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A. Sivan* and M. Orenstein
Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion—Israel Institute of Technology,

Technion City, Haifa 3200003, Israel

(Received 16 February 2022; revised 27 June 2022; accepted 12 August 2022; published 24 August 2022)

In polymer science, cross-linking of polymer chains yields a substantially modified system compared with the
one-dimensional (1D) constituent chains, due to the increase of dimensionality and effective seeding by defects
(cross-linking sites). Inspired by this concept, we analyze topological features of a unit cell of a generalized
topological mesh comprised of several 1D Su-Schrieffer-Heeger (SSH) lattices cross-linked via a single site.
The coupling site functions as a defect with protected states in the trivial regime and induces edges inside the
bulk with protected localized states centered around it in the topological regime. When more than two lattices are
coupled by the defect, namely, a graph dimensionality larger than one, the crossed chains support two types of
localized eigenstates around the defect. One type is highly controllable by modifying the cross-linking strength,
enabling broad tuning of eigenenergies from being submerged in the bulk band to becoming highly isolated
and protected. We show that these unique features can be explained by an equivalence of the system to an
SSH chain coupled nonreciprocally to an external reservoir, yielding a unique pseudospectrum for both the bulk
and localized states, with spatially symmetric eigenstates. Applying non-Hermiticity by adding gain and loss to
alternating sites, relevant, for example, to a possible realization of topological coupled-laser fabric, we observe
an abrupt transition of the topologically protected midgap state from antilocalized to localized near the defect.
By changing the gain-loss parameters, we observe a cascaded spatial symmetry breaking of the supported states
at exceptional points where parity-time symmetry is broken, for both the localized and the bulk states, exhibiting
various phases.
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I. INTRODUCTION

Topology of structures and states has applications in many
fields in physics. Originating from the concepts of topological
insulators in solid-state physics and the quantum Hall effect
[1,2], it has been shown that the idea of bulk-edge corre-
spondence and its relation to parity-time (PT ) symmetries
[3] are also applicable to photonics [4–6]. Various struc-
tures that exhibit interesting topological phases have attracted
attention, including the Su-Schrieffer-Hegger (SSH) model
[7], the Aubry-Andre-Harper (AAH) model [8–10], and the
Haldane model [11], to name only few examples. Much re-
search has also been done on realization of topological effects
in optical or photonic elements [12–18], with recent ex-
periments demonstrating topological insulator lasers [19,20]
and recently coherent lasing along the interface between
two-dimensional (2D) topological arrays of vertical-cavity
surface-emitting lasers [21].

Various extensions of lattice models and their topologi-
cal characteristics have been studied. Non-Hermiticity was
introduced to the SSH lattice by addition of onsite gain
and loss or by imaginary and/or nonreciprocal couplings be-
tween sites, which resulted in richer physical phenomena
including generalized topological phases attributed to the PT -
symmetry operator [14,15,22–32], non-Hermitian skin effect
[33–38], and more. Research of the topological effects and
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phases of an SSH lattice in 2D was also conducted, gener-
alizing the one-dimensional (1D) bulk-edge correspondence
to higher dimensions and demonstrating the emergence of
higher-order protected edges [39–46]. Other extensions with
nonlocal couplings and other symmetries were also reported
[47–51].

The effects of defects and discontinuities on the states
and dynamics of SSH lattices have been considered in the
literature. It has been suggested that the incorporation of either
one or more sites that differ from the embedding lattice or
on the interface between distinct lattices introduces states
with unique characteristics such as localization and topology-
induced robustness against noise [12,13,52–62]. These defects
enrich the dynamics of the pure lattices and can be used to
tailor desired eigenspectra and eigenstates. However, these
works are reported primarily in a 1D framework, and defects
in higher-dimensional systems were not rigorously studied.
This is a considerable gap in the understanding of the effects
lattice defects have on realistic topological arrays.

In this paper, we study the influence of defects on the
dynamics of lattices with a dimension higher than one. A
plausible scheme for gradually increasing the dimensionality
is to form a crosshatched network of SSH chains coupled at
each intersection point, while reducing the distance between
those intersections. Here, we present a rigorous analysis of a
building block of such a network, consisting of several crossed
SSH lattices coupled by a single mutual defect site in both the
Hermitian and non-Hermitian regimes. The model is general
to any number of similar or dissimilar lattices, and in this
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paper, we focus for concreteness on the simple crossed-chain
structure—a structure consisting of four identical 1D SSH
lattices connected to a mutual coupling element. This config-
uration spans more than 1D (as will be further explained in
Sec. II), and the defect site acts as a source for the generation
of induced edges in the mutual boundaries of the four 1D
topological lattices. This produces several key results. In the
trivial regime, we find two different types of localized states
that are supported by this structure, while in 1D, only one type
is resolved, unless a more complex defect is included (see
Sec. III). We denote those two types as the defect (induced)
states and the zero-energy state. The former has energies
residing outside of the bulk pseudospectrum, while the latter
is a midgap state with zero energy as imposed by symmetry
considerations. In the topological regime the zero-energy state
becomes antilocalized, and a third type of localized state ex-
ists, which is the well-known topological edge state of free
SSH chains. We show that the crossed-chain system can be
described by three identical disconnected SSH lattices and a
fourth SSH lattice coupled to an effective external reservoir
via a nonreciprocal coupling. The latter constitutes an energy
ladder shifted from that of a free SSH chain for both the
localized and bulk states that are associated with the defect
coupling. Those states are shown to be spatially symmetric.
The system is then extended to a non-Hermitian setup by
adding onsite imaginary potentials in a symmetry-preserving
scheme, describing gain and loss. We find that, although gain
and loss were added, the defect-associated states have the
same wave numbers as in the Hermitian case. Furthermore,
we show how the spatial symmetries of the amplitudes of
the eigenstates break in a sequence of exceptional points.
Our proposed framework therefore expands the understanding
of the influence of defects in higher dimensions and sug-
gests that they can be exploited to control the dynamics of a
higher-dimensional system. As mentioned, the crossed-chain
structure can be used as a building block to create a fully
2D protected state by effectively creating an array of internal
edges within the lattice bulk, rather than the more classical
1D protected edge states along the boundary walls between
different 2D lattices.

The paper is organized as follows. In Sec. II, we present
the Hermitian crossed-chain SSH structure and emphasize
the dynamics introduced by the higher dimensionality of the
system. In Sec. III, we rigorously analyze the effect of the
defect coupling strength on the energy pseudospectrum of the
structure. In Sec. IV, we generalize our framework by adding
non-Hermiticity to the system. We conclude and further dis-
cuss the results in Sec. V.

II. THE HERMITIAN CROSSED-CHAIN SSH
CONFIGURATION

The Hermitian crossed-chain configuration is comprised
of K finite SSH chains connected to a mutual additional lat-
tice element, as depicted in Fig. 1(a) for the case of K = 4
identical chains. We will henceforth refer to this additional
element as the defect site. In this section, we explore the case
of a basic defect that we will soon define. Scattering-theory
methods such as Schwinger-Lippmann may be useful when
considering simple lattices and some extensions [63–69] but

FIG. 1. (a) Schematic illustration of the symmetric crossed-chain
configuration. Black lines denote coupling strength a, double lines
coupling strength ã, and triple lines the defect coupling strength
ã�. (b) One-dimensional (1D) mirrored Su-Schrieffer-Heeger (SSH)
chain structure that was analyzed in, e.g., Ref. [16]. The configura-
tion of (a) is isospectral with (c) + (d). (c) The degenerate triplet
eigenvalues are equivalent to those of three detached SSH chains of
the same length and coupling coefficients as these of its constituent
chains, and (d) the eigenvalues of the singlet eigenvalues are equiv-
alent to those of the same SSH chain connected to an additional
element via a nonreciprocal coupling strength.

are generally intractable when schemes that are more compli-
cated are considered. We will therefore solve the Hamiltonian
eigenvalue problem directly.

The Hamiltonian of a single Hermitian SSH chain indexed
by σ and formed by Mσ ∈ 2N sites with a unit distance
between them is

Hσ =
Mσ −1∑

j

aσ
j φ

σ†
j φσ

j+1 + H.c., (1)

aσ
j =

{
aσ ∀ j ∈ 2N
ãσ ∀ j ∈ 2N + 1 . (2)

Here, φσ
j are the amplitudes at the jth site, H.c. denotes the

Hermitian conjugate, and aσ and ãσ are the respective intracell
and intercell coupling coefficients that are assumed to be real
and positive. The crossed-chain SSH structure [Fig. 1(a)] is
an intersection of four SSH chains of lengths Mσ with σ ∈
{A, B,C, D}, as defined by Eq. (1), through a connection to a
common site described by a defect site term U , such that

Htot = U +
∑

σ

Mσ −1∑
j

aσ
j φ

σ†
j φσ

j+1 + H.c., (3)

U =
∑

σ

ãσ�σφ
σ†
Mσ

φ� + H.c., (4)
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FIG. 2. Energy pseudobands for symmetric crossed-chain structures with M = 50 and a = 1. (a) Trivial Su-Schrieffer-Heeger (SSH) chains
with ã = 1/2. (b) Topological SSH chains with ã = 2. The insets (a.1)–(a.3) and (b.1)–(b.3) are magnified portions of the pseudospectra.
Nonmidgap localized states are marked with red diamonds. Insets (a.3) and (b.3) are zero-energy and edge states. (c) and (d) Amplitudes of
the localized states in the crossed-chain structure, with SSH chains [A] through [D], numbered in an ascending order with respect to energy.
(c)(i)–(c)(iii) The localized states for the trivial case (a); (c)(i) and (c)(iii) are the nonmidgap defect states, (c)(ii) is the zero-energy state.
(d)(i)–(d)(ix) The localized states for the topological case (b); (d)(i) and (d)(ix) are the localized defect states, (d)(v) is the defect zero energy
state localized on the outer edges of the structure, (d)(ii)–(d)(iv) and (d)(vi)–(d)(viii) are the edge states localized on the edges of the constituent
SSH chains. Red diamonds mark the defect site amplitudes in (c) and (d).

where the coupling strength of the defect to the end of the σ

SSH chain is ãσ�σ , and the defect site amplitude is φ�. In
contrast to a 1D system consisting of two SSH chains around
a defect in a mirrored setting [Fig. 1(b)], which was treated
in previous works (e.g., Refs. [12,13,16]), the crossed-chain
structure has more than 1D. The measure of dimensional-
ity in our case is borrowed from graph theory: a star graph
(the defect is the central node and the SSH chains are the
leaves) is 1D for K � 2 and 2D for K > 2. This definition
is different from geometrical 2D (e.g., the 2D SSH lattice in
Ref. [39]).

We define a basic defect as a site that acts as a boundary
wall between the K SSH lattices, with �σ = � = 1 for every
σ . This defect is basic in the sense that it only acts as a
boundary wall between several lattices, but it does not modify
the coupling scheme of any of them. Systems with a nonbasic
defect (� �= 1) will be addressed in the next sections. Fur-
thermore, from this point on, we will discuss only isotropic
systems with K = 4, wherein Mσ = M, aσ = a, and ãσ = ã
for all σ .

The increase in dimensionality introduces new features that
are absent from the 1D case.

The first feature, occurring in the topologically trivial
regime, is that additional localized states are now sup-

ported by the system. While the trivial 1D structure (for
which K = 2) contains one localized defect state, the triv-
ial crossed-chain structure has three nondegenerate localized
defect states. In Fig. 2(a), we illustrate the pseudospec-
trum of a crossed-chain structure in the trivial regime, with
insets focusing on the localized defect states depicted in
Figs. 2(c)(i)–2(c)(iii). One of the localized defect states has
zero energy with a localization length of η0 = − ln(ã/a) and
is localized on the defect [Figs. 2(c)(ii)], as in the 1D case
[12], while two localized defect states appear with energies
given by

E2
� = a2 + ã2 + 2aã cosh κ, (5)

where the localization length κ ∈ R+ is related to the param-
eters of the structure by

K = 1 + a

ã
eκ (6)

(Appendix A). These two states are also localized on the
defect site itself. Equation (6) has a solution for κ in the
trivial regime ã < a if and only if K > 2. Therefore, while
the zero-energy defect state (henceforth denoted as E0) stems
from the symmetry of the structure and exists in the 1D case,
the emergence of these two additional localized defect states

022216-3



A. SIVAN AND M. ORENSTEIN PHYSICAL REVIEW A 106, 022216 (2022)

is a feature attributed to the higher dimensionality of the
system.

The second important feature of the higher dimensionality
occurs in the topological regime ã > a and is the distinction
of the regular edge states from the localized defect states and
zero-energy state, in terms of their localization lengths.

The topological regime here is obtained under the same
coupling relations as for the isolated SSH chain (ã > a). Al-
though rigorous calculation of the topological invariant (e.g.,
Chern number) of our aperiodic structure is a formidable task,
the transition from a trivial to a topological phase is clear
and exhibits the typical edge-bulk correspondence and chiral
symmetry breaking at the bandgap closing [70,71]. The chiral
symmetry is consistent with the relation σzHtotσz = −Htot that
is fulfilled for the matrix σz generalized from its definition in
Ref. [16] and is indicated by the fact that the eigenvalues of
the system come in (−Em, Em) pairs, as we explicitly show in
the next section.

In the topological regime, we get two localized defect
states ±E� and seven other localized edge states inside the
bulk gap [Fig. 2(b)]. The seven localized states [Figs. 2(d)(ii)–
2(d)(viii)] are further separated to one zero-energy state E0

[Fig. 2(d)(v)] and six other edge states EE . Similar states
were briefly mentioned in analyses of 1D systems in the
topological regime [72,73]; however, even for the 1D sys-
tem, no rigorous exploration has been conducted, and thus,
we provide a concise derivation in Appendix E. The zero-
energy state E0 is a symmetric state with a localization length
η0 = |ln(a/ã)|, antilocalized with respect to the defect site.
The EE states are showing mixed localization, both on the
outer edges and on the emerging induced edges neighboring
with the defect site. These states exhibit exponential local-
ization only in the long-lattice limit, with localization length
ηE ≈ − ln(a/ã) [74]. In other words, while the energy of E0 is
identically zero and its amplitude profile is exactly exponen-
tial for all lengths and lattice coefficients, the energies of the
states EE only approach zero and an exponential localization
for a long lattice. In this paper, we employ system parame-
ters for which the long lattice approximation ηE ≈ − ln(a/ã)
holds.

When solving Eq. (6) in the topological regime, one
can see that K = 2 yields κ = − ln(a/ã), which means that
the localization lengths of the localized defect state and of
the topological edge states are equal in 1D. For a higher-
dimensional system (K > 2), the localized defect states ±E�

have different localization lengths from those of the edge
states. This result indicates that, in a higher-dimensional sys-
tem, the state localization due to the topological nature of the
SSH chains is a distinct physical phenomenon from the state
localization due to the presence of the defect.

We have thus shown that, in the crossed SSH trivial regime,
nonmidgap localized states emerge because of the effective
(internal) edge induced by the coupling defect. This type of
state does not exist in the previously researched K = 2 struc-
ture in the trivial case. We have thus observed three different
types of localized states—the zero-energy state E0 and the
localized defect states ±E� that originate from the defect,
both of which exist also in the trivial regime, and in addition,
the edge states EE that are due to the topology of the SSH
chains in the topological regime.

III. CONTROLLING PROTECTED STATES BY TUNING
OF DEFECT COUPLING

We analyze the effect of modifying the effective defect
coupling strength � on the pseudospectrum and eigenstates of
the system, generalizing the results of the previous section to
more complicated defects. The observation that the coupled
cross-chain system is isospectral with an equivalent system
consisting of two manifolds—one is a degenerate trivial sys-
tem made of K−1 simple uncoupled SSH chains [Fig. 1(c)],
and the second is a single SSH lattice coupled to a nonrecipro-
cal edge element [Fig. 1(d)]—is a cornerstone in our analysis.
This will be further explained and proven. Furthermore, for
some values of � �= 1, one can find localized states, with
localization lengths that were exhibited in Sec. II only for the
2D case, in the 1D (K = 2) settings.

Starting with the extreme case of � = 0, the system is
comprised of four identical disconnected SSH chains and
a single isolated defect site, and so the pseudospectrum is
quadruply degenerate plus one. In the trivial regime, there is
only one localized state—the zero-energy state residing on the
defect site. In the topological regime there are nine localized
states—two edge states of each of the identical topological
SSH chains and one zero-energy state completely localized
on the defect. The nonzero energies are related to a discrete
wave number km via the well-known SSH lattice dispersion
relation E2(km) = a2 + ã2 + 2aã cos km in both the trivial and
topological regimes.

For the general case � > 0, the aforementioned de-
composition is manifested, as the quadruply degenerate
bulk pseudospectrum with energies Em(km) breaks into two
manifolds—a triplet: a triply degenerate pseudospectrum with
energies ET (km) = Em(km); and a singlet: a pseudospectrum
with shifted (respective to the free SSH) eigenenergies ES (pm)
and shifted wave numbers pm ≡ km + δkm [Fig. 3(a)]. The
transformation of each degenerate quartet into a degenerate
triplet and a singlet state with shifted energies and wave num-
bers results, as may be expected, from coupling of the SSH
chains to the defect.

The bulk energy of the mth triplet is given by E2
T (km) =

a2 + ã2 + 2aã cos km (Appendix B) which is the energy of
the mth state of an isolated single SSH chain [Fig. 1(c)]. In
the topological regime, this manifold also includes a triply
degenerate pair of topological edge states EE on the edges of
the chains with localization lengths ηE ≈ − ln(a/ã) that do
not depend on �. In the triplet manifold, since the energy of
the bulk states ET (km) is equal to the energy of the bulk states
of a free SSH chain Em(km), each mth triplet state is comprised
of three degenerate superpositions of the mth bulk states of
the four SSH chains. Additionally, since the free SSH chains
do not include the defect site, the defect site amplitude in the
triplet states must be zero. The singlet bulk state shifted from
the mth band must be spatially symmetric with respect to the
central element [Fig. 3(b)]. Moreover, the energy shift of the
singlet bulk is related to a wave number shift which, as shown
in Appendix B, implies a nonzero amplitude on the defect site
together with the symmetrical extended amplitude profile on
the chains.

The singlet part of the pseudospectrum is more interesting
since it unfolds the impact of the defect and can be obtained
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FIG. 3. (a) Positive real-energy pseudospectrum for the symmetric crossed-chain system of Fig. 1(a) in the topological regime with ã = 2a
and M = 50 vs defect coupling strength coefficient �. Dashed green lines denote the energy levels of the triplet pseudospectrum, blue lines
denote the energy levels of the singlet pseudospectrum, and the thick red lines denote the isolated localized defect states. Vertical dashed lines
mark the critical values of � between which the localized defect states are merged into the bulk. (b) Energy pseudospectrum at � = 0.5 [the
purple marker in subfigure (a)]. The yellow dots mark the singlet pseudospectrum. Inset: An example triplet bulk states [marked (i)–(iii)] and
the associated singlet state [marked (iv)]. Real values of the amplitudes of the states marked in this inset appear for (c) the crossed-chain
system and (d) the reduced representation by an isospectral system comprised of three detached Su-Schrieffer-Heeger (SSH) chains and one
SSH chain coupled nonreciprocally to a defect site. Defect site amplitude marked by a red diamond, and the amplitude of the nonreciprocally
coupled defect is marked by a light-green diamond.

from analyzing an equivalent non-Hermitian system. Since
the singlet states are symmetric around the defect site, in the
reduced representation, we consider an effective system com-
prised of a single SSH chain connected to an external reservoir
with a coupling constant ã� [Fig. 1(d)]. However, since the
defect site in the crossed-chain structure experiences coupling
to four identical adjacent sites, the reservoir in the effective
system is coupled back to the effective SSH lattice with a
coupling strength of 4ã�. This introduces non-Hermiticity
to the Hamiltonian of the effective system, although it still
supports only real eigenenergies. The bulk energies of the
singlet manifold are given by

E2
S (pm) = a2 + aã

sin
[
pm

(
M
2 − 1

)]
sin

(
pm

M
2

) + 4(�ã)2, (7)

and the wave numbers pm = km + δkm are the solutions of
an implicit equation derived in Appendix B. It should be
noted that, since Eq. (7) is an even function, its solutions
are (−ES, ES ) pairs. For defect coupling strengths of �2 <

(ã − a)/4ã and �2 > (ã + a)/4ã, the localized states emerge
from the bulk with energies:

E2
� = a2 + ã2 − 2aã cosh κ, (8)

E2
� = a2 + ã2 + 2aã cosh κ, (9)

respectively (Appendix A). These are illustrated by the red
curves in Fig. 3(a).

Unlike the localization lengths η0 and ηE that do not de-
pend on the defect strength �, in the defect-induced states,
there is a clear dependence given by (Appendix A)

�2 = ã + aλ(κ )−1

4ã
, (10)

where λ(κ ) = −e−κ if the localized defect-state energies ±E�

are within the gap (|E�| < ã − a) and λ(κ ) = e−κ if they are
outside the bulk pseudospectrum (|E�| > ã + a). The former
exists only in the topological regime. Another state belonging
to the singlet mode is trivial solution ES = 0 which is the
zero-energy state E0, localized on the defect site in the trivial
regime and on the outer edges of the structure in the topolog-
ical regime. Like the case of a basic defect, the zero-energy
state E0 has a localization length given by η0 = |ln(a/ã)|,
independent of � for � �= 0.

We have shown that the Hermitian crossed-chain system
can be fully described by an isospectral effective system that
is a combination of a triply degenerate SSH lattice and a non-
Hermitian system consisting of an SSH coupled to an external
nonreciprocal reservoir. The energy pseudospectrum can
therefore be denoted as E (k,�) = {E0, ES (pm,�), 3ET (km)},
with m ∈ ±{1....M/2}. We emphasize that this decomposition
is exact and that the reduced representation of the system
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FIG. 4. Illustration of the symmetric non-Hermitian crossed-
chain T -symmetric configuration. Red sites denote gain γ , and blue
circles denote loss −γ . The two illustrations portray an identical
system; the crossed-chain scheme can be analyzed as the systems
comprised of chains {A, B} and {C, D}, or chains {A,C} and {B, D},
coupled through the defect site.

and original representation of Eq. (3) are spectrally equiva-
lent. Here, E (k,�) is comprised of (−Em, Em) pairs and a
zero-energy state, indicating the chiral symmetry mentioned
in Sec. II.

This degeneracy breaking into singlet and triplet mani-
folds can be easily generalized to the K-chains case in which
the pseudospectrum splits into a singlet and (K−1)-fold-
degenerate manifolds. This is observable only in systems
of dimensionality higher than one since, in the 1D system
(K = 2), the splitting of a degenerate doublet pseudospectrum
is into two distinct singlet manifolds; in one manifold, the
extended amplitude distributions are antisymmetric with wave
number km and, in the other, are symmetric with wave number
km + δkm and a nonzero amplitude on the defect. Therefore,
no degeneracy occurs.

IV. NON-HERMITIAN CROSSED-CHAINS

A. Model of the non-Hermitian structure

We generalize the crossed-chain Hamiltonian to a non-
Hermitian setting, by introducing imaginary on-ite potentials
describing loss and gain. For concreteness, we studied the
case of an alternating gain-loss pattern along each of the four
coupled chains, with a transparent defect. The complex SSH
Hamiltonian is

Hσ = i
Mσ∑

j

γ σ
j φ

σ†
j φσ

j +
Mσ −1∑

j

aσ
j φ

σ†
j φσ

j+1 + H.c., (11)

with the nondiagonal coefficients generally defined as in
Eq. (2), and γ σ

j = (−1) jγ σ , γ σ ∈ R+ are the gain-loss coef-
ficients. For characterizing our system, we employ parity (P),
time (T ), and parity-time (PT ) symmetries. While the conven-
tional definition of the time-reversal operator T (−i)T −1 = i is
directly applicable in our system, attempting to generalize P
and PT symmetries to the crossed-chain configuration is not
trivial; the definition of P symmetry is not unique for a struc-

ture that is not 1D since the system cannot be described by a
single spatial axis. Our parity operator is unbroken if the sys-
tem is invariant under permutation of any of the K SSH chains
(this coincides with the usual definition P x P−1 = M + 1−x
for the case of 1D). We use the notation PT symmetry more
loosely for indicating a situation where the eigenenergies are
real (quasi-Hermitian operator) [3].

For ∀σ : Mσ = M, aσ = a, ãσ = ã, γ σ = γ , as demon-
strated in Fig. 4, the crossed-chain system can be analyzed
either as two SSH systems, each maintaining PT symmetry
(but not P symmetry) coupled by a defect, or as two SSH
systems, each preserving P symmetry but breaking PT sym-
metry, coupled by the same defect. This ambivalence stems
from the dimensionality imposed by the coupling through the
defect site and has no 1D equivalence.

We denote, without loss of generality, γ A,C
j = (−1) jγ A,C

and γ B,D
j = −γ A,C

j . Rewriting Eq. (3) cf. Eq. (4) to include
the non-Hermiticity yields

Htot,γ =
∑

σ

ãσ�σφ
σ†
Mσ

φ� +
∑

σ

Mσ∑
j

(−1) j iγ σφ
σ†
j φσ

j

+
∑

σ

Mσ −1∑
j

aσ
j φ

σ†
j φσ

j+1 + H.c. (12)

As in the previous sections, we will consider the isotropic
case ∀σ : Mσ = M, aσ = a, ãσ = ã, γ B/D = γ .

In general, topological protected states are expected to
exhibit enhanced robustness to disorder of the lattice. This
is a good indicator for a topological phase, especially for
the non-Hermitian case where the other indicators such as
topological invariants and bandgap closing are not well de-
fined. We performed a thorough robustness analysis for all
protected states in the topological phase of the non-Hermitian
case under chirality- and PT -symmetry-preserving disorder
(as was done before for similar cases, e.g., in Refs. [13,16]).
The analysis detailed in Appendix G shows that, even for
disorder parameters of ∼ 1 − γ /|ã − a| (the maximal dis-
order of given parameters above which PT symmetry may
be broken, as explained in the appendix), the variances of
the distributions of numerically calculated wave numbers for
the topological states in hundreds of realizations amount to
<1.6% of their respective mean values. This demonstrates
substantial robustness for the zero states, edge states, and
defect states, thereby validating the robustness of the non-
Hermitian topological phase.

Unlike the Hermitian case, when the non-Hermiticity is
introduced, the system is comprised of two identical pairs
of complex-conjugate SSH chains rather than four identical
SSH chains. Therefore, there are two possible choices of
effective systems and SSH chains that are identical up to a
complex-conjugation operation (Appendix D). Thus, although
the amplitude profiles of the states are not identical on the four
SSH chains, knowledge of the profile of one chain in a singlet
state suffices to unambiguously describe the entire system.
Moreover, since the full crossed-chain system and the reduced
equivalent systems are all T symmetric, complex conjugation
does not affect their pseudospectra. Thus, the effective system
would yield valid isospectral representations of the system,
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and we can use the equivalent system of one non-Hermitian
SSH chain with nonreciprocal coupling to a reservoir and
three non-Hermitian SSH chains.

The pseudospectrum of the system is E (k,�, γ ) =
{E0, ES,γ (pm,�), 3ET,γ (km)} for m ∈ ±{1...M/2}, where
ES,γ (pm,�) and ET,γ (km) are the gain-parameter-dependent
singlet and triplet energies, respectively. It is interesting to
note that the shifts in the wave numbers of the bulk states
associated with the singlet state are exactly identical to those
obtained for the Hermitian case, and do not depend on γ

(Appendix D), making the result of the previous section much
more general.

The bulk energies of the non-Hermitian system are given
by

E2
T,γ (km) = a2 + ã2 + 2aã cos km − γ 2, (13)

E2
S,γ (pm,�) = a2 + ã2 + 2aã cos pm − γ 2, (14)

for the non-Hermitian triplet and singlet manifolds, respec-
tively, where km are the discrete wave numbers of a constituent
SSH chain with γ = 0, and pm are the discrete solutions of the
implicit function as described in Sec. III.

The energies of the localized states are generalized to in-
clude the non-Hermiticity parameter γ (Appendix C). The
defect states of the singlet manifold are

E2
�,γ = a2 + ã2 ± 2aã cosh κ (�) − γ 2, (15)

while the triplet topological edge states (in the long lattice
limit) are

E2
E ,γ = a2 + ã2 − 2aã cosh ηE − γ 2. (16)

We show in Appendix C that the localization length κ of the
localized defect states ±E� does not depend on γ but depends
on � exactly as in the Hermitian case [see Eq. (10)]. The
edge states in Eq. (16) exist of course only in the topological
regime. In the Hermitian case, the edge localization length
was given by ηE ≈ − ln(a/ã), and it can be readily obtained
from the Hamiltonian equations that ηE does not depend on
γ . Substituting ηE in Eq. (16), we obtain that the energies of
the edge states are EE ,γ ≈ ±iγ , which are purely imaginary.

We emphasize that the distinction between the localization
constants of the edge states and defect states for a basic defect
is a property of the higher dimensionality of the system, also
when non-Hermiticity is introduced.

The third type of a localized state is the zero-energy state
E0 discussed in the previous sections. Its localization length
is obtained from eliminating the left-hand side (LHS) of the
non-Hermitian extension of the zero-energy state dispersion
relation [16]:

η0 = η0(γ ) = arc cosh

(
a2 + ã2 − γ 2

2aã

)
. (17)

Recall that, in the Hermitian case, we obtain ηE ≈
η0(γ = 0) = − ln(a/ã) and EE ≈ E0 = 0 in the long-lattice
approximation. Therefore, an important signature of the non-
Hermiticity in the topological regime is the further generation

of a distinction between the zero-energy state E0 and the triply
degenerate topological SSH edge states EE .

We may wonder about the discontinuous characteristics of
the localization between the Hermitian and the non-Hermitian
cases when the addition of very small gain-loss (γ → 0+)
prompts a very abrupt change in the spatial localization of the
zero-energy state from the outer edges to the inner (defect in-
duced) edges (Fig. 5). This abrupt transition is a consequence
of the long-chain approximation; without this approximation,
EE is small but finite except at a specific small value of γ = γs

for which EE (γs) = 0, and then the edge states are exactly
degenerate with the zero-energy state. For 0 < γ < γs, the
zero-energy state is localized on the far edges of the SSH
chains, but as γ is increased, localizations appear on the inner
edges and increase in magnitude. At γ = γs, the amplitudes
at the induced and outer SSH edges are equal up to a phase,
and for γ > γs, the amplitudes become localized only on the
induced edges around the defect. In the long-chain approxima-
tion, γs ≈ 0, and thus, the transition is abrupt. As γ is further
increased, the amplitude on the defect site increases until, at
γ = ã − a, the bulk energies coalesce in exceptional points,
and the zero-energy state becomes delocalized. Further on,
when the energies of the entire bulk become purely imaginary
at γ = ã + a due to PT -symmetry breaking, as will be de-
scribed in the next subsection, the zero-energy state becomes
localized on the defect site itself.

B. Phase diagrams

Obviously, when the gain parameter γ is varied, the en-
tire system goes through several phase transitions. Some of
them are unique to the crossed-chain structure. We follow
the phases of crossed-chain structures across the parameter
ranges.

In both the trivial and topological regimes under the long-
chain approximation, when γ 2 � (a−ã)2, the bulk energies
are purely real, indicating that the bulk is PT protected, and
appear in pairs (Em,−Em) for all m. As γ increases, the bulk
energies of the states Em,γ approach zero as ∼ ±√

E2
m − γ 2.

When E2
m = γ 2, the bulk states ±Em,γ coalesce at an excep-

tional point, and their energies become a conjugate pair of
purely imaginary values, so that PT symmetry is gradually
broken along a series of exceptional points until the entire
bulk is purely imaginary at γ = (a + ã)2. The zero-energy
state E0 remains pinned at zero for all values of γ . We denote
the PT -symmetric, partially broken, and broken regimes as
phases I, II, and III, respectively.

In the trivial region, the localized defect state pair ±E�

exists for �2 > (ã + a)/4ã [Fig. 6(a)]. From Eq. (15), this
pair coalesces and becomes purely imaginary at γ = |E�|.
Above this value, the entire pseudospectrum of the system
is purely imaginary, and PT symmetry is broken. However,
for (a + ã)2 < γ < |E�|, there exist protected localized states
that maintain PT symmetry, while the entire bulk is PT bro-
ken. This unique phase, denoted IIIA, does not exist in the
case of a 1D system with a basic defect and is a result of the
higher dimensionality of the crossed-chain system for � = 1.

For (ã − a)/4ã < �2 < (a + ã)/4ã [Fig. 6(b)], no local-
ized defect state exists, and the PT symmetry of the entire
structure is determined solely from the bulk.
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FIG. 5. The zero-energy state in the topological regime for different values of γ with Su-Schrieffer-Heeger (SSH) parameters a = 1, ã =
2 and M = 50. The transition from outer- to inner-edge localization occurs under these conditions for γs ≈ 4.4 × 10−8, which is virtually zero.
The transition is even more abrupt when further increasing the chain lengths.

In the topological regime [Figs. 6(c)–6(e)], for � �= 0,
there are three degenerate pairs of edge states that, in the
long chain approximation, have conjugate imaginary energies
[given in Eq. (16)] for γ > 0. These three pairs of states,
illustrated in Fig. 6(f), consist of amplitudes localized on
the four chain edges on which there is gain (loss), with
an energy of EE = iγ (EE = −iγ ). Therefore, the system
is never fully PT symmetric in the topological regime. We
denote the bulk PT -symmetric, partially broken, and broken

regimes in the topological regime as phases IT, IIT, and IIIT,
respectively.

For �2 > (a + ã)/4ã [Fig. 6(c)], there are localized defect
states E� that coalesce at (a + ã)2 < γ = |E�|, above which
the entire system is PT -symmetry broken. For (a + ã)2 <

γ < |E�| (phase IIIAT), only the localized defect states are
PT symmetric, whereas both the bulk and topological edge
states are PT broken.

For (ã − a)/4ã < �2 < (a + ã)/4ã [Fig. 6(d)], no local-
ized defect states exist.

FIG. 6. Phase diagrams for the non-Hermitian crossed-chain system as a function of the gain parameter γ for M = 50, for different
coupling schemes. Pink and green lines denote the absolute value of the real and imaginary parts, respectively, of the energy pseudospectrum in
arbitrary units. Thick red lines denote the isolated localized defect state when it exists. Phase regions are separated by vertical black lines and are
denoted by roman numerals. (a) Trivial: ã = 0.5a, � = 1.5. (b) Trivial: ã = 0.5a, � = 0.5. (c) Topological: ã = 2a, � = 1. (d) Topological:
ã = 2a, � = 0.5. (e) Topological: ã = 2a, � = 0.12. (f) Amplitudes of the six edge states in the topological regime, ã = 2a, � = 1 and
γ = 0.5. The three states on the top have energies iγ , and the three states on the bottom have energies −iγ .
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FIG. 7. Amplitude profiles of a localized defect state in the
crossed-chain structure along one direction, shown in natural-
logarithmic scale, for different values of γ for ã = 2a, � = 1 and
M = 50. Sites are numbered relative to the defect site. The blue
squares (orange diamonds) denote the a, c (b, d) sublattices, and the
red circle denotes the defect site. (a) γ < |E�| is the amplitude profile
is spatially symmetric around the defect site. For (b) γ > |E�| and
(c) γ 	 |E�|, the spatial symmetry of the amplitude profile around
the defect breaks; however, the localization length remains identical
in (a)–(c) for all sublattices. Similarly, for an extended singlet state
(n = 84), at (d) γ < |E84|, the amplitude profile is symmetric around
the defect. For (e) γ > |E84| and (f) γ 	 |E84|, the spatial symmetry
breaks, but the wave number remains unchanged.

When �2 < (ã − a)/4ã [Fig. 6(e)], the localized defect
states E� are inside the bandgap, meaning that they coalesce
in an exceptional point at |E�| = γ < (a−ã)2. This creates a
unique phase diagram, wherein for |E�| < γ < (a−ã)2, the
bulk pseudospectrum is PT symmetric, while the protected
edge and localized defect states are PT broken. We denote
this phase by IAT.

It is important to note that PT -symmetry breaking of
any pair of singlet states, is associated with a transition in
which the spatial symmetries of the singlet-state amplitude
profiles break. We have shown in Appendix F that, in the
PT -symmetric regime, the amplitude profile of a singlet state
is symmetric around the defect site, up to a constant phase
shift between the sublattices constituting each SSH chain.
This phase shift is equal for one pair of identical chains
and has the opposite sign for the complex-conjugate pair of
chains (denoted {A, C} and {B, D}, respectively, in Fig. 4).
When crossing the exceptional point into the PT -broken
regime, two amplitude profiles are obtained, one for every
pair of SSH chains. The sublattice amplitudes in different
chain pairs are related to one another, and in fact, each of the
two sublattices in every SSH chain exhibits different ampli-
tudes but identical wave numbers with respect to the other
sublattice, as shown qualitatively in Fig. 7. This transition
was not discussed in previous works in the context of bulk
states because the division of bulk states into K−1-degenerate

and spatially symmetric singlet manifolds is manifested
clearly only when a higher-dimensional system with K > 2 is
considered.

We also argue that the non-Hermitian crossed-chain
structure illustrated in Fig. 4 is a generalization of the non-
Hermitian PT -symmetric 1D structure considered in, e.g.,
Ref. [16]. This statement is not trivial since the crossed-
chain description as two coupled SSH pairs is ambiguous.
However, the phase transition mentioned above for the higher-
dimensionality crossed-chain structure also occurs in the 1D
case, as shown in Appendix F. This resemblance demonstrates
that coupling two 1D P- and T - (but not PT -) symmetric
systems at their center that forms the non-Hermitian crossed-
chain system results in a system exhibiting the behavior of the
1D T - and PT - (but not P-) symmetric configuration.

V. CONCLUSIONS

Defect-induced effects on lattices in more than 1D have
been generally overlooked in the recent spur of research
pertaining to topological photonics. In this paper, we have
performed a comprehensive analysis of a crossed-chain sys-
tem, comprised of four identical 1D SSH lattices, coupled at a
single point through a mutual site acting as a defect. We have
investigated a topological structure that consists of several
SSH chains coupled at a single site with dimension higher
than one.

The manifestation of higher dimensionality at the mutual
defect site introduces a type of localized defect state that does
not exist for a basic defect in the topologically trivial 1D
crossed-chain scheme. Moreover, the higher dimensionality is
one of the parameters that leads to a distinction between the
localization lengths of the localized zero-energy state and the
defect states in the topologically nontrivial regime.

An important result of this paper is that a Hermitian
crossed-chain system consisting of K SSH chains can be
decomposed into a reduced representation of K−1 identical
disconnected SSH chains, described by a K−1-degenerate
manifold, and a single SSH chain connected via a nonre-
ciprocal coupling to an external reservoir, described by a
separate singlet manifold. The former manifold is comprised
of states that are superpositions of eigenstates of individual
SSH chains (including topological edge states for the topo-
logical regime). The latter manifold has spatially symmetric
states and a nonzero defect-site amplitude and includes the
localized-defect states. Interestingly, the system describing
the SSH chain coupled to an effective reservoir is non-
Hermitian. However, both representations of the system are
isospectral and so are equivalent.

Our rigorous analysis yields an exact calculation of the
energies and wave numbers of the entire pseudospectrum of
the crossed-chain structure as a function of the internal SSH
coupling coefficients as well as the defect coupling strengths.
The theory developed here predicts the existence of localized
defect states that are isolated from the bulk pseudospectrum
and thus robust; furthermore, the energies of these localized
states can be tuned by changing the defect coupling strength
and can be placed outside of the bulk, within the energy
bandgap, or merged into the bulk states altogether.
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These results also apply when non-Hermiticity in the form
of alternating onsite gain and loss is introduced to the sys-
tem. For a system comprised of two pairs of SSH chains, as
illustrated in Fig. 4, the reduced representation is justified also
for the non-Hermitian case. Furthermore, our analysis yielded
that the wave numbers of the nonzero states in the system are
not affected by the non-Hermiticity.

Constructing phase diagrams of the crossed-chain system
under varying gain-loss parameters for different topologies
and defect coupling strengths, we demonstrated distinctive
PT -symmetry regimes for various cases. Some of these phase
diagrams have no parallels in 1D with a basic defect and result
from the higher dimensionality of our proposed structure.

An important contribution is the demonstration of spatial
symmetry breaking of the amplitude profile for the singlet
states of the system at exceptional points, not only for local-
ized states but also for bulk states. Although this effect was
encountered previously for localized defect states in the 1D
case, due to our analysis of the spatially symmetric nature of
the singlet states (that is manifested in higher dimensions),
this was proven also for bulk states.

The crossed-chain structure has a potential impact on re-
alizations of coherent arrays of lasers since it can be used as
a building block for a full 2D networked structure with topo-
logically protected lasing sites distributed over the entire 2D
area, localized on defects rather than the existing proposals of
topological coherent lasing only on the 1D interface between
2D topological structures. This paper is also of high relevance
for other applications of topological phases, including the
study of polymer chains (that was the original seed of the SSH
model), where the polymer chains are cross-linked, which is a
very typical structure in polymer science.

APPENDIX A

We restate the Hamiltonian in Eq. (3) cf. Eq. (4) in an
explicit form for an isotropic crossed-chain configuration (i.e.,
Mσ = M, aσ = a, ãσ = ã, �σ = �). For completeness, we
will work in the general case of K identical SSH chains
coupled at the defect element. Defining ψa

n = φ j, j = 2n−1
and ψb

n = φ j, j = 2n for 1 � n < M/2,

E�ψa
n = aψb

n + ãψb
n−1, (A1)

E�ψb
n = aψa

n + ãψa
n+1, (A2)

where E� denotes the defect state energy. Applying the
ansatz ψ

a/b
n−1 = ψa/b

n λ for λ = e−κ , κ ∈ R+ such that |λ| < 1,
Eq. (A1) yields

ψa
n

ψb
n

= a + ãλ

E�

, n <
M

2
, (A3)

while plugging Eq. (A2) into Eq. (A1) recovers Eq. (5):

E2
� = a2 + ã2 ± 2aã cosh κ. (A4)

The localization length zero-energy state E0 is obtained if
the LHS of Eq. (A4) is set to zero and κ is replaced by η0

(with a minus sign before the hyperbolic cosine so that the
LHS vanishes), in agreement with the literature for the 1D
problem, e.g., Refs. [12,52].

Note that Eq. (5) considers only the plus sign in Eq. (A4)
due to the consideration of � = 1. For the case n = M/2,

E�ψb
M/2 = aψa

M/2 + �ãψ�, (A5)

where ψ� denotes the amplitude of the defect state, and

E�ψ� = Kã�ψb
M/2. (A6)

Substituting Eq. (A5) into Eq. (A6) gives us

ψa
M

ψb
M

= 1

a

[
E� − K (ã�)2

E�

]
. (A7)

Applying the ansatz to Eq. (A7) and using Eq. (A3), one
arrives at

λ = E2
� − K (ã�)2 − a2

aã
, (A8)

which reaffirms our choice of λ ∈ R. Finally, from plugging
the expression for the energy of the defect state Eq. (A4) into
Eq. (A8), we arrive at

�2 = ã + aλ(s)−1

Kã
, (A9)

where λ(s) = eis, and s = iκ if the localized defect-state en-
ergy lies outside the bulk pseudospectrum, or s = π + iκ if
E� lies within the gap. By substituting � = 1 in Eq. (A9),
Eq. (6) from the main text is obtained. Plugging this in back
into Eq. (A8),

E2
� = a2 + ã2 +

[
a2 + (K�2 − 1)2

ã2

K�2 − 1

]
, (A10)

and comparing this to the SSH bulk state expression E2(k) =
a2 + ã2 + 2aã cos k, we surmise that nonbandgap isolated de-
fect states exist for �, satisfying∣∣∣∣∣a2 + (K�2 − 1)2

ã2

K�2 − 1

∣∣∣∣∣ > 2aã + ε, (A11)

where the term ε stems from the finiteness of the lattice, as
the true distribution of the localized states deviates from the
ansatz for a finite number of elements. We shall omit ε in our
calculations, as this term is negligible for lattices on the order
of tens of elements, which we consider in this paper. Equation
(A11) restates Eq. (A9) under the ansatz of exponential decay
and the long-chain approximation:

�2 >
a + ã

Kã
, (A12)

for the positive branch of Eq. (A11), or

�2 <
−a + ã

Kã
, (A13)

for its negative branch, implying λ(κ ) → λ(κ−iπ ) and lead-
ing to the restatement of the localized defect state energy as

E2
� = a2 + ã2 − 2aã cosh κ, �2 <

ã − a

Kã
ingap,

(A14)

E2
� = a2+ã2 + 2aã cosh κ, �2 >

a + ã

Kã
outsidegap,

(A15)

022216-10



TOPOLOGY OF MULTIPLE CROSS-LINKED … PHYSICAL REVIEW A 106, 022216 (2022)

with 2aã cosh(2κ ) = [a2 + (K�2−1)2
ã2]/(K�2−1). Note

that this expression does not diverge, as �2 is either larger or
smaller than 1/K when defect states exist since {a, ã} ∈ R+.
Additionally, as seen in Eq. (A15), no localized states exist in
the topologically trivial case for �2 < −a+ã

Kã .

APPENDIX B

Our goal in this section is to find relations between the
energies, wave numbers, and defect coupling strength for the
bulk states. We will restrict this calculation to the case of
K = 4 SSH chains, although generalization to any number can
be easily obtained.

Firstly, we formulate an analytical relation between the
lattice site amplitudes in the bulk pseudospectrum of states.
For a single SSH chain comprised of M/2 unit cells with open
boundary conditions, the bulk states will have the general
form of sine functions, with wave numbers km quantized for
each of the M (M−2) bulk states of the trivial (topologi-
cal) configuration, given by the solution to the eigenvalue
problem of the Hamiltonian of the system. More specifi-
cally, the boundary conditions of the SSH chain read ψb

0 =
0, ψa

M/2+1 = 0, which can be restated for the mth state for the
b sublattice as the ansatz:

ψb
n,m

sin (kmn)
= Cm, (B1)

for n ∈ {1...M/2} and some constant Cm. Defining

χn,m ≡ sin [km(n − 1)]

sin (kmn)
, (B2)

and substituting Eq. (B1) in Eqs. (A1) and (A2) would yield
the relations:

ψa
n,m

ψb
n,m

= a + ãχn,m

Em
, (B3)

ψa
n+1,m

ψb
n,m

=
a

χn+1,m
+ ã

Em
, , (B4)

for ∀n : kmn �= 0. Substituting these back in Eq. (A2) for
n < M/2 and applying the trigonometric relation χn,x +
χ−1

n+1,x = 2 cos x yields the known bulk SSH dispersion rela-
tion E2(km) = a2 + ã2 + 2aã cos km. Note that this expression
does not depend on n. Solving for n = M/2 and applying the
boundary condition ψa

M/2+1 = 0 yields the implicit equation
for km:

E2
T (km) = a2 + aãχM/2,m, (B5)

the solutions of which yield the supported wave numbers for
the triplet pseudospectrum.

Secondly, as discussed in the main text, we treat the system
as comprised of four degenerate SSH chains connected to an
external system with coupling strength �ã. However, to main-
tain an identical amplitude profile of the degenerate chains to
these in the crossed-chain configuration, we assume that the
external system experiences a coupling strength of 4�ã.

FIG. 8. Numerical calculation of f (p) for ã = 2a with M = 50.
Solutions pn(�) are the intersections f (p) = 2� marked by full
circles. Only Re(p) � 0 solutions are presented. The graph is analyt-
ically continued for complex wave numbers p = iκ and p = π + iκ
on the left and right panels, respectively, wherein the solutions
describe localized states. Red circles (top): � = √

(a + ã)/4ã +
7.5 × 10−3 with 24 extended and one nonmidgap solutions (defect
states are excluded from the bulk and are localized); orange cir-
cles (middle): � = 0.75

√
(a + ã)/4ã with 25 extended solutions

(defect states are merged into the bulk); purple circles (bottom):
� = √

(ã − a)/4ã − 7.5 × 10−3 with 24 extended and one localized
in-gap solutions (defect states are excluded from the bulk and are
localized).

We write the equations for the defect and the n = M/2 cell

ES (p)ψb
M/2,p = �ãψ�,p + aψa

M/2,p, (B6)

ES (p)ψa
M/2,p = aψb

M/2,p + ãψb
M/2−1,p, (B7)

ES (p)ψ�,p = 4�ãψb
M/2,p. (B8)

The S subscript for the energy denotes the energy of the
singlet state with the shifted wave number p = km + δkm.
Plugging Eqs. (B8) and (B7) into Eq. (B6) for ES (p) �= 0
yields

E2
S (p) = a2 + aãχM/2,p + 4(�ã)2, (B9)

which is equivalent to Eq. (B5) when � = 0. Substituting the
SSH dispersion relation E2(p) for the shifted wave numbers
p = km + δkm in Eq. (B9) and reformulating to the implicit
form f (p) = 2�, we obtain

f (p) =
√

1 + a

ã

[
cos(p) + cot

(
pM

2

)
sin(p)

]
. (B10)

Considering � > 0, solving f (p) = 2� to recover the
wave numbers for a given value of �, and substituting the
numerically obtained results in the SSH dispersion relation,
we recover the eigenvalues of the shifted states obtained from
Eq. (3) (Fig. 8). Note that, to obtain the complex wave number
of the localized states, one must substitute p = iκ for �2 >

(a + ã)/4ã or p = π + iκ for �2 < (ã − a)/4ã in Eq. (B10).

022216-11



A. SIVAN AND M. ORENSTEIN PHYSICAL REVIEW A 106, 022216 (2022)

FIG. 9. Schematic of one axis of the complex Su-Schrieffer-
Heeger (SSH) crossed-chain configuration. The white square denotes
the defect site, red circles denote gain γ , blue circles denote loss −γ ,
black line denotes a coupling strength a, double line denotes a cou-
pling strength ã, and finally, triple line denotes the defect coupling
strength ã�.

The wave number shifts δkm for the bulk states could be
numerically obtained from

δkm(�) = pm(�) − km, (B11)

where pm(�) is the mth element of the ordinal sequence
defined by p(�) ≡ {p : f (p) = 2�} and km = pm(0). It can
be deduced from the cotangent function in Eq. (B10)
and also obtained numerically, as demonstrated in Fig. 8,
that max

�
|δkm(�)| < |km − km+1|, so that the shifted singlet

energies separate inhomogeneously from the triplet pseu-
dospectrum at � > 0 but never exceed the energy level of the
next degenerate triplet; taking � → ∞ in f (p) = 2� neces-
sitates cot(pmM ) → ∞, so that pm(� 	 1) → ±mπ/M for
m ∈ {1...M/2−1}.

APPENDIX C

Using the same notations as in Appendix A, we start in
a similar manner; however, the introduction of the gain pa-
rameter under PT symmetry divides the four chains into two
pairs—one pair of chains with the loss site adjacent to the
defect and one pair with the gain site adjacent to it (Fig. 9). We
will focus on the crossed-chain case (K = 4). Generalizations
of these calculations can be done for an even number of
SSH chains, as our assumptions rely on PT symmetry in the
system. Without loss of generality,

(E�,γ − iγ )ψa
n = aψb

n + ãψb
n−1, (C1)

(E�,γ + iγ )ψb
n = aψa

n + ãψa
n+1, (C2)

for the first pair of chains, and

(E�,γ + iγ )ψc
n = aψd

n + ãψd
n−1, (C3)

(E�,γ − iγ )ψd
n = aψc

n + ãψc
n+1, (C4)

for the second, for n < M/2.
Assuming again that ψx

n−1 = ψx
nλ, with x ∈ {a, b, c, d},

λ = |λ|eiϕ, |λ| < 1, and some phase ϕ ∈ R for the local-
ized nonmidgap defect state, plugging Eq. (C2) into Eq. (C1)
recovers

E2
�,γ = a2 + ã2 + aã(λ + λ−1) − γ 2, (C5)

which suggests that E�,γ is either a purely real or a purely
imaginary quantity, depending on the magnitude of γ . Re-
placing λ = e−κ or λ = eiπ−κ restores Eq. (15) or (16),
respectively. We shall first consider E�,γ ∈ R. Since applying
the complex conjugate operator to Eqs. (C3) and (C4) yields

Eqs. (C1) and (C2), respectively, it is clear that ψa
n = ψc∗

n and
ψb

n = ψd∗
n , so that Eqs. (C4) and (C3) become redundant. We

write the equation for the defect site:

E�,γ ψ� = 2ã�ψb
M/2 + 2ã�ψb∗

M/2, (C6)

and apply the ansatz, and since ψ� ∈ R, we can conclude that
ϕ = 0, and so λ ∈ R. We extract from Eq. (C1) the relation:

ψa
n

ψb
n

= E�,γ

a + ãλ

E2
�,γ + γ 2

+ iγ
a + ãλ

E2
�,γ + γ 2

, (C7)

for n < M/2, from which we obtain

Imψa
n = a + ãλ

E2
�,γ + γ 2

(
E�Imψb

n + γ Reψb
n

)
, (C8)

Reψa
n = a + ãλ

E2
�,γ + γ 2

(
E�Reψb

n − γ Imψb
n

)
. (C9)

For n = M/2, we write

(E�,γ + iγ )ψb
M/2 = aψa

M/2 + �ãψ�. (C10)

Solving separately for the real and imaginary parts of
Eq. (C10),

E�,γ Reψb
M/2 − γ Imψb

M/2 = aReψa
M/2 + �ãReψ�, (C11)

E�,γ Imψb
M/2 + γ Reψb

M/2 = aImψa
M/2 + �ãImψ�. (C12)

Since Imψ� = 0, multiplying Eq. (C12) by λM/2−n and
plugging the result into Eq. (C8) yields

Imψa
n = a + ãλ

E2
�,γ + γ 2

(
aImψa

n

)
, (C13)

which for ã �= 0 can be true if and only if ∀n : Imψa
n ≡ 0.

Taking Eqs. (C11) and (C12) cf. Eq. (C6),

ψb
M/2

ψa
M/2

= a
E�,γ + iγ

E2
�,γ + γ 2 − 4(ã�)2 . (C14)

Comparing this with Eq. (C7) results in

λ = E2
�,γ + γ 2 − 4(ã�)2 − a2

aã
, (C15)

and using Eq. (C5), one has

�2 = ã + aλ−1

4ã
. (C16)

This reproduces Eq. (10) from the main text, suggesting
that the defect state remains unaffected by the introduction
of onsite non-Hermiticity in the considered scheme, while
E�,γ ∈ R. Furthermore, the nonmidgap defect state energies
in Eq. (C5) can be re-expressed to yield a generalization of
Eq. (A10):

E2
�,γ = a2 + ã2 +

[
a2 + (4�2 − 1)2

ã2

4�2 − 1

]
− γ 2. (C17)

A transition of the system occurs at the PT -symmetry
breaking point E2

�,γ = 0, beyond which point E�,γ be-
comes purely imaginary, and therefore, the relations between
Eqs. (C1) and (C2) to Eqs. (C3) and (C4) no longer imply
that the two chain pairs defined by their lattice sites {a, b} and
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{c, d}, respectively, are complex conjugates. Thus, we must
assume two dissimilar pairs of complex SSH chains. Denoting
E�,γ = iW with W ∈ R for convenience, we have

iW ψ� = 2ã�ψb
M/2 + 2ã�ψd

M/2, (C18)

i(W − γμ)ψμ
M/2 = aψν

M/2 + ã�ψ�, (C19)

where we have defined μ ∈ {b, d} and ν ∈ {a, c} such that the
pair (μ, ν) ∈ {(b, a), (d, c)}. Additionally, γb = −γd = −γ .
We keep the assumption of a localized state, wherein the
localization length remains dependent only on the coupling
coefficients of the structure. To justify this for dissim-
ilar chains, we denote the evanescence factors λab and
λcd , and plug Eq. (C2) into Eq. (C1) and Eq. (C4) into
Eq. (C3), recovering Eq. (C5), respectively, for E2

�,γ (λab, γ )
and E2

�,γ (λcd , γ ). Equating these expressions yields a true
statement if and only if λab = λcd .

Denoting λ ≡ λab = λcd , from Eqs. (C1) and (C3), we
obtain

ψν
n

ψ
μ
n

= −i
a + ãλ

W + γμ

, (C20)

for 1 � n < M/2. It is implied from Eq. (C20) that the ele-
ments in each unit cell are shifted by a constant phase of π/2
with respect to one another. Solving Eq. (C19) cf. Eq. (C20)
separately for the real and imaginary parts and consolidating
the expressions, we arrive at

ψ
μ

M/2 = −i
ã�(W + γμ)

W 2 − γ 2 + a2 + aãλ
ψ�. (C21)

Plugging these back into Eq. (C19) generalizes Eq. (C20)
to n = M/2. Finally,

ψa
M/2 = −ã�(a + ãλ)

W 2 − γ 2 + a2 + aãλ
ψ�, (C22)

ψc
M/2 = −ã�(a + ãλ)

W 2 − γ 2 + a2 + aãλ
ψ�, (C23)

so that

ψa
n = ψc

n , (C24)

ψb
n = W − γ

W + γ
ψd

n , (C25)

for all n. This result demonstrates a breaking of spatial
symmetry in the system that occurs when the state crosses
an exceptional point and PT symmetry breaks, while the
symmetric intercell exponential decay ansatz (see Fig. 7) is
maintained. When the gain parameter is very large, i.e., γ 	 1
(so that γ ≈ −W ), the site amplitudes of the {a, b} chains are
held at zero, and the site with the highest amplitude is the ψd

M/2

site, as |ψ�| → 0. This effectively demonstrates a negligible
penetration of energy into the defect and the {a, b} chains.
From Eqs. (C18) and (C21)–(C23), we recover Eq. (C16),
reaffirming that the localization length depends on the defect
strength of the structure and not on its gain parameter.

APPENDIX D

We combine the assumptions of Appendixes B and C to
analyze the relations between the energies of the bulk states,
the defect coupling strength, and the gain parameter.

We start by applying the same ansatz in Eq. (B1) since
the addition of a constant imaginary gain (loss) term to every
second site should not affect our underlying assumptions, as
one can define a complex energy term εq ≡ Eq + (−)iγ for
the sublattices of the sites adjacent to the defect. Since now
we have two types of SSH chains, as illustrated in Fig. 9, we
restate the ansatz in Eq. (B1):

ψμ
n,m

sin (kmn)
= Cμ

m , (D1)

with the same (μ, ν) notation of Appendix C. Plugging
Eq. (D1) into Eqs. (C1)–(C4), with the bulk state energies
denoted Eγ (km) instead of E�,γ , and the definition in Eq. (B2)
yields

ψν
n,m

ψ
μ
n,m

= a + ãχn,m

Eγ (km) + iγμ

, (D2)

ψν
n+1,m

ψ
μ
n,m

=
a

χn+1,m
+ ã

Eγ (km) − iγμ

, (D3)

for ∀n < M/2 : kmn �= 0. From substitution of Eqs. (D2) and
(D3) in Eq. (C2), we recover the dispersion relation E2

m(km) =
a2 + ã2 + 2aã cos km − γ 2. The triplet energies ET,γ (km) are
obtained by imposing the boundary condition ψν

M/2+1,m = 0
in the same manner as in Appendix B, and we get

E2
T,γ (km) + γ 2 = a2 + aãχM/2,m. (D4)

For the singlet bulk energies ES,γ (p), we note that ES,γ (p)
can be either purely real or purely imaginary. We begin with
the case ES,γ (p) ∈ R, for which ψb

n,m = ψd∗
n,m for all n and m.

We write the equations for the effective system that describes
the singlet states:

[ES,γ (p) − iγμ]ψμ

M/2,p = �ãψ�,p + aψν
M/2,p, (D5)

ES,γ (p)ψ�,p = 4�ãReψμ

M/2,p, (D6)

and we solve Eq. (D5) separately for the real and imaginary
parts of ψ

μ
M/2,p. Plugging in Eq. (D6), we obtain for ES,γ �= 0:

ψν
M/2,p

ψ
μ
M/2,p

= 1

a

E2
S,γ (p) + γ 2 − 4(ã�)2

E2
S,γ (p) + γ 2

[ES,γ (p) + iγμ], (D7)

which together with Eq. (D2) yields

E2
S,γ (p) + γ 2 = a2 + ãaχM,q + 4(ã�)2. (D8)

Since in the non-Hermitian case E2
S,γ (p) = a2 + ã2 +

2aã cos p − γ 2, this yields exactly Eq. (B9), and so the solu-
tion of f (p) = 2� for � > 0 and f (p) as defined in Eq. (B10)
generates the same solutions pm(�) as in the Hermitian case.
The case of ES,γ = 0 recovers the E0 state. Turning to consider
Eq ∈ iR, we define W (p) ∈ R through Es(p) = iW (p) and
rewrite the equation for the defect site:

iW (p)ψ�,p = 2�ãψb
M/2,p + 2�ãψd

M/2,p. (D9)
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FIG. 10. Zero-energy state of a one-dimensional (1D) crossed
chain for trivial Su-Schrieffer-Heeger (SSH) (top), transition point
SSH (mid), and topological SSH (bottom) lattices of length M = 50.
Blue squares indicate sublattice A, red circles indicate sublattice B,
and the blue diamond indicates the defect site.

Solving Eq. (D5) for its real and imaginary parts along with
Eq. (D2) once for {a, b} and once for {c, d} results in

ψ
μ
M/2,p

ψ�,p

= −i
ã�[W (p) + γμ]

W 2(p) − γ 2 + a2 + aãχM/2,p
, (D10)

implying from Eq. (D2) that, as in the case of localized defect
states, when Es(p) ∈ iR—although the two SSH pair ampli-
tude profiles are not spatially symmetric around the defect
as in the Hermitian case—ψc

n,p = ψa
n,p for all n and p. In

fact, it can be readily obtained that Eqs. (C22)–(C25) apply
here under the replacement of λ with χM/2,p and adequate
notations.

Combining Eqs. (D9) and (D10) results in

W 2(p) + γ 2 = a2 + aãχM/2,p + 4(ã�)2, (D11)

which again yields the exact expression in Eq. (B9), for
E2

S (p) < 0. Therefore, we conclude that the solution for the
wave number equation is not affected by the introduction of
non-Hermiticity in the scheme suggested in this paper and that
the relation between the defect coupling strength and the shifts
in wave numbers is constant for all γ .

APPENDIX E

In this appendix, we will succinctly establish several prop-
erties of the localized states of 1D crossed-chain system in
the topological regime, with a basic defect (� = 1), since this
case was not thoroughly addressed in literature.

First, we will demonstrate the phase transition that the
zero state E0 undergoes between the trivial and topological
regimes. In Fig. 10, we show the amplitude profile of a 1D
crossed-chain system in the trivial and topological regimes as
well as in the singular transition point ã = a. In the trivial
regime (stronger intercoupling), only the defect and the A
sublattices have nonzero amplitudes, and the amplitude pro-

FIG. 11. Pseudospectrum of the one-dimensional (1D) Su-
Schrieffer-Heeger (SSH) crossed chain in the topological regime,
with ã = 1.75a and M = 50. Insets (a.1) and (a.2) depict the lo-
calized defect states E� (red diamonds), and inset (a.3) depicts the
zero-energy state E0 at the center and the two topological SSH
edge states around it. The scale of the energy axis in inset (a.3)
demonstrates the precision of the long-chain approximation for the
considered system parameters.

file is exponentially decreasing from the defect site. As ã
increases in the trivial regime, the bandgap shrinks, and the
localization length increases until the gap closes at ã = a and
the zero-energy state E0 becomes delocalized. When ã > a,
the gap reopens in the topological regime, and the localization
shifts to the outer edges of the A sublattices, as now the
intercoupling is stronger, and so the defect is strongly coupled
to its neighboring sites, so the state diffuses from it rather
than centers around it. The amplitudes of the B lattice remain
pinned at zero, as can be seen from the Hamiltonian equations
of the system for E = 0 when a nonzero amplitude at the A
lattice is assumed.

The localization length in the topological region is then
given by η

topo
0 = − ln(a/ã), and so the general expression of

the localization length of E0 is

η0 =
∣∣∣ln (a

ã

)∣∣∣. (E1)

The pseudospectrum of the system is illustrated in Fig. 11
for the parameters ã = 1.75a and M = 50. The red diamonds
in the insets of Fig. 11(a.1) and 11(a.2) depict the edge states
±E�, whose properties can be calculated from Appendix A
for a basic defect and K = 2 in the long-lattice approximation:

E2
� = a2 + ã2 + 2aã cosh κ, (E2)

κ = − ln
(a

ã

)
. (E3)

The three states in the inset of Fig. 11(a.3) are the zero-
energy state E0 in the center, and two topological SSH edge
states EE on each site. The energies and localization lengths
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of these states are known [74], and in the long-lattice approx-
imation are

EE ≈ 0, (E4)

which is true if and only if

ηE ≈ − ln
(a

ã

)
. (E5)

The long-lattice approximation can be justified for our
parameters, as seen in Fig. 11(a.3), wherein the scale of the
energy axis demonstrates the proximity of EE to zero.

APPENDIX F

We briefly present an explanation for the behavior of the
amplitude profile of a non-Hermitian crossed SSH system
with an even number of chains, in the PT -symmetry-
preserved and broken regimes to support our claim in the main
text. This explanation is also valid for a 1D crossed chain.

While PT symmetry is maintained, only the relative phases
between the sublattices of each SSH chain depend on γ , while
the amplitude ratio remains constant. Equations (C7) and (D2)
that describe the intracell amplitude ratios have the general
form:

ψa/c
n,m

ψ
b/d
n,m

= a + ãz

E (γ ) ± iγ
≡ q

g(γ )
, (F1)

with z ∈ R taking the role of the intercell amplitude ratio λ or
χm,n for a localized or extended state, respectively. The above
is true for a system being comprised of SSH chains and their
complex conjugates, thus consisting of four sublattices de-
noted {a, b, c, d}, and therefore can be also applied to the 1D
case. The plus or minus sign depends on by whether the sub-
lattice a/c has onsite gain or loss, respectively. Considering
the dependence of E (γ ) on γ , Eq. (F1) has a real numerator
that does not depend on γ and a complex denominator of the
form g(γ ) = [C2 − γ 2]1/2 ± iγ , C ∈ R+. While |γ | � C,

|g(γ )| = C, ∠g(γ ) = ± arctan

[
γ

(C2 − γ 2)1/2

]
, (F2)

whereas for |γ | > C,

|g(γ )| = ∣∣(γ 2 − C2)1/2 ± γ
∣∣, ∠g(γ ) = ±π

2
. (F3)

Equation (F2) shows that, in the PT -symmetric regime,
|∠g(γ )| monotonically increases from 0 for γ = 0 to π/2 at
|γ | = C. When the PT symmetry is broken [Eq. (F3)], the
sublattices maintain a constant relative π/2 phase, while their
amplitude ratio changes since, in this region, |g(γ )| changes
monotonically with γ [depending on the sign Img(γ )], while
its phase remains constant. This demonstrates the separation
of the amplitudes of the sublattices in a single SSH chain when
PT symmetry breaks. When two mirrored SSH lattices are
coupled, as in Fig. 9, such that the imaginary onsite potentials
of the sublattices adjacent to the defect have opposite signs,
the sublattice amplitudes ratios in each chain are described by
Eq. (F3) with opposing signs. This proves that the amplitude
symmetry of the non-Hermitian crossed-SSH system breaks

when PT symmetry is broken, for 1D as well as for higher
dimension crossed-chain systems, with the gain-loss scheme
considered in this paper.

APPENDIX G

As an indication for the topological phase in the non-
Hermitian regime, we numerically demonstrate the robustness
of the topological states of the system against structural disor-
der, following Refs. [13,16] and others.

FIG. 12. Amplitude profiles of localized states in a non-
Hermitian crossed-chain Su-Schrieffer-Heeger (SSH) structure with
γ = 0.5, ã = 2a, and M = 50 along a single axis. Hollow diamonds
mark sublattice A/C, and hollow squares mark sublattice B/D. Full
green diamond marks the defect site amplitude. Each subfigure por-
trays 300 realizations of random disorder with S = 0.5 in red (real)
or blue (imaginary) lines. Black lines denote the average amplitude
profile. (a) Real and (b) imaginary part of the zero state. (c) Inner and
(d) outer edge states. (e) Real and (f) imaginary parts of a localized
defect state.
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FIG. 13. Effect of the disorder strength coefficient S on the real
and imaginary parts of the zero state amplitude profiles in sublattices
A/C and B/D in a non-Hermitian crossed-chain Su-Schrieffer-Heeger
(SSH) structure with γ = 0.5, ã = 2a, and M = 50. The circles
(squares) denote the mean value of the mean square error (MSE) for
sublattice A (B) over 300 realizations of the disorder. (a) MSE of the
real part of the zero-state amplitude. (b) MSE of the imaginary part
of the zero-state amplitude.

We do so by considering PT -symmetry- and chirality-
preserving disorder of the coupling coefficients, so that the
coupling coefficients of the nth cell are

an = a + S(ã − a)
Un

2
, (G1)

ãn = ã − S(ã − a)
Un

2
, (G2)

with Un a random number from a uniform distribution in
the range [−1, 1] and S ∈ R the disorder strength parameter.

These disordered coupling coefficients are identical in all
four SSH chains, so that PT symmetry is maintained for
any realization if S � 1 − γ /|ã − a|. The amplitudes of the
topological zero, defect, and edge states on one of the axes
of the crossed-chain structure are shown in Fig. 12 for 300
realizations of disorder, for S = 0.5, ã = 2a, and γ = 0.5.
Note that this is the largest disorder strength parameter for
the considered coupling and gain-loss scheme according to
the condition above for which PT symmetry is conserved.

It is evident from Fig. 12 that the amplitudes do not change
appreciably when disorder is introduced. To quantify that,
we have numerically calculated the imaginary wave numbers
in each realization by exponential fitting of the amplitude
profile envelope and performed an analysis on their distri-
butions. For the zero state, we found the mean value to its
distribution to be Imη̄0 ≈ 0.603, with variance σ 2

η0
≈ 8.657 ×

10−3(100 × σ 2
η0

/Imη̄0 ≈ 1.4%), for the edge states Imη̄ ≈
0.694, with σ 2

η ≈ 7.012 × 10−3(100 × σ 2
η /Imη̄ ≈ 1%), and

for the defect states Imκ̄ ≈ 1.794, with σ 2
κ ≈ 28.29 × 10−3

(100 × σ 2
κ /Imκ̄ ≈ 1.6%). The very small variances around

the respective means suggest robustness against this large
disorder. Similar variances of the wave numbers in different
realizations are also obtained in the Hermitian case γ = 0.
Additionally, all the means converge to their zero-disorder
values. This robustness demonstrates the topological nature
of the crossed-chain structure also in passing to the non-
Hermitian regime, as discussed in the main text.

Further indication of the topology is the persistence of the
property of the zero state of having purely real amplitudes
on the B/D sublattices and purely imaginary amplitudes on
the A/C sublattices, with any disorder strength parameter in
the above range. These numerically calculated mean square
errors (MSEs) for the real and imaginary parts of sublattices
A/C and B/D, with respect to an ordered amplitude profile φ0,
are shown in Fig. 13. We have defined the MSE between two
vectors of length n as MSE(x, y) = ∑

n |x2
n−y2

n|2.
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