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Universality of motion under gravity, the equivalence principle, is violated for quantum particles. Here, we
study the time it takes for a quantum particle to scatter from the gravitational potential and show that the
scattering time, formulated here using the opportune Bohmian formulation, acts as an indicator of the equivalence
principle violation. The scattering times of wave packets are distinctive enough to distinguish between the
Bohmian and Copenhagen interpretations. The scattering time of monoenergetic stationary states, formulated
here as a modification of the Bohmian time by probability undercurrents, turns out to be a sensitive probe of
the equivalence principle violation. We derive the quantum scattering times and analyze equivalence principle
violating terms systematically. We discuss the experimental setup needed for measuring the violation, and
describe implications of a possible measurement for time in quantum theory, including the tunneling time.
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I. INTRODUCTION

Equivalence of the inertial mass mI and the gravitational
charge mG of each and every particle [1,2] renders the Newto-
nian dynamics purely geometrical. This equivalence has been
tested for centuries and has now reached some 10−15 relative
accuracy [3,4]. It implies that all small bodies (classical parti-
cles) fall at the same time if released from the same height
with the same velocity. This universality is a fundamental
aspect of Newtonian dynamics under gravity, and provides a
universal timescale testable with distinct bodies [3].

The universality above is expected to be invalid for quan-
tum particles since their masses continue to appear in the
Schrödinger equation even when mI ≡ mG [5–10]. The thing
is that h̄ comes out of the woodwork as a new constant with
the dimension of mass-distance velocity and, in consequence,
quantum dynamics remain nongeometrical with or without
the equivalence mI ≡ mG. The free-fall time of quantum par-
ticles have been analyzed by Davies [11] by utilizing the
Peres clock [12–14], by Viola and Onofrio [15] by using the
semiclassical dynamics, by Ali and others [16] by considering
wave packets, by Flores and Galapon [17] by making use
of a time operator [18], and by Seveso and others by utiliz-
ing the information-theoretic methods [19,20]. These studies
use different methods but agree on the existence of a finite
deviation from the universal free-fall time of the classical dy-
namics. As will be analyzed in detail in the sequel, deviation
from universal free-fall time or, equivalently, violation of the
equivalence principle is characterized by the ratio h̄/m. This
quantity disappears and gives then way to universality only in
the classical limit, namely, only when action of the particle is
significantly sizable than h̄.

The crux of the problem is that in quantum theory time is
not an observable represented by a Hermitian operator, and
there is, thus, no baseline methodology to calculate temporal

intervals [21–24]. The resolution, according to various pro-
posals [25,26], is that the march of time in quantum systems
should be defined in terms of the changes in certain repre-
sentative observables (position, momentum, spin orientation,
and the like [23,25]). The values of these observables act
as duration markers [24] but the choice of the observables
depends on how the particle is modeled or perceived (such as,
for example, wave packets or energy eigenstates). In general,
however, an unambiguous definition and elucidation of time
is necessary for both the foundations and applications of the
quantum theory [12,24,27].

In search for a proper reification of time, the Copenhagen
(standard) and Bohmian [28] interpretations provide two alter-
native routes [24]. In the Copenhagen interpretation, quantum
particles do not possess well-defined trajectories. In the de
Broglie–Bohm interpretation, on the other hand, quantum
particles possess well-defined trajectories controlled by their
probability flows [28–30]. The two interpretations are empir-
ically equivalent in that they have different views on reality
and yet they give identical results on main physical questions
[29]. This equivalence of theirs gets, however, disrupted once
trajectories and probability flows of particles are concerned. In
this regard, one phenomenon on which the two interpretations
disagree is the probability backflow (having momentum and
probability current in opposite directions) which plagues the
standard interpretation [31] but does not occur at all in the
Bohmian interpretation. In this sense, future experiments on
probability backflow [32–34] may differentiate between the
two interpretations.

Another occasion in which the two interpretations differ
concerns the notion of the quantum travel time. In the stan-
dard interpretation (where particles evolve as distributions
until they collapse indeterministically under some measure-
ment process) the march of time has been defined variously
(see the reviews [25,26,35]) by using different observables as

2469-9926/2022/106(2)/022215(9) 022215-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6289-9635
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.022215&domain=pdf&date_stamp=2022-08-23
https://doi.org/10.1103/PhysRevA.106.022215
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markers. In the Bohmian interpretation (where particles
follow a well-defined trajectory under the control of the
Schrödinger equation) the march of time can be expressed
uniquely in terms of their positions [28–30]. (Comprehensive
explorations in Refs. [24,36,37] shed light on different aspects
of the two interpretations with regard to the problem of time
in quantum theory.)

In this paper, we will study time it takes for a quantum
particle to scatter from its own gravitational potential and use
this scattering time to determine or measure the equivalence
principle violation. In the setup we consider, quantum par-
ticles are shot upwards and their return times are recorded
such that deviations of the recorded times from the classical
universal flight time will be an indicator of the equivalence
principle violation. We will study this problem within the de
Broglie–Bohm interpretation of the quantum theory [24,28–
30]. The scattering times we will compute will be average
times in that the Bohmian time formula involve integrations
over probability and probability current densities.

In Sec. II below, we study scattering times of wave packets
(having classical analogs), and show that dispersion of the
wave packet is the main source equivalence principle vio-
lation. We compare our finding with the Copenhagen result
(with time operator method [17]) and conclude that future
experiments may be able to probe what interpretation of quan-
tum theory is realized in nature.

In Sec. III, we study flight times of monoenergetic
stationary-state particles (having no classical analogs). We
extend the Bohmian time formula of Sec. II to probability
undercurrents to obtain a Bohmian-inspired time formula.
We show that the Bohmian-inspired time formula is tailor
made for such states. Therein, we determine scattering times
of quantum particles in terms of the corresponding classical
scattering times. We apply the Bohmian-inspired time formula
in both of the classically allowed and classically forbidden
regions, study its short- and high-flight limits, and reveal
the sources of equivalence principle violation. We find that
quantum particles spend time behind the classical turning
point during their penetration into and withdrawal from the
gravitational potential barrier.

In Sec. IV, we discuss the state-of-the-art experimental
situation and discuss how the quantum scattering times (for
both the wave packets and the stationary states) can be tested
in cold atom experiments. We also discuss their implications
for applications and foundations of quantum mechanics.

In Sec. V we conclude.

II. QUANTUM SCATTERING TIME: WAVE PACKETS

In vacuum (negligible friction), small bodies (macroscopic
particles with negligible tidal forces) obey Newton’s motion
equation,

d2z(t )

dt2
= −g (1)

for a uniform gravitational field g pointing in the negative z
direction. This equation is universal (same for all particles)
thanks to the equality mI = mG ≡ m between the inertial mass
mI and the gravitational charge mG. As a result, all classical
particles, tossed upwards from a vertical position z = zi with

initial velocity vi, follow one and the same trajectory,

zc(t ) = zi + vit − 1
2 gt2, (2)

as a solution of (1). This means that rise of the particle comes
to a halt at the moment t∩ = vi/g corresponding to a height of
zc(t∩) ≡ z∩ = zi + v2

i /2g. This height z∩ is the turning point.
Universality of the classical motion above is not expected

to hold for quantum particles. The reason is that, unlike the
Newtonian motion equation (1), the Schrödinger equation,

− h̄2

2m

∂2�(t, z)

∂z2
+ V (z)�(t, z) = ih̄

∂�(t, z)

∂t
(3)

depends explicitly on the particle masses irrespective of if
mI ≡ mG or mI �≡ mG. This nonuniversality has the meaning
that the equivalence principle is violated for quantum parti-
cles. In fact, with the gravitational potential energy,

V (z) = mgz, (4)

the Schrödinger equation (3) is seen to invariably involve the
dimensionful parameter h̄/m. It admits different solutions, one
of which being the wave-packet solution [6–8],

�(t, z) =
(

d√
πD2

)1/2

exp

{
− (z − zc)2

2D2
+ m

ih̄
zivi

}

× exp

{
− m

ih̄

(
z − vit

2

)
(vi − gt ) + mg2

ih̄
t3

}
(5)

characterized by the time-varying width D2 = d2 + ih̄t
m . It is

obviously a nonstationary state as its phase is not linear in
time t . It is an approximation to the notion of particle and
possesses classical analog in that its center z = zc follows the
Newtonian motion equation (1).

The foremost feature of the Bohmian mechanics is that it
ascribes trajectories z(t ) to quantum particles such that

dz

dt
= J (t, z)

R(t, z)
, (6)

under the control of the Schrödinger equation (3). In this re-
gard, R(t, z) = �∗(t, z)�(t, z) is the probability density, and

J (t, z) = h̄

2mi

(
�∗(t, z)

d

dz
�(t, z) − �(t, z)

d

dz
�∗(t, z)

)
(7)

is the probability current density. They satisfy the continuity
equation,

∂R(t, z)

∂t
+ ∂J (t, z)

∂z
= 0, (8)

which ensures the conservation of probability. Their ratio,

J (t, z)

R(t, z)
= t[z − zc(t )]

m2d4

h̄2 + t2
+ vi − gt (9)

reveals the nonclassical features of wave-packet (5). In fact,
with this current-to-probability ratio the Bohmian equation (6)
takes the compact form

d

dt

[
z − zc(t )(

1 + h̄2t2

m2d4

)1/2

]
= 0, (10)
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TABLE I. The QST/CST ratio. QST starts deviating from the
CST at the order h̄ (h̄2) for the Bohmian (Copenhagen [17]) interpre-
tation. Future experiments may be able to probe what interpretation
of quantum behavior is allowed in nature.

Bohmian interpretation Copenhagen interpretation

(�t )(wp)
q

(�t )c
1 + h̄

m
√

2gd3
+ O(h̄2) 1 + h̄2

4m2d2v2
i

+ O(h̄4)

showing explicitly that deviation from the classical solution
z = zc(t ) occurs due solely to the wave-packet dispersion
(h̄t/md2). In fact, this equation acquires the solution,

z(t ) = zc(t ) + �

(
1 + h̄2t2

m2d4

)1/2

, (11)

with some length parameter �. It is clear that the width func-
tion D2 in the wave-packet (5) vanishes if both h̄ → 0 and
d → 0, and it is expected that in these limits the classical
solution z = zc(t ) is going to be attained. This comes to mean
that the parameter � should be proportional to the width d , and
one can set this way � = d in (11).

The wave packet in (5), after shot upwards at z = zi, propa-
gates up to the classical turning point z = z∩ and scatters back
therein to fall down to z = zi in a total duration of (�t )(wp)

q .
This duration is the quantum scattering time (QST) of the
wave packet. The time-formula (11) leads to the Bohmian
QST,

(�t )(wp)
q = (�t )c

(
1 + h̄

m
√

2gd3
+ O(h̄2)

)
(12)

for � = d � z∩ − zi = v2
i /2g. In here, (�t )c = 2vi/g is the

classical scattering time (CST) defined beneath Eq. (2). This is
the average quantum scattering time. [It is average in the sense
that the Bohmian equation (6) involves probability and proba-
bility current densities and integrations over them effectively
give an average duration. This becomes more evident with the
Bohmian time (19) describing the stationary-state particles.]

The quantum time formula (12) is a proof that the equiv-
alence principle is violated at the h̄ order where duration of
penetration (tunneling) into the semi-infinite classically for-
bidden region (z > z∩) is expected to be subleading since the
wave-packet (5) approximates a classical particle moving on
the classical trajectory zc(t ). As a matter of fact, equivalence
principle violation occurs due mainly to the dispersion of the
wave packet (h̄/m in the width function D2) as was concluded
also by previous studies [9,15,16]. It is clear from the wave-
packet QST in (12) that the more QST/CST deviates from
unity the stronger the violation of the equivalence principle
[1,2].

The deviation of the wave-packet QST from the CST turns
out to be a sensitive probe of the formulation of the quantum
behavior. Table I gives an example of this. Indeed, as shown
by the table, for the Bohmian interpretation the deviation
is an O(h̄) effect. For the Copenhagen interpretation with
the operator method [17] (similarly with the current density
method [16,38]), however, the deviation is an O(h̄2) effect.
(The formula in Table I is obtained by taking zi � z∩, which
is not inconsistent with the Bohmian formula.) These two dis-

tinct h̄ sensitivities along with the other parametric differences
show that the future experiments may be able to probe what
interpretation of quantum behavior is realized in nature. To
this end, experiments with cold atoms and neutrons [39] may
prove useful.

III. QUANTUM SCATTERING TIME: STATIONARY-STATE
PARTICLES

In this section, we will study average scattering time of
a beam of monoenergetic quantum particles from their grav-
itational potential and show explicitly how this scattering
duration signifies violation of the equivalence principle. As
a matter of fact, we will study a setup in which quantum
particles of mass m and energy E are shot upwards (such as a
fountain) in their gravitational potential and their return time
(total flight time) is recorded. As was with the wave packet of
the last section, difference between the stationary-state QST
and the CST will be an indicator of the equivalence principle
violation.

It proves useful to start with the calculation of the CST.
The difference from the CST in Sec. II is that this time the
object of concern is a classical particle of fixed energy E in the
framework of the Newtonian dynamics in (1). This particle,
thrown upwards from z = zi, rises up, turns backwards at the
turning point z = z∩, and falls at z = zi. This whole motion
takes the total time (the CST) [1,2],

(�t )c =
∫ z∩

zi

dz√
2g(z∩ − z)

+
∫ zi

z∩

dz

−√
2g(z∩ − z)

= 2

(
2(z∩ − zi )

g

)1/2

, (13)

which is a universal duration that depends only on the gravita-
tional acceleration g and the logged height z∩ − zi. This means
that all monoenergetic classical particles approach and scatter
back from their gravitational potentials in the same duration
(�t )c irrespective of their masses and other features. In phase
space, it can be put into the form

(�t )c =
∫ z∩

zi

m dz

pz
+

∫ zi

z∩

m dz

−pz
, (14)

in which pz = √
2m[E − V (z)] is momentum of the particle,

E = mgz∩ is its total energy, and V (z) is its potential energy
in (4). This expression for (�t )c expresses the march of time
in terms of the coordinate of the particle (as if a clock attached
on it) [21–24].

In general, the classical dynamics underlying the CST
in (14) corresponds to stationary-state quantum dynamics.
Quantum particles obeying such dynamics possess the wave
function,

�(z, t ) = ψ (z)e−(i/h̄)Et , (15)

whose replacement in the time-dependent Schrödinger equa-
tion in (3) leads to

− h̄2

2m

d2ψ (z)

dz2
+ V (z)ψ (z) = Eψ (z), (16)

as the time-independent Schrödinger equation governing
ψ (z). With the stationary-state wave-function (15), the
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FIG. 1. Scattering of monoenergetic stationary-state quantum
particles from their gravitational potential energy V (z) = mgz. In
the classically allowed region (z < z∩), the particles are distributed
with the probability density ρ = |ψa|2 and probability undercurrents
ji = − jr . Similarly, in the classically forbidden region (z > z∩),
the particles are distributed with the probability density ρ = |ψ f |2
and the probability undercurrents jp = − jw . These probability cur-
rents are obtained by judiciously splitting the wave functions into
two complex pieces as ψa(z) = ψi(z) + ψr (z) in the allowed region
and as ψ f (z) = ψp(z) + ψw (z) in the forbidden region. In Bohmian
mechanics, quantum travel time marches with the ascribed particle
position so that the total quantum scattering time is composed of
the rising (up-blue full arrow), penetrating (up-blue dashed arrow),
withdrawing (down-red dashed arrow), and falling (down-red full
arrow) transitions.

probability current density J (t, z) in (7) takes the form

j(z) = h̄

2mi

(
ψ∗(z)

d

dz
ψ (z) − ψ (z)

d

dz
ψ∗(z)

)
, (17)

and the probability density R(t, z) = �∗(t, z)�(t, z) reduces
to ρ(z) = ψ∗(z)ψ (z). Obviously, j(z) must be strictly con-
stant [although ρ(z) can depend on z] according to the
continuity of the probability flow in (8).

The stationary-state wave functions, such as (15) are tailor
made for stationary scattering events as they represent the
steady flux of particles shot upwards (such as, a fountain) and
scattered back downwards (such as, rain) [11]. The problem is
to define scattering time for such states in the setup depicted
in Fig. 1. To this end, as already discussed in the previ-
ous section, Bohmian mechanics [28–30] provides a viable
framework. The reason is that Bohmian mechanics assigns
trajectories to quantum particles—even to spatially spread-out
stationary-state particles described by (15) [28,29]. For such

states, the Bohmian relation in (6) turns to

dz

dt
= j

ρ
, (18)

in which j/ρ is a function only of the coordinate z. From this
one can readily construct that the travel time formula,

(�t )q =
∫ b

a
dz

ρ

j
, (19)

in which j is assumed to flow from a to b. This is the average
QST corresponding to the CST in (14). It expresses the march
of the time in terms of the probability density ρ and the prob-
ability current density j in the region extending from z = a
to z = b. It is the Bohmian QST for stationary-state particles,
and gives the average quantum scattering time because it is
effectively the average value of the inverse current density
(1/ j). In applying (19) one keeps in mind that ρ can vary with
z but j remains strictly constant.

The Schrödinger equation (16) possesses the piecewise
solution [40,41],

ψ (z) =
{
ψa(z) for z � z∩,

ψ f (z) for z � z∩,
(20)

in which

ψa(z) = Nζ 1/3[J1/3(ζ ) + J−(1/3)(ζ )] (21)

is the wave function in the classically allowed region (z < z∩),
and

ψ f (z) = Nζ 1/3[I−(1/3)(ζ ) − I1/3(ζ )] (22)

is the wave function in the classically forbidden region (z <

z∩). In these solutions, N is a normalization constant, and
J±1/3 and I±1/3 are the Bessel functions of order ±1/3 with
the argument,

ζ = 2

3

( |z − z∩|
Lq

)3/2

, (23)

in which

Lq =
(

h̄2

2m2g

)1/3

(24)

is the natural length scale for a quantum particle under gravity.
It breaks universality with (h̄/m)2/3 power law.

A. Quantum flight time in allowed region

The wave-function ψa(z) in (21), describing the state of
the particle in the allowed region (z < z∩), can have at most a
global phase. In fact, it can be taken purely real without loss of
generality. It gives then the zero probability current as follows
from (17). This actually means that there are two equal and
opposite undercurrents constituting the stationary-state proba-
bility distribution. This implies that it must be possible to split
the wave-function ψa(z) into two complex functions of equal
and opposite currents. One can, therefore, write (see Ref. [11]
for a similar decomposition)

ψa(z) = ψi(z) + ψr (z), (25)
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in which

ψi(z) = Nζ 1/3{e−(iπ/3)J1/3(ζ ) + eiπ/3J−(1/3)(ζ )} (26)

has the positive (upward) probability current,

ji = h̄

πmLq

(
3

2

)4/3

|N |2 (27)

as follows from (17), and

ψr (z) = Nζ 1/3
{
(1 − e−(iπ )/3)J1/3(ζ )

+ (1 − e(iπ )/3)J−(1/3)(ζ )
}

(28)

has the negative (downward) probability current,

jr = − h̄

πmLq

(
3

2

)4/3

|N |2, (29)

as follows again from (17). The two currents are indeed equal
in size and opposite in sign. They ensure that the wave-
function ψa(z) is composed of an incident wave (ψi) inducing
an upward probability flow and a reflected wave (ψr) creating
a downward probability flow.

The decomposition of the wave function into two complex
wave functions of equal-size and opposite-sign probability
undercurrents has proven useful for revealing the probability
underflows in the stationary-state scattering problem at hand.
It worked for the allowed-region wave function in (21), and it
will be seen to work for the forbidden-region wave-function
(22) in Sec. III B. It worked because the wave-functions (21)
and (22) involve the Bessel functions, and Wronskians of
Bessel functions lead to the required probability currents
[11,40,41]. In general, decomposition becomes a necessity if
probability underflows in the stationary system are needed.
The structure of the two undercurrents (equal in size and
opposite in sign) determines how the decomposition should
be performed, but this does not guarantee uniqueness of the
decomposition since there can exist different decompositions
leading to the same undercurrents. Moreover, it not clear if the
decomposition of a general wave function does uniquely lead
to proper probability undercurrents. (This point seems to re-
quire a separate investigation. The generality and uniqueness
of the decomposition is an open problem.)

Having obtained the probability currents (27) and (29), it
is now time to compute the associated quantum flight times.
It might be tempting to use the Bohmian time formula in (19)
directly. This, however, is not so easy. The reason is that in
Bohmian mechanics quantum particles are guided not by the
undercurrents ( ji and jr = − ji) but by the total probability
current ( ji + jr which equals zero). In view of this difficulty,
we introduce a Bohmian-inspired new time definition by re-
placing the total current in the Bohmian time (19) with the
ji and jr undercurrents. With this replacement, it becomes
possible follow propagation of particles in the directions of
the undercurrents. In this regard, quantum particles rise from
z = zi to the turning point z = z∩ within the average Bohmian-
inspired time [42],

(�t )(rise)
q =

∫ z∩

zi

|ψa(z)|2
2 ji

dz = − 2πTq[
31/3


(
1
3

)]2

+ 2πTq{βq[Ai(−βq)]2 + [Ai′(−βq)]2}, (30)

in which βq is quadratic in (�t )c,

βq =
(

(�t )c

4Tq

)2

, (31)

and involves

Tq =
(

h̄

4mg2

)1/3

, (32)

as the natural timescale for a quantum particle under gravity.
In the rise time (30), at the right-hand side, the function
Ai(· · · ) is the Airy function of the first kind, and Ai′(· · · ) is
its derivative [40,41].

In parallel with the rise time above, quantum particles are
found to fall from the turning point z∩ to zi within the average
Bohmian-inspired time [42],

(�t )(fall)
q =

∫ zi

z∩

|ψa(z)|2
2 jr

dz = (�t )(rise)
q , (33)

where the 1/2 factor in the integrands of (�t )(rise)
q and

(�t )(fall)
q is there to avoid double counting whereas keeping

the interference terms between ψi and ψr . These two times
give the average flow durations in the classically allowed
region in Fig. 1.

B. Quantum flight time in the forbidden region

The wave-function ψ f (z) in (22), describing the state of the
particle in the classically forbidden region (z > z∩), can have
at most a global phase. It can, in fact, be taken real (such as,
ψa(z) in the classically allowed region) without loss of gen-
erality. It possesses zero probability current as follows from
(17). As in Sec. III A, this zero current can be structured as
being composed of two equal and opposite undercurrents by
an appropriate splitting of the stationary-state wave function
into two complex wave functions. One can write, therefore,

ψ f (z) = ψp(z) + ψw(z), (34)

in parallel with (25) such that

ψp(z) = Niζ 1/3{e(iπ )/6I1/3(ζ ) + e−(iπ )/6I−(1/3)(ζ )} (35)

has the positive (upward) probability current,

jp = h̄

πmLq

(
3

2

)4/3

|N |2, (36)

as follows from (17), and

ψw(z) = −Nζ 1/3{(1 − e−(iπ )/3)I1/3(ζ )

− (1 − e(iπ )/3)I−(1/3)(ζ )} (37)

has the negative (downward) probability current,

jw = − h̄

πmLq

(
3

2

)4/3

|N |2, (38)

as follows again from (17). The two undercurrents are indeed
equal in size and opposite in sign. They ensure, thus, that
the wave-function ψ f (z) is composed of a penetrating evanes-
cent wave (ψp, decaying towards z = ∞) inducing an upward
probability flow and a withdrawing evanescent wave (ψw,
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DURMUŞ DEMIR PHYSICAL REVIEW A 106, 022215 (2022)

decaying towards z = z∩) creating a downward probability
flow.

Having derived the probability currents (36) and (38), av-
erage quantum flight times in the classically forbidden region
(z > z∩) can now be computed by using the Bohmian-inspired
time formula in Sec. III A. Indeed, it turns out that an evanes-
cencing quantum particle penetrates into the forbidden region
for an average Bohmian-inspired time [42],

(�t )(penetrate)
q =

∫ ∞

z∩

|ψ f (z)|2
2 jp

dz = 2πTq[
31/3


(
1
3

)]2 , (39)

whose right-hand side is set by Ai′(0) [40,41].
In parallel with the penetration time above, quantum par-

ticles withdraw back to the turning point z∩ in the average
Bohmian-inspired time [42],

(�t )(withdraw)
q =

∫ z∩

∞

|ψ f (z)|2
2 jw

dz = 2πTq[
31/3


(
1
3

)]2 , (40)

where the factor 1/2 in the integrands of (�t )(penetrate)
q and

(�t )(withdraw)
q is placed to prevent double counting whereas

keeping the cross terms between ψp and ψw. These two times
sum up to the total time spent in the classically forbidden
region (as depicted in Fig. 1).

Before going any further, it proves instructive to discuss
time spent in the classically forbidden region (z > z∩) also in
the dwell time formulation [43]. In this formulation, quantum
particles of incidence current jinc spend a time [43,44],

(�t )(dwell) = 1

jinc

∫ b

a
dz ρ f , (41)

in a classically forbidden region extending from z = a to z =
b with the probability density ρ f . This time formula differs
from the Bohmian time (19) by the fact that the current jinc

is the incident current, not the current in the forbidden region
extending from a to b. Despite this, explicit calculation shows
that the dwell time satisfies the relation [42],

(�t )(dwell)
q = (�t )(penetrate)

q + (�t )(withdraw)
q , (42)

after letting ρ f → |ψ f (z)|2 and jinc → ji in (41), where ψ f (z)
and ji are defined in (34) and (27), respectively. The relation
(42) gives an independent confirmation of the Bohmian-
inspired travel time formula [splitting of the wave function
in two complex pieces as in (34) and use of the respective
currents (36) and (38)].

C. Quantum scattering time

On physical grounds, QST is fundamentally different than
CST in (14). Indeed, whereas quantum particles perform a
“rise-penetrate-withdraw-fall” motion the classical particles
perform a simple “rise-turn-fall” motion. The reason is that
there is essentially no turning point for a quantum particle
as it is always able to penetrate into the z > z∩ domain [as
in (35)] and withdraw back [as in (37)] as a semi-infinite
tunneling transition induced by evanescent waves. (This effect
is expected to be subleading for a wave packet as discussed in
Sec. II.) All this implies that the QST is composed of four

TABLE II. The quantum characteristic timescale Tq in (32) and
quantum-mechanical collision time in (45) for the electron and neu-
tron. In general, Tq(atom) ≈ Tq(neutron)A−1/3 for an atom with mass
number A.

Particle Mass (kg) Tq (s) (�t )q[zi = z∩] (s)

Electron 9.109 × 10−31 1.496 × 10−8 1.259 × 10−8

Neutron 1.674 × 10−27 1.221 × 10−9 1.028 × 10−9

segments,

(�t )q = (�t )(rise)
q + (�t )(penetrate)

q + (�t )(withdraw)
q

+ (�t )(fall)
q , (43)

as an ordered set of transitions depicted in Fig. 1. Now, col-
lecting the individual time intervals from (30), (39), (40), and
(33), this (�t )q formula leads to the QST/CST ratio,

(�t )q

(�t )c
= π

√
βq[Ai(−βq)]2 + π√

βq
[Ai′(−βq)]2, (44)

as because (�t )(penetrate)
q + (�t )(withdraw)

q cancels out the con-
stant part in (�t )(rise)

q + (�t )(fall)
q . This exact result shows

how QST differs from CST as a function of the universality-
breaking parameter h̄/m. This dependence on h̄/m ensures
that QST/CST is an unambiguous vestige of equivalence
principle violation. More specifically, the more QST/CST de-
viates from unity the stronger the violation of the equivalence
principle [1,2].

One physically important regime of QST in (44) is the
short-flight regime, namely, zi → z∩ limit. In this regime,
the particle starts already at the turning point z = z∩, pene-
trates into the semi-infinite barrier for a duration (�t )(penetrate)

q

and reappears at the turning point after a time lapse of
(�t )(withdraw)

q . In this short-flight limit, the CST vanishes iden-
tically as follows from (13) [(�t )c[zi − z∩] = 0] but the QST
takes the nonzero value,

(�t )q[zi = z∩] = (�t )(penetrate)
q + (�t )(withdraw)

q

= 4πTq[
31/3


(
1
3

)]2 , (45)

which shows that the quantum particle wanders in the clas-
sically forbidden region for a finite duration. This wandering
is due to particle’s penetration into and withdrawal from the
z > z∩ domain. It turns out that the tunneling into the semi-
infinite potential barrier V (z) > E makes quantum particle
to acquire a finite collision duration at the turning point.
Indeed, as depicted in Fig. 2 for particles of masses m (dot-
dashed black), 10m (full red), and m/10 (dashed blue), QST
remains nonzero even when the CST vanishes (zero-flight
limit). This means that each particle spends a finite time at
the turning point corresponding to collision duration with the
gravitational potential barrier. By definition, (�t )q[z∩ = zi] is
an O[(h̄/m)1/3] quantum effect and varies from particle to
particle as exemplified in Table II for the electron and the
neutron.

Another physically important regime of QST in (44) is the
high-flight regime, namely, the z∩ − zi � Lq regime. In this
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FIG. 2. Variation of the QST [(�t )q/Tq] with the CST [(�t )c/Tq]
for quantum particles having masses m (dot-dashed black), 10m (full
red), and m/10 (dashed blue). It is clear that, in each case, QST
remains nonzero even when the CST vanishes exactly. These QST
values at (�t )c = 0 (namely, zi = z∩) are proof that the quantum
particles possess a finite collision time at the turning point, which
serves as an indicator of the equivalence principle violation.

limit, on physical grounds, one expects QST to approach CST.
Indeed, for z∩ − zi � Lq the exact QST/CST in (44) takes the
form

(�t )q[z∩ − zi � Lq]

(�t )c
= 1 − cos αq

3αq
+ O[(h̄/m)2], (46)

where αq = 4
3 (βq)3/2 parametrizes the universality-breaking

quantum contributions, which vary from particle to par-
ticle via αq ∝ m/h̄. The parameter αq gives information
about equivalence principle violation by a measurement of
QST/CST for long flights. In general, heavier the particle
smaller the quantum contribution as revealed by the Tq values
in Table II. Direct calculation reveals that the high-flight QST
in (46) holds for distances grater than 0.274 fm (0.183 fm) for
electrons (neutrons).

Depicted in Fig. 3 is QST as a function of the CST for
particles of masses m (dot-dashed black), 10m (full red), and
m/10 (dashed blue). The plot extends from the short-flight
to the high-flight regime as (�t )c/Tq increases. It is clear
that the QST exhibits strong swings at low (�t )c/Tq, which
can be detected experimentally by using beams of different
energies. It is also clear that the QST relaxes to the CST at
large (�t )c/Tq in an oscillatory fashion such that the lighter
(heavier) the particle, the slower (faster) the relaxation. Evi-
dently, the equivalence principle violation becomes stronger
at low (�t )c/Tq. This reduction of QST to e CST at large
(�t )c/Tq is also what is emphasized in Ref. [11] by Davies.
The operator approach in Ref. [17] is valid only if the particle
does not reach z∩ and is, thus, not possible to contrast with the
results here. Nevertheless, both Refs. [11,17] find O(h̄) and
higher-order (positive or negative) corrections to CST.

FIG. 3. Variation of the QST/CST [(�t )q/(�t )c] with the CST
[(�t )c/Tq] for quantum particles having masses m (dot-dashed
black), 10m (full red), and m/10 (blue dashed). It is clear that each
QST relaxes to the CST in an oscillatory fashion such that lighter
(heavier) the particle slower (faster) the relaxation. Equivalence prin-
ciple violation is pronounced at low values of (�t )c/Tq.

IV. EXPERIMENTAL DETERMINATION

Universality of free fall has been under experimental ex-
ploration for decades [45–47]. In the past decade experiments
have diversified and reached higher precision levels [48–53].
The experiments with cold atoms are, particularly, promising.
It is likely that experiments as such, including cold neutrons
[39], can start measuring flight times of quantum particles in
the near future. Such scattering experiments can be conducted
reliably under ultra-high-vacuum conditions corresponding to
pressures about 10−10 Pa and mean free paths about 105 m.

The present paper reports actually two classes of new
results. The first concerns scattering time of wave packets
[48–53]. It was analyzed in Sec. II with the main result that
a proper measurement of the scattering time can distinguish
between the Bohmian and the Copenhagen interpretations of
the quantum behavior. Indeed, equivalence principle violation
is of size h̄ (h̄2) in the Bohmian (Copenhagen) approach,
wave-packet QST becomes a new distinguishing quantity af-
ter the quantum backflow [31–33]. Future experiments might
probe what interpretation is realized in nature.

The second class of new results concern scattering times
of the monoenergetic beam of stationary-state particles. One
can shoot such particles upwards, make them scatter off
from their gravitational potential, and measure their aver-
age return times. The determinations of (�t )q[z∩ = zi] and
(�t )q[z∩ − zi � Lq] are, particularly, important for various
reasons. Indeed, experimental verification of (�t )q[z∩ = zi]
in (45) would ensure that

(1) quantum free-fall is not universal,
(2) quantum tunneling takes finite time, and
(3) quantum travel time could be Bohmian.
Experimental confirmation of (�t )q[z∩ − zi � Lq], on the

other hand, would ensure that
(1) quantum free-fall is not universal,
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(2) quantum particles can fall much faster or slower than
the classical particles, and

(3) universal classical free-fall times are attained for long
flights.

In general, QST is around nanoseconds for cold neutrons
and significantly shorter for cold atoms (cesium, potassium,
rubidium, and the like). Table II, Figs. 3 and 2 provide the
necessary information. These scattering times should give an
idea about the precision goal in future experiments.

V. CONCLUSION

In this paper, we have performed a systematic study of
the scattering times of quantum particles from their gravi-
tational potentials. We have utilized the opportune Bohmian
mechanics as it ascribes trajectories to quantum particles. We
have first analyzed scattering times of wave packets in the
Bohmian formalism in a way involving the equivalence prin-
ciple violating ratio h̄/m. We have found that scattering times
can distinguish between the Bohmian and thye Copenhagen
interpretations.

We have next analyzed monoenergetic stationary-state par-
ticles corresponding to the steady flux of quantum particles
and shown that their quantum and classical scattering times
differ from each other in a way involving the equivalence
principle violating ratio h̄/m. We have analyzed the quantum

scattering time in short- and high-flight regimes and low- and
high-mass limits and found explicit expressions testable by
appropriate scattering experiments. It turns out that experi-
ments with different particle energies and different particle
masses seem to have good potential to test the quantum vi-
olation of the equivalence principle. The formula found can
prove useful for both theoretical and experimental tests of the
equivalence principle in quantum systems.

Experimental determination of the quantum scattering time
of wave packets can determine what interpretation of the
quantum behavior is realized in nature. The scattering times
of stationary-state particles, on the other hand, can put an
end to the quest for the correct formula for traversal and
tunneling times in quantum theory. And analyses of the tunnel
ionization of atoms can provide a cross-check for experimen-
tal data [54–57]. Fundamentally, quantum scattering time, if
measured accurately, can innovate our conception of time in
quantum theory with widespread implications for tunneling-
enabled processes.
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