5)

with r > 0. We refer to Eq. (5) as the magical formula because
it unifies a perturbative expansion and a numerical scheme in
a single equation. If r = 0, the perturbative expansion is re-
covered, since the mth term in the sum corresponds to the mth
order in perturbation theory. Conversely, if r > 0, the sum can
be interpreted as the time-evolution operator of a numerical
integration scheme with a 1/r time step. Hence, truncating the
magical formula at some Mtrunc term sets a natural time limit
for the numerical integration, which is tmax ∼ 1

smin
∼ Mtrunc

r .
The Laplace transform of the time-evolution superoperator

(3) does not guarantee trace conservation by itself. However,
noting that

Tr(Rsρ0) =
∫ ∞

0
Tr(ρt )e

−st dt = 1

s
, (6)

we recover the correct normalization for the quantity ρ̃s de-
fined by

ρ̃s = sRsρ0. (7)

Even though ρ̃s possess all properties of a density matrix, we
have to be careful when interpreting it as a physical density
matrix because it is constructed from an integration over the
entire time domain. In the limit s → ∞, the density matrix is
associated to a physical state, however, for any finite value s,
ρ̃s can be interpreted only as a formal density matrix.

Once the density matrix ρ̃s is obtained, relevant quantities
of interest can be calculated. For instance, the s-dependent
correlation functions read

CAB
s = Tr(ABρ̃s) = sTr(ABRsρ0), (8)

where A and B are generic self-adjoint operators.

B. Two-process stochastic unravelling

As mentioned earlier, the magical formula (5) can be inter-
preted as an integration scheme for any r > 0. In this respect,
the superoperator

Tr (s) = r

[
Rfree

s+r

(
1 + Lint

r

)]
, (9)

should be regarded as the fundamental propagator in the
Laplace domain. As anticipated earlier, a truncation order
Mtrunc is set in the numerical implementation, which leads to
the following approximation of the evolution superoperator

Rs ≈
Mtrunc∑
m=0

[Tr (s)]mRfree
s+r . (10)

From this approximation, we develop a stochastic process
to unravel the von Neumann equation. We take inspiration
from the method originally introduced as triplet unravelling
in [47]. Our method tracks the evolution of Monte Carlo
walkers, called triplets, of the form (cm, |φm〉, |ψm〉) in the
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many-body Hilbert space where the subscript m refers to the
mth-order iterative term in the evolution described by the
propagator (9). The evolution of the piecewise-deterministic
stochastic processes |φm〉, |ψm〉 alternates between an exact
continuous evolution, governed by H free, and stochastic state
jumps accounting for H int. We construct these processes as to
reproduce the application of the magical formula Eq. (5) for
infinite order of iteration Mtrunc → ∞ via

ρ̃s = s
∞∑

m=0

E[cm|φm〉〈ψm|], (11)

where E[·] represents the expectation value of the stochastic
processes. This construction ensures that the solution of the
von Neumann equation in the Laplace domain is recovered in
the limit of a large order of iteration. Because eigenstates of
H free are assumed to be known exactly, we use these states as
the computational basis allowing us to compute the free evolu-
tion exactly. To minimize the statistical correlations between
the processes |φm〉 and |ψm〉, we use two-sided jump processes
and model the effect of H int as follows:

|φm〉〈ψm| 	→ |φm〉〈ψm| − i

r
(H int|φm〉〈ψm| − |φm〉〈ψm|H int ),

(12)

which coincides with a stochastic application of the superop-
erator (1 + Lint

r ).

III. DYNAMIC ALGORITHM

The present algorithm is the dynamical adaptation of the
FPQMC method introduced in [47], of which it preserves
the overall structure. This structure consists of a main loop
whose application is iterated over an ensemble of triplets until
a solution emerges. Two distinct steps compose the main loop,
the interaction and the free evolution that are implemented by
the superoperators (1 + Lint

r ) and Rfree
s+r , respectively.

A. Main loop

The algorithm considers the evolution of an ensemble
of triplets, defined as {(wn, |in〉, | jn〉)}n, where wn is the
(complex) weight factor and |in〉, | jn〉 are the free Hamiltonian
eigenstates. Here the subscript n refers to the index in the
triplet ensemble. In what follows, we will use the lighter
notation |i〉 ≡ i. As anticipated earlier, during the evolution,
the triplets repeatedly experience stochastic spawning events,
realized by state jumps associated with H int, interspersed with
continuous weight updates coming from the exact, free evolu-
tion H free. The rate of the spawning events is r and it is fixed
prior to the simulation.

To control the evolution of the ensemble size, we intro-
duce the following parameters: (i) the triplet’s unit of weight
wu > 0, which also fixes the initial number of triplets in the
ensemble; (ii) the dead weight udw > wu which is used
throughout the simulation to identify statistically unimportant
triplets; and (iii) the spring constant κ of the importance
sampling procedure. The triplet’s unit of weight wu sets a
reference to which the number of triplets is evaluated. Thus, in
analogy with the definition of the walkers’ population in MC

methods, we define the triplet population P as the sum of all
the relative absolute value of the weights with respect to wu,
that is,

P =
∑

n

|wn|
wu

. (13)

The dead weight and spring constant are approximation and
bias parameters, respectively. As such, they are not rooted in
the theoretical framework introduced in Sec. II, but they are
extra computational features that are necessary for numerical
stabilization and convergence. Both the deadweight approx-
imation and importance sampling are discussed in detail in
Sec. III B. However, as they are crucial for the execution of the
main loop described in this subsection, we briefly recall why
they are needed. The deadweight approximation aims to re-
duce the effect of the dynamical sign problem which is known
to cause numerical instabilities connected to fast oscillating
exponentials, especially at longer times. Importance sampling
reduces the number of triplets needed to obtain a convergent
simulation by preventing unwanted extra exploration of the
Hilbert space. Thus, the population dynamics is controlled by
both κ and udw. In general, if the spring constant is too large,
the triplet population decreases quickly. The same being true
for the dead weight, both parameters should be optimized. In
principle, one should first find the smallest udw that overcomes
the dynamical sign problem and, subsequently, decrease the
spring constant until a target value of the triplet population is
achieved.

We now discuss in detail the main loop of our algorithm,
depicted in Fig. 1. The compression and decompression steps
are thoroughly described in Appendix.

(1) Spawnings
(a) Preparation to interaction.

(i) Deactivation of unimportant triplets (wn, in, jn).
If |wn| < udw, the triplet becomes inactive and survives
with probability |wn|/udw. The weight of the surviving
triplets is updated to udwwn/|wn|. The surviving inactive
triplets do not experience any collision and are therefore
evolved only freely.

(ii) Prespawning decompression. The active triplets
are split into Nc = 
|wn|/wu� child triplets with
weight wn/Nc.
(b) Spawning. For each child triplet, a side is randomly

chosen (quantum mechanically, either in or jn) and a new
state kn is selected with equal probability among the nt

possible spawning transitions. For instance, if the ket is
chosen, the following triplet is added to the ensemble:

(
i
H int

inkn

r

wn

Nc
2nt Tb, kn, jn

)
, (14)

where Tb = eκ (n2
i j−n2

k j )/2 is the transition bias, with ni j the
minimum number of application of H int to transition from
state i to j (see the next subsection for details). If jn is
selected, an equivalent triplet is spawned on the bra side.
(2) Free evolution

(a) Full compression. All the child triplets coming from
the decompression and the spawnings containing the states
(in, jn) are replaced by a single parent triplet whose weight
is the sum of all the slave triplets’ weight.
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(w, i, j)

active triplet?

decompress

apply Lint

r

compress

no yes

. . .

. . .

apply Rfree
s+r

FIG. 1. Flowchart of the algorithm describing the application of
the superoperator Lint/r. The green diamond represents the dead-
weight approximation.

(b) Weight update. For each parent triplet (wn, in, jn),
a weight update is performed, accounting for the
free evolution

wn 	→ r

s + r + i
(
H free

inin
− H free

jn jn

)wn. (15)

In a typical simulation, correlation functions of the form
of Eq. (8) are calculated via a procedure involving an ini-
tialization, an iteration on the main loop, and a computation
of correlation functions. In the initialization phase, the triplet
ensemble is chosen to match the desired initial state ρ0. The
parameter wu uniquely defines the initial population of the
ensemble because its normalization is fixed. In this initial en-
semble, triplets whose original weight w is smaller in absolute
value than wu are either rounded to a weight sign(w)wu with
probability |w|/wu, or removed completely from the simu-
lation. Subsequently, the main loop is executed Mtrunc times,
with the cutoff Mtrunc being set prior to the simulation. At the
end of each loop m � Mtrunc, the quantity

Tr
(
ABρ̃ (m)

s

)
(16)

is calculated and stored, with ρ̃ (m)
s being the matrix represen-

tation of the output of the m − 1 loop. Finally, the correlation
function can be computed by summing over all the contribu-

tion from all loops, i.e.,

CAB
s ≈

Mtrunc∑
m=1

Tr
(
ABρ̃ (m)

s

)
. (17)

Due to the importance sampling procedure, the ensemble
is biased by the spring constant κ , and the triplets’ weights
have to be compensated for to obtain unbiased physical re-
sults. For a general operator X , the physical expectation
value is computed using the physical weights e

κ
2 n2

i j wn as
follows:

Tr(X ρ̃ ) ≈
∑

n

wne
κ
2 n2

i j Xin jn , (18)

where ρ̃ is represented by the ensemble {wn, in, jn}n and
Xin jn = 〈in|X | jn〉.

B. Numerical stabilization and convergence

Since most of the computational time is devoted to per-
forming the spawning events, the triplet population introduced
in Eq. (13) provides a realistic estimate of the algorithmic
complexity. Our simulations show that the computational time
scales as PM/smin, where PM denotes the maximum triplets’
population over all loops. The dependence on the inverse time
s reflects the number of iterations over the main loop that is
needed to converge for smin ∼ 1/tmax. If the initial population
is larger, the stability and the accuracy of the results improve,
but the simulation time is longer.

The size of a typical many-body Hilbert space imposes
a strong demand on the computational resources and limits
simulations to small systems. Furthermore, the dynamical
sign problem represents a nonnegligible technical issue in
terms of numerical stability. To tackle these two problems,
we complement the two-process unravelling loop described
above with two extra procedures, importance sampling and
the deadweight approximation.

The importance sampling procedure relies on two main
concepts, originally introduced and explained in detail in
Sec. III.C of [47]. The first is the introduction of a dynamic
norm ni j , a distance between states in the Hilbert space,
defined as the minimum number of applications of H int to
transition from state i to j. The second concept associates to
each triplet two weights, a physical weight c and an ensemble
weight w. The physical weight c is used to compute expec-
tation values, e.g., Tr(Aρ̃s), whereas the ensemble weight w

reflects the number of jumps performed by the triplet. The
latter weight allows to rate the statistical relevance of the
triplet within its ensemble without altering the physical av-
erages. These two are related via the equation c = bw, by a
norm-dependent bias b ≡ b(ni j ). A standard choice for b is
b = exp( κ

2 n2
i j ), which is a harmonic interaction with spring

constant κ between the states i and j that aims at reducing the
number of triplets with a large dynamic norm.

The dynamical sign problem manifests itself as numerical
instabilities occurring at medium times. To avoid divergences,
we need to prevent statistically irrelevant triplet from overcon-
tributing to the dynamics. The basic idea of the deadweight
approximation is to forbid all the triplets with an ensemble
weight w below a threshold udw from experiencing jumps
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while still allowing them to undergo free evolution. The
triplets undergoing the jumps are called active triplets whereas
the ones below the threshold udw as referred to as inactive.
Intuitively, one can imagine these inactive triplets as an effec-
tive environment whose free dynamics is needed to guarantee
an ergodic exploration of the Hilbert space by the remaining
active triplets.

An extra computational feature which greatly improves the
efficiency of the algorithm concerns the parametric nature of
s in the magical formula (5). Unlike time evolution, where
typically each iteration at a given physical time t ′ = t + �t
produces an updated density matrix ρt ′ , the evolution dictated
by the magical formula yields results for a density matrix
ρ̃s that represents an integral over the entire time range, as
reflected in the use of the Laplace transform (3). At first
glance, one might be skeptical about the efficiency of our
method as one would need to produce an independent sim-
ulation for each s value to reconstruct ρ̃s. However, by noting
that the s variable only appears in the exact free part of
the total evolution, one can produce results for the entire
s range in a single simulation at a minimal additional com-
putational cost. For example, two triplets (c(1)

m , |φ(1)
m 〉, |ψ (1)

m 〉)
and (c(2)

m , |φ(2)
m 〉, |ψ (2)

m 〉) having the very same trajectory for
two different values s1 = s2 differ from one another only in
the application of the free evolution operator Rfree

s+r . The idea is
then to evolve a single copy of these triplets and reweight each
application of the free evolution operator when computing
observables simultaneously for s1 and s2. In practice, we select
the range of s values we are interested in before the simulation,
and at each iterative order m, we reweight the triplets for the
entire range of s values during the free evolution part.

IV. RESULTS

In this section, we test our algorithm on thre models in
quantum magnetism, namely the Heisenberg XXZ , the 1D
Ising model, and the 2D square Ising model. In all these
scenarios, we look at the dynamics following a quench in
some parameter. Although the use of the Laplace transform
indicates that the long-term quantities can be naturally com-
puted, we will show that certain time-dependent features can
also be reconstructed.

A. Heisenberg XXZ model: Analysis of the method
and quenched dynamics

To assess the efficiency of our method, we first present a
quantitative analysis of our numerical method. In particular,
we focus on the triplet population control via the parame-
ters wu, and udw, the dependence of the end result on the
importance sampling parameter κ and the trace preserving
properties of the algorithm.

Like in any Monte Carlo method, the population of walkers
is the main quantity responsible for the size of the statistical
error bars. Within this method, the population for a given
loop refers to the number of spawning attempts during that
loop, and due to the high number of spawnings, it naturally
increases at an exponential rate. It is therefore vital to slow
down any possible overgrowth and limit the exploration of
the Hilbert space to statistically important triplets only. In

practice, whenever the target value of the triplets’ population
is reached, the deadweight approximation is enabled by set-
ting a nonvanishing, fine-tuned threshold udw. This drastically
reduces exponential increase in population and further keeps
it at a nearly constant value.

To be more concrete we consider the well-known
Heisenberg XXZ model with L spins and open boundary
conditions. Its Hamiltonian reads

H = Jxy

L−1∑
i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

) + Jz

L−1∑
i=1

σ z
i σ z

i+1, (19)

where σ x, σ z are the standard Pauli matrices and the sum runs
over the spins in the chain. Following the recipe introduced
earlier, the Hamiltonian (19) is split into a free and an inter-
acting part, H = H free + H int, as follows:

H free = Jz

∑
i

σ z
i σ z

i+1, H int = Jxy

∑
i

σ+
i σ−

i+1 + σ−
i σ+

i+1,

(20)

where σ± = σ x ± iσ y. This particular splitting of the
Hamiltonian sets the eigenbasis of H free as the computational
basis, that is,

|es1,...,sL 〉 = |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sL〉, (21)

where sa = sz
a = ±1. The single-particle operators σ z and σ±

act of the basis states according to the standard algebra of
Pauli matrices

σ z| ± 1〉 = ±| ± 1〉, σ±| ∓ 1〉 = | ± 1〉, σ±| ± 1〉 = 0.

(22)

The initial state is set to

ρini = |ini〉〈ini|, (23)

with

|ini〉 =
L/2⊗
i=1

| + 1〉i

L⊗
i=L/2+1

| − 1〉i, (24)

in which strongly localized spin excitations serve as an initial
source of energy. This initial state will be useful later to un-
derstand the propagation of spin excitations across the chain.

Figure 2 shows three examples of the evolution of the
population and the accuracy of the numerical integration for
these populations in the L = 10 XXZ model, for Jz = 0.9,
Jxy = 1, s = 5×10−2, r = 30, and κ = 2. In all the examples,
the population control is performed by enabling the dead-
weight approximation at m/r = 8, represented by the vertical
line in the upper panel. The value of the threshold udw then
controls the second phase of the exponential increase of the
population. In passing, we note that wu can be responsible
for some secondary effects later during the evolution, e.g., the
decreasing distance between the dotted red and dashed orange
lines in the first stage in Fig. 2.

The introduction of the importance sampling procedure
was motivated by the need to reduce the number of triplets
in the ensemble to only the statistically important ones. Thus,
the main effect of the κ parameter is a reduction of the number
triplets with a large dynamic norm. A larger κ leads to a
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FIG. 2. Upper panel: Evolution of the triplet population for vari-
ous values of the dead weight udw and triplet’s unit weight wu for the
L = 10 XXZ model with Jxy = 1, Jz = 0.9, s = 1/20, r = 30, and
κ = 2. The error bars were calculated over 30 independent simula-
tions. Lower panel: Evolution of the quantity Tr(σ z

L/2ρ̃
(m)
s ) defined

in Eq. (16) for the same parameters as above associated with the
magnetization σ z

L/2. The black solid line represents the exact solution.

smaller exponential increase of the population. However, if
the spring constant is chosen too large, it may result in an
wrong estimate of the final values of the correlation func-
tions (8). This gap originates from breaking the ergodicity of
Hilbert space exploration, with the triplets being confined to
a small region of the Hilbert space around their initial state.

Figure 3 illustrates an underestimation of the quantity C
σ z

L/2
s

FIG. 3. Dependence of the spring constant κ on the final result

C
σ z

L/2
s (κ ) defined in Eq. (8) for a L = 8 XXZ model with Jz = 1.5,

Jxy = 1, and s = 1/10. The errors were calculated over 100 indepen-
dent simulations with udw = 1.125wu and r = 30.

FIG. 4. Estimation of the magnetization C
σ z

L/2
s for various dead

weight udw and various spring constants κ . The model is the L = 10
XXZ , with Jz = 0.9, Jxy = 1, smin = 1/10, and r = 30. The errors
were calculated over 100 independent simulations.

in the L = 8 XXZ model with Jz = 1.5, Jxy = 1 for different
values of the spring constant. We note that the importance
sampling induces a systematic error for values κ � 4, a criti-
cal value below which the population is large enough to avoid
ergodicity breaking. On a similar note, we remark that the
deadweight approximation can also affect the final results.
Figure 4 illustrates a udw analysis for the L = 10 XXZ model
with Jz = 0.9, Jxy = 1, smin = 1/10, r = 30. The deadweight
approximation was enabled at m/r = 4. Similarly to Fig. 3,
we clearly see that if udw is chosen too large, the correct result
cannot be reached. Lower values of the dead weight udw could
not be chosen due to divergences related to the sign problem.
Figure 4 thus supports the claim that improving the efficiency
of the simulation is a trade-off between the parameters κ and
udw. If the spring constant is too large, the dead weight has to
be chosen small, and vice versa. The points κ = 2, udw = 2.5
and κ = 1.5, udw = 5 are comparable in efficiency, which is
supported by similar execution times. To obtain the optimal
threshold, it is more efficient to start from a larger value of udw

and further decrease it until the final result becomes constant
within the acceptable statistical error.

The trace conserving character of the evolution operator in
the Laplace domain Rs can be checked using the following
condition [51]:

lim
s→0

Tr(ρ̃s) = Tr(ρ0). (25)

If the algorithm violates the unitary character of the time evo-
lution, instabilities will occur and grow exponentially with the
simulation length. Figure 5 shows trace conservation accord-
ing to Eq. (25) with ρ0 chosen as the ground state of the XXZ
Hamiltonian with L = 20. The exponential growth of the error
bars for small s signals the occurring of the dynamical sign
problem. The severity the dynamical sign problem generally
depends on the details of the system as well as the observables
being computed.

We now focus on the dynamical behavior of spin excita-
tions following an instantaneous quench. For Jz < Jxy these
travel ballistically across the chain regardless of its length,
while, on the contrary, for Jz > Jxy propagation is inhibited
by the strong σz coupling [24]. The propagation of these spin
excitations can be quantified by analyzing the evolution of
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FIG. 5. Evolution of the trace of the density matrix in the Laplace
domain ρ̃s for the L = 20 XXZ model with Jz = Jxy = 1. The pop-
ulation was about 2×104 triplets with r = 100, κ = 4, udw = 1 at
m/r = 4 and the error bars were calculated over 30 independent
simulations.

the magnetization profile. Starting from ρini, this profile is
calculated as

C
σ z

i
s ≡ Tr

(
σ z

i ρ̃s
)
. (26)

Figure 6 illustrates the evolution of the absolute value of the
magnetization profile (26) for Jxy = 1 in both the ballistic
and strongly interacting regimes at Jz = 0.6 (top) and Jz =
1.5 (bottom), respectively. In the upper panel, a power-law
decay can be observed. This is consistent with ballistic prop-

FIG. 6. Evolution in the Laplace domain of the magnetization

profile |Cσ z
i

s | for the L = 40 XXZ chain for Jxy = 1. Ballistic behavior
is clearly visible in the upper panel, whereas transport is almost
completely suppressed in the lower panel. The values plotted were
averaged over 100 independent simulations with a population of
about 105 triplets and r = 100, κ = 4, udw = 1 at m/r = 12.

FIG. 7. Evolution of the Loschmidt echo in the Laplace domain
L(s) = s Tr(ρiniRsρini ) for the L = 40 XXZ chain with Jyx = 1 and
various values of Jz. The errors were estimated over 30 independent
simulations, with r = 30, κ = 1, and udw = 1.2 at m/r = 12. The
population at the end of each simulation was about 2×106 triplets.
The continuous curve represents the exact solution for Jz = 0.

agation where the spin excitations travel within a light-cone
type of spatial and temporal region. On the contrary, in the
lower panel at Jz = 1.5 magnetization propagation is prac-
tically suppressed as a result of the localizing longitudinal
interactions. To measure this sharp transition between bal-
listic and suppressed propagation, we consider the Loschmidt
echo L(t ) = |〈ψ0|e−iHt |ψ0〉|2, a measure of the disturbance
induced on a quantum system by an external perturbation. In
the Laplace domain, this reads

L(s) = s Tr(ρ0Rsρ0) ≡ Tr(ρ0ρ̃s), (27)

where ρ0 = |ψ0〉〈ψ0| is the initial state. Figure 7 illustrates
the evolution of L(s) for Jxy = 1 at various Jz for a spin chain
of length L = 40 from the initial state Eq. (23). Increasing Jz

in the Hamiltonian (19) suppresses the propagation of mag-
netization. The quantum state of the spin chain essentially
freezes up as a consequence of strong localization and this
results in a weak decay to nearly constant Loschmidt echo.
This observation is supported by previous results obtained via
exact diagonalization [52].

B. Confinement in the 1D quantum Ising model

For our second case study, we consider a ferromagnetic
quantum Ising chain of length L coupled to the transverse
and longitudinal magnetic fields hx and hz, respectively. The
Hamiltonian reads

H = −J
L−1∑
i=1

σ z
i σ z

i+1 − hz

L∑
i=1

σ z
i − hx

L∑
i=1

σ x
i , (28)

where σ x, σ z are the standard Pauli matrices and the sum
runs over the spins in the chain. In the absence of a longi-
tudinal field, the model is exactly solvable and has a phase
transition at hx = J . In the ordered phase hx < J , the ground
state is degenerate due to a spin-flip symmetry breaking and
corresponds to domain walls of various lengths. For instance,
for hx = hz = 0, the domain walls’ lengths are maximized,
and the degenerate ground states are |�u〉 = ⊗L

i=1 |↑〉i and
|�d〉 = ⊗L

i=1 |↓〉i. A nonzero value of the longitudinal field
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FIG. 8. Evolution in the Laplace domain of the energy density
profile CHi

s for a L = 40 quantum Ising chain with J = 1, hx = 0.2,
and hz = 1.2 starting from a state with a single kink in the mid-
dle. The profile was computed over 30 independent simulations for
r = 30, κ = 3, and udw = 1 at m/r = 6.

hz creates an energy gap between these states by increasing
the energy of the spin domains along the field hz. Hence, the
latter field acts as an attracting potential between the two walls
delimiting a domain.

Using our algorithm, we now show how spin dynamics
can be suppressed in an Ising chain in the above conditions.
Similarly to the XXZ model studied in the previous sub-
section, we initialize the evolution of the spin chain from
the domain wall state |ini〉 = |↑ . . . ↑↓ . . . ↓〉. We quench
the longitudinal field from hz = 0 to a nonzero value and
study the resulting dynamics. The initial state |ini〉 is char-
acterized by a spin kink exactly in the middle of the chain.
Hence, a nonzero longitudinal field will induce an energy
imbalance between the two spin domains. Figure 8 shows the
evolution in the Laplace domain of the energy density profile
Tr(Hiρ̃s), with

Hi = −Jσ z
i σ z

i+1 − hx

2

(
σ x

i + σ x
i+1

) − hz

2

(
σ z

i + σ z
i+1

)
, (29)

starting from the initial state Eq. (23) for an L = 40 chain with
J = 1, hx = 0.2, and hz = 1.2. Neither energy exchange nor
spin excitation propagation occurs between the two halves.
This can be explained by considering the mid-kink as a
quasiparticle whose motion is triggered by a nonzero longi-
tudinal field hz. The kinetic energy gain, which is of order
∼hz, allows the kink to move within the potential, but due
to energy conservation it has to periodically bounce back,
leading to a confined dynamics (see [50] for details). These
oscillations are centered around the central bond connecting
L/2 and L/2 + 1 and they can be measured by considering
the evolution of 〈σ z

L/2〉. This is illustrated in the upper panel
of Fig. 9 in the Laplace domain for a L = 20 chain with
J = 1, hx = 0.2, and several confining potentials. Because
the result is shown in the Laplace domain, the oscillations
take the form of Lorezian curves. The mean frequency of the
confining oscillations can be extracted as the inflection point
of these curves. This is shown on the lower panel of Fig. 9,
which illustrates the logarithmic derivative of the signal in
the upper panel. The derivatives were calculated using a cubic
spline fitting, and the oscillations frequency is represented by
the location of the peak. Furthermore, the oscillation ampli-

FIG. 9. Upper panel: Evolution in the Laplace domain of the
mean magnetization of the spin on the left of the central opposite pair

C
σ z

L/2
s for the L = 20 quantum Ising chain with J = 1, hx = 0.2 and

the parameters r = 30, κ = 2, and wu = 4×10−6. The deadweight
approximation was enabled at m/r = 6 with udw = 1.6, 1.5, 1.8
for hz = 1.2, 0.6, 0.3, respectively. The choice of specific thresh-
olds udw originates from the optmization procedure. Lower panel:

Logarithmic derivative of the magnetization C
σ z

L/2
s . The derivative

was calculated using a cubic spline fitting.

tudes can be estimated from the distance between the values
C

σ z
L/2

s=0 and C
σ z

L/2
s=∞. These amplitudes and frequencies scale as

∼hx/hz and ∼hz, respectively, which is in agreement with
the quasiparticle interpretation of the kink dynamics and with
the findings reported in [50]. This is further supported by
Fig. 10, which displays the time evolution of the mean value
of the magnetization 〈σ z

L/2〉t obtained via an inverse Laplace
transform of the data in the upper panel in Fig. 9, using the

FIG. 10. Time evolution of the magnetization 〈σ z
L/2〉t calculated

from an inverse Laplace transform from the data of Fig. 9.
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Zakian method. The inverting procedure relies on a rational
polynomial fit of the original data to extrapolate the entire
Laplace-transformed function. It starts by fitting the signal
in Fig. 9 by a function of the type P2/P′

2 where P2, P′
2 are

polynomials of degree two. The optimal parameters of the
first fit are then used as an initial guess for a fit of higher-
order polynomials, say P3/P′

3. This iterative scheme continues
until the parameters start diverging. As illustrated in Fig. 10,
the frequency of the oscillations depends linearly on hz

while the amplitude is inversely proportional. The numerical
inverse Laplace method induces numerical amplitude damp-
ing due to the use of finite of the s range. The sharp increase
in the magnetization for hz = 0.6 at about t ≈ 8 comes from
the dynamical sign problem as well as an interplay between
the numerical inverse method and the extrapolation over the
entire s > 0 domain, suggesting that the results in the real
time domain can be trusted up to t ≈ 5. It is, however, worthy
of note that the Laplace signal does not contain any signs of
divergences and can hence be trusted at least up to s ≈ 10.

C. Quenched magnetization dynamics in the 2D Ising model

In this subsection, we briefly show how our method can
simulate quantum many-body dynamics in higher dimensions
by investigating the magnetization dynamics of a quenched
2D square L×L Ising model. In the presence of a transverse
field, the Hamiltonian reads

H = −J
L2∑

〈i, j〉
σ z

i σ z
j − hx

L2∑
i=1

σ x
j , (30)

where 〈i, j〉 denotes the sum over the nearest neighbors. Simi-
lar to the 1D counterpart, this model displays a quantum phase
transition from a ferromagnetic to a paramagnetic state with
the critical field value being hc = 3.044J [53]. We estimate
the evolution of the transverse magnetization

X = 1

L2

∑
j

σ x
j , (31)

resulting from a quench of hx within the ferromagnetic phase.
We choose as the initial state the ground state of the Hamilto-
nian without transverse field hx = 0, that is

ρ0 = |↑ . . . ↑〉〈↑ . . . ↑|. (32)

Figure 11 illustrates the time evolution of X for a 5×5 Ising
model with J = 1 and different field quenches. The data were
simulated in the Laplace domain for s = 1/2, r = 30, and
wu = 10−4. For the fields hx = 0.25 and hx = 0.5, the biases
were κ = 0.2, cdw = 1.2 and κ = 0.5, cdw = 1.6, respectively,
and the deadweight approximation was enabled at m/r = 4.
The Zakian method was then applied to transform the signal
to the time domain. These results are in very good agree-
ment with those reported in [53] and demonstrate that our
triplet unraveling can be provide excellent results in higher
dimensions.

Regardless of the dimensionality of the system, the main
limitations in our approach are the size of the Hilbert space
and the strength of the particle-particle interactions. While
the first can be mitigated by increasing the computational
resources, the lsecond follows from the expansion of Eq. (5).

FIG. 11. Time evolution of the total transverse magnetization X
for the 5×5 square Ising model with J = 1 starting from the state
|↑ . . . ↑〉〈↑ . . . ↑|. This figures illustrates a two-dimensional exam-
ple where the simulations were performed in the Laplace domain and
inverted via the procedure described above. The number of triplets
was about 2×105 whereas the density matrix has approximately
1.1×1015 elements.

A quench within the paramagnetic phase was also simulated,
leading to a correct asymptotic value of the transverse
magnetization X but with increased numerical noise in the
short-time behavior. We suspect that this is associated to the
σz-to-σx basis change required by the numerical implementa-
tion and, as such, it is the subject of current investigation. As
a final remark, we again emphasize that the dependence be-
tween the spring constant κ and the deadweight cdw need to be
adjusted to the model under study to obtain a convergent
result.

V. CONCLUSION AND OPEN PERSPECTIVES

In this work, we introduced an alternate Monte Carlo
method to study the reversible dynamics of many-body quan-
tum systems. The validity and the accuracy of the method
was benchmarked against excitation propagation in the 1D
Heisenberg XXZ model, dynamical confinement in the 1D
quantum Ising chain and quench dynamics in the 2D Ising
model. In almost all cases, we were able to resolve long-time
dynamical properties.

Similarly to FPQMC, this method is based on a piece-
wise stochastic deterministic two-process unravelling to solve
the von Neumann equation. The introduction of an importance
sampling procedure allows us to limit the exploration of the
Hilbert space to statistically important states. Furthermore,
large times can be reached with the deadweight approximation
by preventing statistically unimportant triplets from spawn-
ing. Due to the unravelling and the form of the evolution
operator in the Laplace domain, these triplets can be kept
in the simulation by only participating to the free evolution,
which greatly reduces the statistical errors on the final re-
sult and delays the appearance of the divergences due to the
dynamical sign problem. The trace of the density matrix is
conserved at all times during the simulation. The maximum
simulation time accessible is highly dependent on the observ-
able, as it has been shown between the Loschmidt echo and
the oscillations in the quantum Ising model. Unfortunately,
we doubt that larger timescales can be reached.
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Regarding future directions, we believe that the introduc-
tion of a small dissipation parameter can reduce the severity
of the sign problem, an idea that is already under current
investigation. Thus, we are confident that our method can be
extended to dissipative many-body quantum systems.

APPENDIX: COMPRESSION AND
DECOMPRESSION STEPS

Prior to the execution of the loop the ensemble is modified
as to improve the statistics without influencing directly the av-
erages. This modification is carried out through compressions
or decompressions.

In a compression, classes of triplets are formed by group-
ing together all the triplets associated to a fixed pair of states,
for instance, (i, j). These are then replaced by a single triplet
whose weight is equal to the sum of the weights of all the
members of the class.

Decompression is applied on a compressed ensemble.
A single class of triplets (i, j) is split into triplets with
weight wu > 0 in absolute value, (sgn(wn)wn, in, jn), and a
single rest triplet (wr, in, jn), with wr = sgn(wn)(|wn/wu| −

|wn/wu|�) (
·� is the floor function). The rest triplet is then
removed from the simulation with probability 1 − |wr |; oth-
erwise its weight is updated to sgn(wn)wu. That way, the total
statistical weight is conserved on average.
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