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Dissipation in spin chains using quantized nonequilibrium thermodynamics
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We investigate the open dynamics of a chain of interacting spins using the quantized version of the general
equation for the nonequilibrium reversible-irreversible coupling equation from classical out-of-equilibrium
thermodynamics. We focus on both equilibrium and nonequilibrium scenarios for chains of different sizes.
Whereas in the equilibrium case we demonstrate thermal equilibration to the correct many-body Gibbs density
matrix, in the nonequilibrium dynamics we show a ballistic-to-diffusive transition in the steady-state energy
current and a scaling that is consistent with Fourier’s law of heat transfer.
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I. INTRODUCTION

Until a few years back the study of open quantum dynamics
was mostly concerned with systems in quantum optics and
atomic physics [1,2]. Nowadays, thanks to major technical im-
provements in experimental control, a great deal of attention
is devoted to simulating dissipation in engineered condensed-
matter systems [3–6]. In this, respect, lattice models, such
as Heisenberg and Hubbard [7,8] are paramount examples of
many-body dissipation [9,10].

The general framework within which these investigations
are typically conducted is that of Markovian master equa-
tions in the standard Lindblad form and it has been applied
to both driven and autonomous systems [11–13]. For a recent
review, see Ref. [14]. This approach has certainly several
advantages. The Lindblad master equation is linear and can
be solved using well-established techniques, such as quan-
tum jumps [15] and quantum Monte Carlo methods [16].
Moreover, numerical methods originally designed for isolated
systems, e.g., tensor network methods [17] and linked clus-
ter expansions [18], have been sucessfully extended to the
open quantum system domain [19–21]. Another important
aspect of the Lindblad master equation approach lies in the
spectral properties of the Liouvillian operator. By calculat-
ing its eigenvalues and eigenoperators one can investigate
the steady-state properties of the many-body system, such as
Green’s functions, relaxation rates [22,23], and even critical
features [12,24].

Whereas the Markovian approximation can be consid-
ered completely satisfactory whenever no memory effects are
present if the system-environment coupling is not weak and
the Bohr frequencies of the system are not well separated
(thus, leading to a breakdown of the secular approximation),
the use of a local Lindblad master equation can lead to some
difficulties [25–29]. First of all, in order for the Lindblad
equation to be thermodynamically consistent in predicting
steady-state properties, the Hamiltonian spectrum and its
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eigenstates should be fully known which is rarely the case
in many-body physics, where Hamiltonians are, in general,
very complex and can be expected to have a dense energy
spectrum. Thus, very often, when studying the open dynamics
of many-body systems, local Lindblad operators are as-
sumed, describing quantum jumps between eigenstates of the
noninteracting part of the Hamiltonian. This single-particle
approach works reasonably well for weakly interacting many-
body systems. However, as most systems in condensed-matter
physics are highly correlated, a single-particle picture of dis-
sipation could be misleading, and a collective formulation of
the Lindblad operators should instead be considered in order
to predict equilibration and steady-state properties correctly.
This route has been and is still being explored in the litera-
ture, often in conjunction with attempts to relax the secular
approximation and has led to the formulation of many-body
Redfield equations describing thermodynamic properties cor-
rectly [30–32]. However, when using the Redfield equation,
the main drawback is the possibility of generating negative
quantum probabilities, even though this is mostly true in the
short-time regime.

Here, we explore a completely different approach to the
study of dissipative many-body physics. Instead of micro-
scopically deriving or explicitly constructing a Markovian
master equation in Lindblad or Redfield form, we model dis-
sipation via a thermodynamic nonlinear master equation that
was first presented in Ref. [33] and, later on, mathemati-
cally formalized and generalized using a geometric approach
in Refs. [34,35]. This equation was originally proposed as
the quantum generalization of the general equation for the
nonequilibrium reversible-irreversible coupling (GENERIC)
framework of classical out-of-equilibrium thermodynamics
[36–38]. Conceptually, it relies on a clear-cut separation of
reversible versus irreversible dynamics, the former being gen-
erated by the Hamiltonian, the latter being driven by the
system entropy. This separation translates to different geomet-
ric structures in the equation. Whereas the reversible part is
associated with the standard commutator of the density matrix
with the system’s Hamiltonian, the irreversible part leads to
a term that is nonlinear in the density matrix but guarantees
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thermodynamic consistency and correct steady-state prop-
erties. This master equation was successfully applied to
traditional open system scenarios, such as spontaneous decay
of a two-level atom and the Caldeira-Legget model where
numerical solutions were found by using deterministic inte-
gration methods for nonlinear equations as well as adaptations
of stochastic unraveling [39–43].

Here, for the first time, we apply this framework to the
study of dissipation in a many-body system, that is, an open
spin chain described by the XXZ model. Although the system-
environment coupling operators are local, no jump operators
are needed at any point. This lifts the intrinsic ambiguity in
choosing the correct representation, i.e., global versus single
particle, and no assumptions regarding the spectrum of the
chain are required. We apply and solve GENERIC to equilib-
rium dynamics where we demonstrate full equilibration to the
correct many-body Gibbs ensemble, and to a nonequilibrium
scenario as well, where we recover a transition from ballis-
tic to diffusive energy transport, in agreement with previous
studies on related models [44–49].

This paper is organized as follows. In Sec. II we intro-
duce the general N-spin model and, within the GENERIC
framework, derive a nonlinear master equation describing
dissipative dynamics. In Sec. III we calculate the steady
state of our nonlinear master equation analytically for a
two-spin chain toy model and show that it is the correct
Gibbs state. In Sec. IV we solve the nonlinear master equa-
tion for several spin chain lengths, prove thermalization and
calculate thermalization rates. In Sec. V we consider an out-
of-equilibrium scenario where a shorter chain is connected
at its extremities to two distinct heat baths at different tem-
peratures. Finally, in Sec. VI we draw some conclusions
and discuss open questions, perspectives, and possible future
directions.

II. THE OPEN XXZ GENERIC MODEL

We consider a chain of N-interacting 1/2 spins in an open
configuration whose isolated dynamics is dictated by the fol-
lowing Heisenberg-type Hamiltonian (assuming h̄ = 1),

H =
∑

j

N∑
j=1

τ jσ
k
j σ

k
j+1, (1)

where k = x, y, z. Equation (1) can be simplified if one sets
τx = τy = τ , τz = � leading to

H = τ

N∑
j=1

(σ+
j σ−

j+1 + σ−
j σ+

j+1) + �

N∑
j=1

σ z
j σ

z
j+1, (2)

which, in literature, goes under the name of the Heisenberg
XXZ model. We rename the two contributions as H coll =
τ

∑N
j=1(σ+

j σ−
j+1 + σ−

j σ+
j+1), and H free = �

∑N
j=1 σ z

j σ
z
j+1.

For now, we assume that all the spins are locally coupled to a
heat bath at temperature T .

To describe the open dissipative dynamics of the spin
chain we use the following thermodynamic quantum master

equation [50] which we named GENERIC,

ρ̇t = i[ρt , H] −
N∑

j=1

∫ 1

0
du f j (u)

[
Qj, ρ

1−u
t [Q†

j , μt ]ρ
u
t

]

−
N∑

j=1

∫ 1

0
du f j (u)

[
Q†

j , ρ
u
t [Qj, μt ]ρ

1−u
t

]
, (3)

where the operators Qj model the system-environment weak
coupling and the f j (u) are real non-negative rate factors.
Equation (3) was first introduced in Ref. [34], and it is based
on a fundamental postulated separation between reversible
and irreversible dynamics. Reversibility is accounted for by
the standard commutator between ρt and H . The nonlinear
term generates the irreversible part of the dynamics through
the double commutator and the free-energy operator μt =
H + kBT ln ρt . Unlike standard master equations in quantum
theory this equation is not derived microscopically but rather
postulated and constructed as the quantum generalization of
the classical nonequilibrium GENERIC equation. For more
technical details, see Refs. [34,35]. Thus, irreversibility is not
derived from course-grained reversible quantum behavior; it
is included a priori and associated with a precise geometrical
structure (double commutator) and a precise generator (free
energy). Another way to look at Eq. (3) is to interpret it
as a phenomenological equation. Although the Qj operators
describe how the open system couples to its surrounding
environment, no full knowledge of the system-environment
interaction Hamiltonian is required. In other words, we only
need to care about the system-environment coupling from
the system’s perspective. Obviously, one has to both choose
sensible couplings Qj and model the rates f j (u) properly
which is not at all an a priori obvious task. Yet, because of
its explicit geometric construction based on thermodynamic
arguments, Eq. (3) should always predict the correct steady-
state behavior, assuming that proper modeling of both rates
and coupling is realized [35]. We would also like to remark
that Eq. (3) describes Markovian dynamics only.

Here, we assume that the spins couple to the heat bath
via their z-components σ z. The reason for this choice simply
lies in the fact that, as we will see later, it will allow us to
restrict our attention to subspaces of the total Hilbert space
with fixed total spin z component, that is, Sz = ∑N

j=1 σ z
j . If

we were to draw a loose parallel with a traditional approach
starting from a system-environment interaction Hamiltonian,
we might guess this would be of a spin-boson type, that
is, Hj = g jσαz

∑
k (ak + a†

k ) with the environment being in a

thermal state ρE ∝ �ke−βωka†
k ak . However, as we would like to

stress that this is purely a speculation, only rooted in the type
of spin-bath coupling. Hence, from now on Qj = σ z

j = Q†
j ,

and Eq. (3) simplifies greatly,

ρ̇t = i[ρt , H] − 2
N∑

j=1

∫ 1

0
du f j (u)

[
σ z

j , ρ
1−u
t

[
σ z

j , μt
]
ρu

t

]
,

where we have used the invariance of the integrand under
the transformation u → 1 − λ, which is guaranteed provided
that f j (u) = f j (1 − u). We choose f j (u) = f j constant, thus,
fulfilling such a condition. In Ref. [43] it was shown that
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for a single two-level system described by H free = ωσz,
the rate f (u) can be chosen as exp(2uω/kBT ) if Q = σ+.
The same reasoning was later extended to a multimode
bosonic field with Qk = ak [50]. In our model, the system-
environment coupling is realized via the σ z operator and since
[σ z

j , H free] = 0, the f j (u) functions can be constants. The dis-
sipators can be further simplified if one notes the following:

ρ1−u
t

[
σ z

j , μt
]
ρu

t

= ρ1−u
t

[
σ z

j , H free + kBT log ρt
]
ρu

t + ρ1−u
t

[
σ z

j , H coll
]
ρu

t

= 1

β

d

du

(
ρ1−u

t σ z
j ρ

u
t

) + ρ1−u
t

[
σ z

j , H coll]ρu
t

with β = 1/kBT which, once integrated, leads to the follow-
ing equation:

ρ̇t = i[ρt , H] −
N∑

j=1

f j

β

(
ρt − σ z

j ρtσ
z
j

)

− 2
N∑

j=1

f j

∫ 1

0
du

[
σ z

j , ρ
1−u
t

[
σ z

j , H coll
]
ρu

t

]
.

The linear part is formally identical to a standard dephasing
bosonic bath with an Ohmic spectrum whose action can be de-
scribed by a local Lindblad master equation with a dephasing
rate proportional to the temperature of the bath β−1. On the
second line, however, we find a nonlinear contribution that can
be calculated and simplified to some extent. The first nested
commutator can be calculated easily,

[σ z
j , H coll] = 2τ (−σ+

α−1σ
−
j + σ−

α−1σ
+
j + σ+

j σ−
j+1 − σ−

j σ+
j+1)

= 2τ (−Sα−1 + S j ),

where we introduced the operators S j = σ+
j σ−

j+1 − σ−
j σ+

j+1.
Note that these operators conserve the total spin along the z
direction, i.e., Sz = ∑N

j=1 σ z
j . After some rearrangements, we

arrive at the following equation:

ρ̇t = i[ρt , H] − 4

β

N∑
j=1

f j
(
ρt − σ z

j ρtσ
z
j

) − 4τ

N∑
j=1

[
�σ z

j , Sρt
j

]
,

(4)
where we have introduced the shorthand notation Aρ =∫ 1

0 du ρ1−uAρu and the operators �σ z
j = f jσ

z
j − f j+1σ

z
j+1.

Without any further simplifying assumption this is as far
as we can get in deriving a GENERIC-type master equa-
tion describing the spin chain with a local σz-type dissipative
coupling to a heat bath. Obviously, the nonlinear term rep-
resents a difficulty in solving this equation as one has to
diagonalize ρt at every time step. However, as we will show
later, for some initial conditions this can be performed nu-
merically for fairly large chain sizes. If pn and |πn〉 are the
eigenvalues and eigenvectors of ρt respectively then the com-
mutators in the nonlinear part of master equation (4) read

[
�σ z

j , Sρt
j

] =
∑
n,m

(
pn − pm

log pn − log pm

)

×〈πn|S j |πm〉[�σ z
j , |πn〉〈πm|]. (5)

As anticipated earlier, all the terms in Eq. (4) conserve
the total spin along the z direction. Thus, the bath induces

incoherent transitions between eingenstates of Sz. That means
that if the initial state ρ0 is an eigenstate of Sz, so will be ρt .
This, in turn, will translate to a great reduction of computa-
tional resources needed to solve Eq. (4); by initializing the
state of the chain to an eigenstate of Sz, we will reduce the
complexity of the problem.

III. A TOY MODEL: THE N = 2 CASE

In this section we will look at the simplest case of
N = 2 interacting spins. We will analytically calculate the
steady-state ρss of Eq. (4) in the Sz = 0 subspace and show
that it is precisely the Gibbs state with respect to Hamiltonian
(2), that is, as follows:

ρss = ρG = 1

Z e−βH . (6)

The two remaining states |↑,↑〉 and |↓,↓〉 are eigenstates of
Hamiltonian (1) and, being that this can be block diagonal-
ized, the inclusion of these states in the Gibbs-state calculation
is trivial. For two spins the XXZ Hamiltonian reduces to

H = τ (σ+
1 σ−

2 + σ−
1 σ+

2 ) + �σ z
1σ z

2 . (7)

For the sake of simplicity in the calculations that follow,
we set � = τ . The physics described by the above system
is quite simple; the spin-spin interaction couples the states
|↑,↓〉 and |↓,↑〉 to each other while leaving |↑,↑〉 and |↓,↓〉
unaffected. The eigenvalues are En = 0,−2τ, τ, τ , the first
two corresponding to eigenstates with Sz = 0 that are linear
combinations of |↑,↓〉 and |↓,↑〉. Equation (4) in this case
reads

ρ̇t = i[ρt , H2] − 4

β

[
( f1 + f2)ρt − f1σ

z
1ρtσ

z
1 − f2σ

z
2ρtσ

z
2

]
− 4τ [�σz, Sρt ], (8)

where �σz = f1σ
z
1 − f2σ

z
2 . As the Sz = 0 subspace is two

dimensional, we can use an effective two-level description
since we know that the total dissipative dynamics will not
mix different subspaces. Therefore, we assume the following
general form for ρ0:

ρ0 =
(

p c
c∗ 1 − p

)
. (9)

The time-evolved state ρ(t ) will be always of the same form
as ρ0. Equation (8) can recast in a more concrete form that
emphasizes its nonlinear nature. For a general ρ, such as the
one in Eq. (9) the eigenvalues p± and eigenvectors |π±〉 can
be calculated analytically,

p± = 1 ± p0

2
,

|π±〉 = 1√
N±

[
|↑,↓〉 +

(
p± − p

c

)
|↓,↑〉

]
, (10)

where p0 =
√

1 + 4[|c|2 + p(p − 1)] and N± is a normaliza-
tion factor. The commutator [�σz, Sρ] can be analytically
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calculated using Eq. (5),

[�σz, Sρt ] =
(

p+ − p−
ln p+ − ln p−

)
〈S〉+−[�σz,�+−]

+
(

p− − p+
ln p− − ln p+

)
〈S〉−+[�σz,�−+]

+ p+〈S〉++[�σz,�++] + p−〈S〉−−[�σz,�−−],

where 〈S〉αβ = 〈π j |S|πβ〉 and �αβ = |π j〉〈πβ |. All the terms
in the above equation can be evaluated explicitly. After some
extra steps one arrives at the following equation:

ρ̇t = i[ρt , H2] − 4

β

[
( f1 + f 2)ρt − f1σ

z
1ρtσ

z
1 − f2σ

z
2ρtσ

z
2

]
− 4τ ( f 1 + f 2)[λ(p, c)|↓,↑〉〈↑,↓|
+ λ∗(p, c)|↑,↓〉〈↓,↑|], (11)

where λ(p, c) = λ[p(t ), c(t )] is a function of state ρt and
fully determines the structure of the nonlinear part of the
irreversible dynamics,

λ(p, c) = c

p0

{
[4 Re(c) + (1 − 2p)2]

p0

arctanh p0

− 4i Im(c)
arctanh p0

p0

}
. (12)

If one notes that

( f1 + f 2)ρt − f1σ
z
1ρtσ

z
1 − f2σ

z
2ρtσ

z
2 = ( f1+ f2)

(
0 4c

4c∗ 0

)
,

and renames γL = 4
β

and γNL = 4τ , |↓,↑〉〈↑,↓| = S−, and
S+ = |↑,↓〉〈↓,↑|, Eq. (11) can finally be recast in the follow-
ing very simple form:

ρ̇t = i[ρ, H2] − ( f1 + f2)[(p, c)S− + ∗(p, c)S+], (13)

where

(p, c) = 4γLc + γNLλ(p, c)

contains all the dissipation and decoherence. Thus, in the one-
excitation subspace Sz = 0, the original master equation (8)
can be mapped onto a simpler master equation for an ef-
fective two-level system where the effect of the heat bath
manifests itself as incoherent transitions deriving from both
linear and nonlinear contributions. This makes an analytical
time-dependent solution of Eq. (13) out of reach. However, as
stated above, we can analytically solve ρ̇t = 0. Assuming ρss

of the same form as in Eq. (9) one finds

css
2 = 0, Re 

(
pss, css

1 , css
2

) = 0, (14)

(2p − 1) − ( f1 + f2)Im 
(
pss, css

1 , css
2

) = 0, (15)

where c1 = Re(c), c2 = Im(c). By setting c2 = 0 one finds
that for any physical state Im (pss, css

1 , 0) = 0 which im-
plies pss = 1/2. Finally, using the second equation, that is
Re (1/2, css

1 , 0) = 0, one finds

css
1 = −1

2
tanh

γNL

γL
. (16)

FIG. 1. N = 2: Time evolution of P↑,↓ (black), c1 (red), and c2

(blue) obtained from the numerical solution of Eq. (8) (continuous)
in comparison to their steady-state values (dashed) as given by the ef-
fective two-level model. The initial state is |ψ0〉 = (|↓, ↑〉 + eiπ/6|↑,

↓〉)/2, whereas the other parameters are γ = 0.05 and β = 1.

If one computes the sub-space-restricted Gibbs state ρG =
e−βH/Z , one will find that this exactly coincides with ρss. In-
terestingly, the total steady-state energy is directly connected
to the the real part of the coherence as follows:

css
1 = 〈H〉ρss + 1

2
. (17)

IV. MANY-BODY THERMALIZATION

In this section we are going to numerically solve the ther-
modynamic master equations (8) and (4) for N = 2 and N =
10, 20, 30, and 40 spins, respectively. From now on, f j = γ

for all α and τ = 1. In all cases considered in this paper,
the GENERIC master equation was solved exactly using an
implicit Runge-Kutta method, leading to excellent results with
reasonable computational resources.

For the N = 2 case, we are going to use the analytically
calculated steady-state solution of Eq. (13), that is, the correct
Gibbs state, and compare it with the numerically obtained
long-time solution of Eq. (8). In Fig. 1 the time evolution of
the density matrix diagonal and off-diagonal elements (con-
tinuous) is shown as obtained by numerically solving Eq. (8)
for an initial pure state. The steady-state values calculated
analytically are also shown (dashed). The agreement between
numerical results and steady-state theoretical predictions is
excellent and was verified for every initial state used.

For the case of N spins, the complexity of Eq. (4) makes
any analytical calculation out of reach. Thus, in this case, we
proceed differently. We first calculate numerically the Gibbs-
state ρG as in Eq. (6). We then solve our thermodynamic
master equation (4) and compare the long-time solution to
ρG. In order to gain a clearer understanding of the different
timescales that might be involved in the thermalization pro-
cess we look at two different quantities.

First, we study energy equilibration via the following en-
ergy difference:

�Ess = Tr[H (ρt − ρG)]. (18)
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FIG. 2. Top: Time evolution of �Ess/τ for a different chain of
length N = 10 (black), N = 20 (darker red), N = 30 (darker blue),
and N = 40 (darker green) as obtained from the numerical solution
of Eq. (4). The initial state is |ψ0〉 = |↑1〉 ⊗ |⇓〉N−1, whereas the
other parameters are γ = 0.05 and β = 1. Bottom: Time evolution
of Tss for the same parameters.

The initial state of the chain is |ψ0〉 = |↑1〉 ⊗ |↓2,

↓3, . . . ,↓N 〉, that is, a spin flip, or excitation, localized at one
end of the chain. We remind that the Sz is conserved and, thus,
in solving Eq. (4), we can restrict our attention to the subspace
spanned by similar single spin-flip states, that is, states of
the form |n〉 ≡ σ+

n |↓,↓ . . . ,↓〉 = σ+
n | ⇓〉N , where we have

introduced the shorthand notation |↓,↓ . . . ,↓〉 = |⇓〉N . The
top panel of Fig. 2 shows the energy equilibration for different
chain sizes, that is, N = 10, 20, 30, and 40. As expected,
all the four lines vanish in the long-time limit with all the
lines becoming more closely packed when increasing N . In
the inset we focus specifically on the long-time behavior and
display ln �Ess/τ . At larger N the time evolution appears
approximately linear, which is consistent with a long-time
limit exponential decay �Ess ∝ e−E t .

To investigate thermalization at the quantum-state level we
use the trace distance Tss(t ) between ρG and ρt , which is
defined as

Tss ≡ 1

2
Tr[

√
(ρt − ρG)2] = 1

2

∑
j

|λ j (t )|, (19)

FIG. 3. Rescaled energy and state thermalization rates E/τ

(black) and ρ/τ (darker red) for different chain lengths N as ob-
tained from linear extrapolation of ln �Ess and ln Tss.

where λ j (t )’s are the time-dependent eigenvalues of ρt − ρG.
The trace distance T (ρ, ν) is bounded, that is, 0 � T � 1,
symmetric and T (ρ, ν) = 0 iff ρ = ν. As such, it is a very
good measure to distinguish quantum states. The bottom panel
in Fig. 2 displays the process of thermalization as measured by
the trace distance Tss again for N = 10, 20, 30, and 40 spins.
All the curves decay in the long-term limit, however, at a
smaller rate. Similarly to the case of energy, in the inset of
Fig. 2 we show ln Tss. Again, at larger N and in the long-
time limit, we see an almost perfectly linear behavior, which
translates to a nearly exact exponential decay Tss ∝ e−ρ t with
a decay rate ρ smaller than E . We note that, whereas for
ln �Ess a tiny deviation from perfect linear behavior can
be still observed, the same does not apply to ln Tss, which
is virtually indistinguishable from its linear interpolation at
larger N . Finally, in Fig. 3 we show both E and ρ versus
N as obtained from linear interpolation. Both quantities are
monotonically decreasing functions of N as one would expect
when increasing the size of a many-body system. Although
for the N range used here ρ < E , the gaps between these
two quantities also appear to decrease as with increasing N
and to indicate that ρ → E in the limit N → ∞.

We conclude this section by stressing again that all these
results were found by numerically solving the full nonlinear
GENERIC equation (4) without extra approximations and, as
such, they are numerically exact solutions proving thermaliza-
tion within the Sz = 2 − N subspace of the total Hilbert space.
Moreover, if the nonlinearity was not included the resulting
master equation would be a Lindblad dephasing-type master
equation, whose stationary state is maximally mixed, that is,
ρM = I/2N , corresponding to the infinite temperature thermal
state regardless of the system’s Hamiltonian.

V. OUT-OF-EQUILIBRIUM MANY-BODY PROPERTIES

In this section we focus on an out-of-equilibrium scenario.
The Hamiltonian we consider reads

H = τ

N∑
j=1

(σ+
j σ−

j+1 + σ−
j σ+

j+1) + �σ z
j σ

z
j+1 + �

2
σ z

j , (20)
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where we added a single-spin local term. Here, the extremities
of the spin chain exchange spin excitations locally with two
separated environments, say L and R, whereas the bulk of
the chain is isolated. This type of model has been extensively
studied in literature in connection with nonequilibrium steady
states and transport properties and an abundance of both an-
alytical and numerical results are available [44,45,47–49,51–
57]. Generally speaking, it is commonly accepted that a tran-
sition from ballistic (� < 1) to diffusive transport (� > 1)
occurs at � = 1 both in the linear perturbation [58,59] and
in the open quantum systems framework [46,56].

Here, we model the two environments as heat baths at tem-
peratures TL and TR, respectively, and model the system-bath
coupling with σ±. Since Sz is no longer conserved we are now
forced to take into account the full Hilbert space in solving
the GENERIC master equation and this, combined with the
nonlinear nature of our thermodynamics approach, drastically
limits the system sizes that are accessible to an exact numer-
ical solution. Thus, for this paper, we restrict our attention to
small chains with N = 3–5. Fortunately, if the deviation from
equilibrium is not too drastic one can replace the nonlinear
terms ρ

u(1−u)
t with ρ

u(1−u)
G [43,50]. The resulting equation will

be, thus, linear in ρt , leading to a considerable computational
speedup. In the context of interacting many-body systems this
paves the way to the development of a stochastic unraveling
that would allow for a system-size scale up, an approach that
we are currently investigating.

Going back to the full nonlinear equation, starting from
Eq. (3) and similarly to the derivation in Sec. II, one obtains
the following master equation:

ρ̇t = i[ρt , H] +
∑

α=L,R

∑
μ=±

Lμ
j [ρt ] + N μ

j [ρt ], (21)

where we have renamed the boundary spin indices as 1 = L
and N = R, the linear part of the dissipator reads

Lμ
j [ρt ] = γμ

(
σ

μ
j ρtσ

μ†
j −

{
σ

μ†
j σ

μ
j , ρt

}
2

)
, (22)

which is a standard local Lindblad dissipator with rates satis-
fying detailed balance, i.e., γ+ = e−β j�γ− = e−β j�γ , whereas
the nonlinear contribution is modeled as

N μ
j [ρt ] = γ β j

∫
du e−β�u[σμ

j , ρ
ημ(u)
t

[
σ

μ†
j ,V

]
ρ

1−ημ(u)
t

]
,

(23)
where η−(u) = 1 − u = 1 − η+(u). The exponentials e−β�u

are introduced to guarantee detailed balance. Similar to Eq. (5)
the above nonlinear contribution can be numerically calcu-
lated by expanding the integrand over the density matrix
eigenstates at all times.

In the long-time limit we should expect the system to reach
a nonequilibrium steady state, say ρness with certain energy
and energy current distributions along the chain. In order to
study the energy properties of ρness we numerically solve the
above equation assuming the XXZ ground-state (|GS〉) as an
initial state. The extremities of the chain are then connected
to the two different heat baths and let interact, leading to a
redistribution of the initial energy which will depend on the
interplay between the Hamiltonian HXXZ and the effect of
both the baths as well as the temperature gradient. We use

FIG. 4. Local steady-state energy density εss
j /τ for N = 5

at different couplings � = 0.01, 1.2, and 2.4 or βL = 0.41 and
βR = 1.39. The inset: rescaled steady-state current JBULK/τ 2 as a
function of N = 3–5 at � = 0.01 and � = 2.4.

the following definition of local energy density [49]:

ε j =
〈
τ (σ+

j σ−
j+1 + H.c.) + �σ z

j σ
z
j+1 + �

2
σ z

j

〉
= 〈h j〉. (24)

The energy current can be derived easily using a continuity
equation for the energy profile (24) [49]. For 2 � α � N − 1
this reads

ε̇ j = i〈[H, hj]〉 = −∇ · 〈Jj〉 = 〈Jj〉 − 〈Jj+1〉, (25)

which, h j = [hα−1, h j] + [h j+1, h j], allows one to define

〈Jj〉 = JBULK = i〈[hα−1, h j]〉, (26)

where we have tacitly assumed a uniform energy current,
which will turn out to be the case.

In the case of ballistic transport at � < 1, one should
expect a nearly flat local energy distribution in the bulk of
the chain whereas in the diffusive regime at � > 1 a constant
energy gradient should emerge. In the top panel of Fig. 4
we display ε j for N = 5 at three different values of the
anisotropy parameter � = 0.01, 1.2, and 2.4 corresponding
to low, strong, and ultra-strong couplings. A transition from
a flat to a linearly decreasing energy density can be clearly
observed. This result is further corroborated by looking at
the bulk steady-state current as a function of the number of
spins, which is shown in the inset panel for N = 3–5. For
� < 1 the steady-state current is independent of the system
size, whereas in the diffusive regime it decays as 1/N . This is
fully consistent with Fourier’s law of heat transport which for
a finite system reads

JBULK = κ
�E

N
, (27)

with κ being the conductivity and �E the energy difference
across the chain. We conclude this section by showing the
dependence of JBULK on this energy difference for N = 4
strongly interacting spins in Fig. 5 where a linear character
can be seen clearly in agreement with Eq. (27).
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FIG. 5. Rescaled steady-state energy current JBULK/τ 2 as a func-
tion of the energy gradient �E across the chain for N = 4 at
� = 1.2.

VI. CONCLUSIONS AND OPEN PERSPECTIVES

In this paper we used a nonlinear quantum thermodynam-
ics master equation, named GENERIC, to study equilibrium
and out-of-equilibrium dynamics in a spin chain. We were
able to obtain numerically exact solutions for: (i) long chains
in the equilibrium scenario and (ii) shorter chains in the
nonequilibrium one. In the case of equilibration in a heat bath
we found that the density matrix of the many-body system
approaches to correct interacting many-body Gibbs state in

the long-time limit and estimated two different thermalization
rates describing energy and state dynamics, respectively. In
the nonequilibrium scenario, we demonstrated ballistic to dif-
fusive transport and recovered Fourier’s law of heat transport
in agreement with previous literature.

Certainly, a majorly important aspect of GENERIC is
that, under fairly general assumptions (e.g., Kubo-Martin-
Schwinge condition), it allows one to study both equilibrium
and nonequilibrium scenarios without having to invoke all
those approximations that are usually required using a
Lindblad-Redfield approach. On the other hand, GENERIC
does require extra modeling that should be guided by ther-
modynamic principles and that, in some cases, might no be
obvious a priori. Whereas we acknowledge that traditional
approaches based on Redfield-Lindblad are indeed very pow-
erful tools, we believe that the findings presented in this paper
certainly pave the way for further investigations and/or appli-
cations of this alternative approach as well, e.g., in quantum
thermodynamics and quantum thermometry.

ACKNOWLEDGMENTS

M.B. thanks D. Taj for the interesting discussion clarify-
ing the connections between GENERIC and Lindblad master
equations and R. Dalipi for useful discussions on the Bethe
ansatz in one-dimensional systems.

[1] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, UK, 2007).

[2] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 2008).

[3] L. Capriotti, A. Cuccoli, A. Fubini, V. Tognetti, and R.
Vaia, Simulating quantum dissipation in many-body systems,
Europhys. Lett. 58, 155 (2002).

[4] R. Di Candia, J. S. Pedernales, A. del Campo, E. Solano, and J.
Casanova, Quantum simulation of dissipative processes without
reservoir engineering, Sci. Rep. 5, 9981 (2015).

[5] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[6] P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez,
M. Hennrich, T. Monz, S. Diehl, P. Zoller, and R. Blatt,
Quantum simulation of dynamical maps with trapped ions.,
Nat. Phys. 9, 361 (2013).

[7] W. Heisenberg, Mehrkörperproblem und Resonanz in der Quan-
tenmechanik, Z. Phys. 38, 411 (1926).

[8] D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, The
Hubbard model, Annu. Rev. Condens. Matter Phys. 13, 239
(2022).

[9] T. E. Lee, H. Häffner, and M. C. Cross, Antiferromagnetic
phase transition in a nonequilibrium lattice of Rydberg atoms,
Phys. Rev. A 84, 031402(R) (2011).

[10] A. Le Boité, G. Orso, and C. Ciuti, Steady-State Phases and
Tunneling-Induced Instabilities in the Driven Dissipative Bose-
Hubbard Model, Phys. Rev. Lett. 110, 233601 (2013).

[11] M. Foss-Feig, J. T. Young, V. V. Albert, A. V. Gorshkov, and
M. F. Maghrebi, Solvable Family of Driven-Dissipative

Many-Body Systems, Phys. Rev. Lett. 119, 190402
(2017).

[12] J. Jin, A. Biella, O. Viyuela, C. Ciuti, R. Fazio, and D. Rossini,
Phase diagram of the dissipative quantum Ising model on a
square lattice, Phys. Rev. B 98, 241108(R) (2018).

[13] H. Weisbrich, C. Saussol, W. Belzig, and G. Rastelli, Decoher-
ence in the quantum Ising model with transverse dissipative
interaction in the strong-coupling regime, Phys. Rev. A 98,
052109 (2018).

[14] H. Weimer, A. Kshetrimayum, and R. Orús, Simulation meth-
ods for open quantum many-body systems, Rev. Mod. Phys. 93,
015008 (2021).

[15] H. Weimer, Tailored jump operators for purely dissipative quan-
tum magnetism, J. Phys. B: At. Mol. Opt. Phys. 50, 024001
(2017).

[16] A. Nagy and V. Savona, Driven-dissipative quantum Monte
Carlo method for open quantum systems, Phys. Rev. A 97,
052129 (2018).

[17] R. Orús, Tensor networks for complex quantum systems,
Nat. Rev. Phys. 1, 538 (2019).

[18] B. Tang, E. Khatami, and M. Rigol, A short introduction to
numerical linked-cluster expansions, Comput. Phys. Commun.
184, 557 (2013).

[19] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix Product
Density Operators: Simulation of Finite-Temperature and Dis-
sipative Systems, Phys. Rev. Lett. 93, 207204 (2004).

[20] M. Zwolak and G. Vidal, Mixed-State Dynamics in One-
Dimensional Quantum Lattice Systems: A Time-Dependent
Superoperator Renormalization Algorithm, Phys. Rev. Lett. 93,
207205 (2004).

022220-7

https://doi.org/10.1209/epl/i2002-00618-2
https://doi.org/10.1038/srep09981
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys2630
https://doi.org/10.1007/BF01397160
https://doi.org/10.1146/annurev-conmatphys-031620-102024
https://doi.org/10.1103/PhysRevA.84.031402
https://doi.org/10.1103/PhysRevLett.110.233601
https://doi.org/10.1103/PhysRevLett.119.190402
https://doi.org/10.1103/PhysRevB.98.241108
https://doi.org/10.1103/PhysRevA.98.052109
https://doi.org/10.1103/RevModPhys.93.015008
https://doi.org/10.1088/1361-6455/50/2/024001
https://doi.org/10.1103/PhysRevA.97.052129
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1016/j.cpc.2012.10.008
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207205


BORRELLI AND ÖTTINGER PHYSICAL REVIEW A 106, 022220 (2022)

[21] A. Biella, J. Jin, O. Viyuela, C. Ciuti, R. Fazio, and D. Rossini,
Linked cluster expansions for open quantum systems on a lat-
tice, Phys. Rev. B 97, 035103 (2018).
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