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Quantum regression theorem for multi-time correlators: A detailed analysis
in the Heisenberg picture
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The quantum regression theorem is one of the central results in open quantum systems and is extensively
used for computing multi-point correlation functions. Traditionally it is derived for two-time correlators in the
Markovian limit employing the Schrödinger picture. In this paper we make use of the Heisenberg picture to
derive the quantum regression theorems for multi-time correlation functions, which in the special limit reduce to
the well-known two-time regression theorem. For the multi-time correlation function we find that the regression
theorem takes the same form as it takes for the two-time correlation function with a mild restriction that one of
the times should be greater than all other time variables. Interestingly, the Heisenberg picture also allows us to
derive an analog of regression theorem for out-of-time-ordered correlators. We further extend our study for the
case of non-Markovian dynamics and report the modifications to the standard quantum regression theorem. We
illustrate all of the above results using the paradigmatic dissipative spin-boson model.
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I. INTRODUCTION

Correlation functions are important dynamical quantities
which are often related to experimentally measurable quan-
tities. In the context of an open quantum system [1–5] with
the system of interest following a Markovian dynamics, the
quantum regression theorem (QRT) [1,2,5,6] turns out to be
one of the most useful and practical tools to compute the
correlation functions [2]. The QRT states that the knowl-
edge of time evolution of a single-point function is sufficient
to determine the time evolution of two-point or multi-point
correlation functions. More explicitly, the validity of QRT
requires that there exists a complete set of system operators
Aμ, μ = 1, 2, . . . such that

d

dt
〈Aμ(t )〉 =

∑
λ

Mμλ〈Aλ(t )〉. (1)

Then the QRT for the two- and three-point function reads as

d

dτ
〈O(t )Aμ(t + τ )〉=

∑
λ

Mμλ〈O(t )Aλ(t + τ )〉,

d

dτ
〈O1(t )Aμ(t + τ )O2(t )〉=

∑
λ

Mμλ〈O1(t )Aλ(t + τ )O2(t )〉,

d

dτ
〈Aμ(t + τ )O1(t )O3(t )〉=

∑
λ

Mμλ〈Aλ(t + τ )O1(t )O3(t )〉.

(2)
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Interestingly, it is easy to generalize the QRT in Eq. (2) for
arbitrary N-point correlation functions of the form

〈A1(t )A2(t + τ )A3(t ) · · · An(t )〉, (3)

where the position of the operator with the argument t + τ

can be arbitrary. Note that the above QRTs are given for
multi-point correlation functions which are dependent on two
times t and τ . Recently there has been a lot of research activity
to understand systems that follow non-Markovian dynamics
[7–12], and an attempt has been made to show violation of
the regression theorem for such systems [6,8,13–18]. In spite
of its great importance and interest, there has been a lack of
systematic derivation of the regression-type theorem for cases
beyond the two-time correlation function and its extension for
non-Markovian systems. In general, the regression theorem
may not hold for general time configurations such as

〈A(t1)B(t2)C(t3)〉, (4)

or more generally,

〈A1(t1)A2(t2) · · · An(tn)〉. (5)

Here we would like to understand if there exist QRT type
relations for such a class of correlation functions, including
the out-of-time-ordered correlators (OTOCs),1 which are a
special class of correlation functions [19].

In this paper we derive the regression theorem for multi-
time correlators in the Markovian limit using the Heisenberg
picture [20]. We further extend our analysis for systems fol-
lowing non-Markovian dynamics. The paper is organized as
follows: In Sec. II we first start with deriving the QRT for

1OTOC is defined as 〈O1(t1)O2(t2)O3(t1)O4(t2)〉. Even though it’s
a two-time correlator, its form is significantly different from Eq. (3).
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two-point functions and then extend our analysis to three,
four, and further generalize to N-point functions with general
time arrangements. We also point out for what special time
arrangements the QRT may not hold. In Sec. III we derive a re-
gressionlike expression for the OTOC. In Sec. IV we illustrate
all these above findings for a paradigmatic dissipative spin-
boson model. In Sec. V we give a systematic derivation of the
equation similar to the QRT for non-Markovian systems. We
skip most of the lengthy derivations to the Appendix to keep
the discussion in the main text transparent.

II. QRT USING THE HEISENBERG PICTURE

In this section we derive QRT for multi-time correlation
functions. We make extensive use of the Heisenberg picture
formulation for open quantum systems, recently described in
[20], and for completeness we also review this formalism
in Appendix A and further discuss the Markovian limit in
Appendix A 2. Our first aim here is to derive the well-known
forms of QRTs for two-point and special three-point func-
tions, as discussed in the Introduction, using the Heisenberg
picture. We then aim for generalizing the QRT for more
generic N-point correlation functions defined with multi-time
arguments. We also discuss the limitations of the QRT in
the Markovian limit and also generalize our study to non-
Markovian systems.

Let us start by writing the Hamiltonian of the total sys-
tem H = HS + HR + λHSR, where HS is the Hamiltonian of
the system of interest, HR represents the Hamiltonian for the
reservoir (bath), and HSR is the coupling Hamiltonian between
the system and the reservoir. We keep the parameter λ to
keep track of the order of the perturbation with respect to
the system-bath interaction. We also make the standard choice
for the initial condition of the total density operator at t = 0
by considering a product initial state between the system and
the reservoir and write ρSR(t = 0) = ρS ⊗ ρR. The interaction
between the system and the reservoir is turned on at t = 0+.
Since in the Heisenberg picture the operators evolve in time, it
is important to define the reduced system operators. The one-
point reduced operator is defined as OS (t ) = TrR[O(t )ρR],
where the operator O(t ) evolves unitarily with respect to the
full Hamiltonian H . The expectation value of the operator O
at time t then can be written as

〈O(t )〉 = TrS[TrR[O(t )ρR]ρS] = TrS[OS (t )ρS]. (6)

In a similar manner, one can define the arbitrary N-point
reduced operator as

[O1(t1)O2(t2)....ON (tN )]S =
TrR[O1(t1)O2(t2)....ON (tN )ρR]. (7)

This definition of reduced operator has a property that
[O1(t1)O2(t2) · · · ON (tN )]S �= O1S (t1)O2S (t2) · · · ON (tN ) as a
result of finite system-bath coupling.

To derive the QRT in the Heisenberg picture, we write an
equation analogous to Eq. (1) in the Heisenberg picture by
assuming that there exists a complete set of reduced system

operators AμS (t ) that satisfies2 the following relation:

d

dt
AμS (t ) =

∑
λ

MμλAλS (t ). (8)

The above equation implies that the operators form a closed
set between themselves.

A. QRT for two-point correlation functions

To keep our discussion simple, we first focus on deriving
the QRT for two-point correlation functions. Following the
definition in (7) for two-point reduced operators, one can write
[20] (please see Appendix A for details of the derivation)

[O1(t1)O2(t2)]S = O1S (t1)O2S (t2) + I[O1S (t1), O2S (t2)], (9)

where O1S (t1), O2S (t2) are reduced one-point operators and
I[O1S (t1), O2S (t2)] is called the irreducible part capturing the
information about coupled system-bath dynamics.3

One can explicitly calculate the quantity I up to the second
order of the system-bath coupling (λ2) in both Markovian
and non-Markovian limits. Given the above expression, the
two-point correlation functions can be easily computed by
performing an additional trace over the initial system density
operator, i.e.,

〈O1(t1)O2(t2)〉 = TrS[(O1(t1)O2(t2))SρS (0)]. (10)

To derive the QRT, we set O2 = Aμ, O1 = O, and consider
t2 > t1. Now taking derivative with respect to t2 in Eq. (9), the
first term of the right-hand side immediately gives a QRT-like
expression,

d

dt2
[OS (t1)AμS (t2)] =

∑
λ

Mμλ[OS (t1)AλS (t2)], (11)

thanks to Eq. (8). Interestingly, one can now show that
for t2 > t1 and in the Markovian limit, the irreducible part
I[OS (t1), AμS (t2)] also satisfies a regressionlike expression,
given as [please see Eq. (B1)]

d

dt2
I[OS (t1), AμS (t2)] =

∑
λ

MμλI[OS (t1), AλS (t2)]. (12)

As a result of the above two equations, we receive the QRT
for arbitrary two-point system operators as

d

dt2
[O(t1)Aμ(t2)]S =

∑
λ

Mμλ[O(t1)Aλ(t2)]S, (13)

from which we trivially receive the standard QRT in terms of
correlation functions,

d

dt2
〈O(t1)Aμ(t2)〉 =

∑
λ

Mμλ〈O(t1)Aλ(t2)〉, (14)

which matches with (2). Furthermore, in the expression of
I[OS (t1), AμS (t2)], it can be shown that [see Eqs. (A16) and

2In one of the examples discussed later, we explicitly construct
operator Aμ.

3See Eq. (A16) and Eqs. (A25)–(A27) in Appendix A 2 for details.
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(A25)–(A27)] if we swap the position of OS (t1) and AμS (t2),
Eq. (12) still is respected, i.e.,

d

dt2
I[AμS (t2), OS (t1)] =

∑
λ

MμλI[AλS (t2), OS (t1)], (15)

and as a result we receive another form of QRT as

d

dt2
〈Aμ(t2)O(t1)〉 =

∑
λ

Mμλ〈Aλ(t2)O(t1)〉. (16)

It is important to note that if we consider the other time
sequence, i.e., if t2 < t1, and take the derivative with respect

to t2, what we receive does not obey the standard QRT. This is
what one also receives by working in the Schrödinger picture.
We next discuss the generalization of our analysis for higher-
point and multi-time correlators.

B. QRT for three-point, multi-time correlation functions

Following similar steps as before, we can define the three-
point multi-time reduced operators, which up to the second
order of the system-bath coupling (λ2 order) is given as [20]

[O1(t1)O2(t2)O3(t3)]S = O1S (t1)O2S (t2)O3S (t3) + W1,2,3{O1S (t1)I[O2S (t2), O3S (t3)]}
+ W1,2,3{I[O1S (t1), O2S (t2)]O3S (t3)} + W1,2,3{I[O1S (t1), O3S (t3)]O2S (t2)}, (17)

where the operator W1,2,3 ensures that the operator product
is ordered such that O1S comes before O2S , and O2S comes
before O3S (please see Appendix A 1 b for more details). The
three-point multi-time correlation functions can be computed
as

〈O1(t1)O2(t2)O3(t3)〉=TrS [[O1(t1)O2(t2)O3(t3)]SρS (0)].
(18)

Now once again, to derive the QRT we first set O3 = Aμ

and assume ti < t3 with i = 1, 2. Taking the derivative of
Eq. (17) with respect to t3, the first term of the right-hand side
gives

d

dt3
[O1S (t1)O2S (t2)AμS (t3)]

=
∑

λ

Mμλ[O1S (t1)O2S (t2)AλS (t3)], (19)

where we have used Eq. (8). One can then show that [please
see Eq. (B8) of Appendix B 2] for the time sequence ti < t3
with i = 1, 2 and invoking the Markovian limit, the second
term of the right-hand side of Eq. (17) satisfies the equation

d

dt3
W1,2,3{O1S (t1)I[O2S (t2), AμS (t3)]}

=
∑

λ

MμλW1,2,3{O1S (t1)I[O2S (t2), AλS (t3)]}. (20)

Interestingly, the third and the fourth term also follow iden-
tical equations such as the above. Finally, summing up all
these contributions, we receive a multi-time QRT-like form
involving the reduced system operators:

d

dt3
[O1(t1)O2(t2)Aμ(t3)]S

=
∑

λ

Mμλ[O1(t1)O2(t2)Aλ(t3)]S, (21)

from which we trivially receive the QRT for the three-point
correlation functions as

d

dt3
〈O1(t1)O2(t2)Aμ(t3)〉 =

∑
λ

Mμλ〈O1(t1)O2(t2)Aλ(t3)〉.

(22)

Interestingly, if we swap the position of O2(t2) and Aμ(t3), one
can obtain a similar QRT. Equation (22) is the regression the-
orem for three-point correlation functions that involve three
different times t1, t2, and t3. The above QRT in (22) reduces to
the following standard result [Eq. (2)] if we swap the position
of O2(t2) and Aμ(t3) and set t1 = t2,

d

dt3
〈O1(t1)Aμ(t3)O2(t1)〉 =

∑
λ

Mμλ〈O1(t1)Aλ(t3)O2(t1)〉.

(23)

Note that the QRT in our case holds irrespective of the position
of Aμ(t3). However, in Eq. (22), if we take derivative with
respect to t1 or t2 instead of t3 (maximum time), interestingly,
we do not receive a QRT-like relation.

C. QRT for four-point and general N-point, multi-time
correlation functions

Following almost similar steps as before, one can work out
the regression theorem for multi-time four-point correlation
functions, and in fact, it is possible to generalize this analysis
for N-point functions as well. Here we present the central
results (see Appendix B 3 for more details). For four-point,
multi-time correlation functions we receive a QRT in the
Markovian limit,

d

dt4
〈O1(t1)O2(t2)O3(t3)Aμ(t4)〉

=
∑

λ

Mμλ〈O1(t1)O2(t2)O3(t3)Aλ(t4)〉. (24)

Let us emphasize that (24) holds as long as t4 > ti with i =
1, 2, 3. Also note that (24) holds irrespective of the position of
Aμ(t4), as was observed for the QRT for three-point functions.
This entire analysis can be generalized to N-point multi-time
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correlation functions as

d

dtN
〈O1(t1)O2(t2)......ON−1(tN−1)Aμ(tN )〉

=
∑

λ

Mμλ〈O1(t1)O2(t2)......ON−1(tN−1)Aλ(tN )〉, (25)

where ti < tN and i = 1, 2, .....N − 1. Once again, the opera-
tor Aμ(tN ) can take any place, and if we take derivative with
respect to tk instead of the highest time tN , then we do not
receive the regression-type formula.

III. QRT FOR OUT-OF-TIME-ORDERED CORRELATORS

As an application of the developed formalism, we now ex-
tend our analysis to compute the OTOC, which is an excellent
measure of quantum chaos, many-body localization, informa-
tion scrambling, etc. [21–28]. OTOC has received significant
attention in recent times, with its applicability ranging from
quantum information theory to condensed matter physics to
quantum gravity. Very recently, OTOC has found its applica-
tion in the context of open quantum systems, as the coupling
of the system with a dissipative or dephasing bath naturally
leads to information scrambling [22,29]. Motivated by this,
in this section we derive the QRT-like formula for OTOC
correlators in the Markovian limit. Details of the derivation
are provided in Appendix C. Here we present the main result.
Let us first define the four-point reduced operator of the form

[O1(t1)Aμ(t2)O3(t1)Aν (t2)]S, (26)

where the system reduced operator AμS (t2) satisfies Eq. (8).
One can then receive the following regressionlike formula for
the OTOC,

d

dt2
〈O1(t1)Aμ(t2)O3(t1)Aν (t2)〉

=
∑

λ

Mμλ〈O1(t1)Aλ(t2)O3(t1)Aν (t2)〉

+
∑
λ′

Mνλ′ 〈O1(t1)Aμ(t2)O3(t1)Aλ′ (t2)〉

+ 〈W1,2,3,4{O1S (t1)F [AμS (t2), AνS (t2)]O3S (t1)}〉, (27)

where we assume that t2 > t1. Interestingly, the expression
in Eq. (27) is almost identical to the regression theorem,
except for the last term. As before, W1,2,3,4 ensures the time
ordering of the operators. The explicit form of the operator
F [AμS (t2), AνS (t2)] is given in Appendix C [Eq. (C5)]. In
Ref. [19], a regressionlike formula for OTOC in the Marko-
vian limit was recently derived using a different approach.
Equations (25) and (27) are the central results of our paper.

IV. EXAMPLE: DISSIPATIVE SPIN-BOSON MODEL

In this section we illustrate the above-derived results for
the paradigmatic dissipative spin-boson model by calculating
various correlation functions in the Heisenberg picture. In
particular, we verify the QRTs for two-, three-, and four-point
correlators. In order to perform these calculations, we first
derive the master equation for the reduced one-point operator
and then proceed to calculate multi-time, multi-point correla-
tion functions. The details of the derivations are provided in
Appendix D.

The Hamiltonian for a dissipative spin-1/2 system, coupled
to a bath consisting of an infinite collection of harmonic oscil-
lators with different normal-mode frequencies, can be written
as

H = HS + HR + HSR

= ω0

2
σz +

∑
k

ωkb†
kbk +

∑
k

αk (b†
kσ− + bkσ+), (28)

where ω0 is the frequency of the qubit. The bath is char-
acterized by the eigenmode frequency ωk referring to the
kth oscillator, with bk (b†

k ) the corresponding annihilation
(creation) operator. The last term in the above Hamiltonian
represents the standard dissipative coupling term between the
spin-1/2 system and the harmonic bath, with αk being the
coupling strength between the kth mode and the qubit. For
simplicity, we always work in the zero-temperature limit (T =
0). We first derive the master equation correct up to the second
order of the system-bath coupling and further make a secular
approximation [1]. One can show that the reduced one-point
operator obeys the following equation at zero temperature
(T = 0):

d

dt
OS (t ) = i

ω′
0

2
[σz, OS (t )] + γ

2
[2σ+OS (t )σ− − σ+σ−OS (t ) − OS (t )σ+σ−], (29)

where ω′
0 = ω0 + 
 is the renormalized frequency of the

qubit due to the coupling with the environment with


 = P
∫ ∞

0

g(ω′)|α(ω′)|2dω′

ω0 − ω′ , (30)

where P refers to the principal value of the integral. Here g(ω)
represents the density of states of the bath oscillators, and γ =
2πg(ω0)|α(ω0)|2 represents the decay rate.

Using the above master equation for the operator, it is easy
to show that

d

dt

⎡
⎣σxS

σyS

σzS

⎤
⎦ =

⎡
⎣− γ

2 −ω′
0 0

ω′
0 − γ

2 0
0 0 −γ

⎤
⎦

⎡
⎣σxS

σyS

σzS

⎤
⎦ − γ

⎡
⎣02×2

02×2

I2×2

⎤
⎦,

(31)

where 02×2 and I2×2 are the 2 × 2 null matrix and the identity
matrix, respectively. It is therefore easy to see that for this
model there exist two different sets of closed operators that
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follow Eq. (8). These are given as

Aμ = {σz, I2×2}, Mμλ =
[−γ −γ

0 0

]

Aν = {σx, σy}, M ′
νλ′ =

[− γ

2 −ω′
0

ω′
0 − γ

2

]
. (32)

With this in hand, we are now ready to asses the validity of
QRT results that we derived in the previous section.

A. Two-point correlation function

Let us first verify the regression theorem for a two-point
reduced operator (13) for this model. The spin-boson Hamilto-
nian in Eq. (28) can alternatively be expressed in the following
form:

H = ω0

2
σz+

∑
k

ωkb†
kbk

+
∑

k

αk

(
bk + b†

k

2
σx + i

b†
k − bk

2
(−σy)

)
. (33)

By comparing the last term of Eq. (33) with HSR = ∑
i Si ⊗ Ri

we can identify the following system operators:

S1 = σx and S2 = −σy. (34)

Now, in the interaction picture with respect to HS , the system
operators are written as S̃i(t ) = ∑

ω Si
ωeiωt , and one can easily

show that

S1
ω0

= σ−, S1
−ω0

= σ+ and

S2
ω0

= −i σ−, S2
−ω0

= i σ+. (35)

Note that in the above expression ω takes two possible val-
ues ±ω0. We are interested here to validate the regression

theorem for correlation functions of the type (σx(t1)σx(t2))

and (σx(t1)σy(t2)) for t2 > t1. We therefore now proceed and

calculate the corresponding irreducible components follow-
ing Eqs. (A25) and (A26). By putting O1S = O2S = σxS in
Eq. (A25) and taking the secular approximation (please see
Appendix A 3), we receive

I1[σxS (t1), σxS (t2)]=−t1
∑

ω

∑
i, j

σxS (t1)Si
ωσxS (t2)S j

−ωβ
i j
1 (−ω).

(36)

Using the above equation, we can easily show that the
I1[σxS (t1), σxS (t2)] term is zero. However, if we put O1S =
O2S = σxS in Eq. (A26) and take the secular approximation,
we receive

I2[σxS (t1), σxS (t2)] = γ t1[σ+σxS (t1)σxS (t2)σ−]

= γ t1eiω′
0(t2−t1 )

[
1 0
0 0

]
, (37)

I3[σxS (t1), σxS (t2)] = γ t1[σxS (t1)σ+σ−σxS (t2)]

= γ t1eiω′
0(t2−t1 )

[
0 0
0 1

]
. (38)

Similarly, we calculate I4[σxS (t1), σxS (t2)] but it vanishes, i.e.,

I4[σxS (t1), σxS (t2)] = I1[σxS (t1), σxS (t2)] =
[

0 0
0 0

]
. (39)

Using Eq. (A16) we get

I[σxS (t1), σxS (t2)] = γ t1eiω′
0(t2−t1 )

[
1 0
0 1

]
. (40)

By putting O1S = σxS , O2S = σyS in Eqs. (A25), (A26) and
performing the identical steps, we receive

I[σxS (t1), σyS (t2)] = −iγ t1eiω′
0(t2−t1 )

[
1 0
0 1

]
. (41)

With the full irreducible components in hand for the two
different correlators, we now use Eq. (9) to compute the fol-
lowing two-point reduced operators, given as

(σx(t1)σx(t2))S =
⎡
⎣

[
1 − γ

2 (t2 − t1)
]

e−iω′
0(t2−t1 ) + 2iγ t1 sin ω′

0(t2 − t1) 0

0
[
1 − γ

2 (t2 − t1)
]

eiω′
0(t2−t1 )

⎤
⎦, (42)

(σx(t1)σy(t2))S =
⎡
⎣i

[
1 − γ

2 (t2 − t1)
]

e−iω′
0(t2−t1 ) − 2iγ t1 cos ω′

0(t2 − t1) 0

0 −i
[
1 − γ

2 (t2 − t1)
]

eiω′
0(t2−t1 )

⎤
⎦. (43)

To verify the QRT, let us first set O1 = σx, Aμ = {σx, σy}
in Eq. (13). Now, using Eqs. (42) and (43), we explicitly
calculate the left-hand side and right-hand side of Eq. (13)
by taking the derivative with respect to the maximum time t2.
We find that they are equal, which verifies Eq. (13). As an
immediate consequence, we conclude that the QRT follows
for two-point correlation functions Eq. (14) for the arbitrary
initial density matrix for the system.

B. Three-point, multi-time correlation function

We next move to verify the QRT for the three-point
reduced operator as given in Eq. (21). We first set O1 =
O2 = σx, Aμ = {σx, σy} in Eq. (21) and assume t1 < t2 < t3.
Using Eq. (17), we calculate the following three-point re-
duced operators (please see the details of the calculation in
Appendix D),
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(σx(t1)σx(t2)σx(t3))S =

⎡
⎢⎢⎣

0
[
1 − 1

2γ (t1 + t3 − t2)
]

eiω′
0(t1+t3−t2 )[

1 − 1
2γ (−t1 + t2 + t3)

]
e−iω′

0(t1+t3−t2 )

+γ (t2 − t1)eiω′
0(−t1−t2+t3 ) 0

⎤
⎥⎥⎦ (44)

and

(σx(t1)σx(t2)σy(t3))S =

⎡
⎢⎢⎣

0 −i
[
1 − 1

2γ (t1 + t3 − t2)
]
eiω′

0(t1+t3−t2 )

i
[
1 − 1

2γ (−t1 + t2 + t3)
]
e−iω′

0(t1+t3−t2 )

−iγ (t2 − t1)eiω′
0(−t1−t2+t3 ) 0

⎤
⎥⎥⎦. (45)

Now using Eqs. (44) and (45), we explicitly calculate the
left-hand side and right-hand side of Eq. (21). We find that
they are equal, which verifies Eq. (21). Note that we choose
a particular order of time, but we can show Eq. (21) holds as
long as ti < t3 with i = 1, 2. There are no constraints on the
order of (t1, t2).

C. Verification of OTOC

We next provide one example to asses the validity of our
expression for OTOC. For the spin-boson model, it is easy to
compute the following four-point reduced operator and one

receives

d

dt2
[σx(t1)σz(t2)σx(t1)σz(t2)]S = 2γ

[
1 0
0 1

]
. (46)

It is easy to check that the corresponding right-hand side of
the OTOC also gives the same result. In a similar way, OTOC
can be checked for

d

dt2
[σz(t1)σz(t2)σz(t1)σz(t2)]S = −8γ

[
1 0
0 0

]
. (47)

V. GENERALIZATION OF QRT FOR THE NON-MARKOVIAN CASE

The results for QRT presented in the previous sections can be extended for the non-Markovian case. For simplicity, we here
focus on systems with bosonic bath and linear system-bath interaction, but one can generalize this study for a more generic type
of system-bath interaction as well. We derive a Lindblad-type equation up to order λ2 for this setup which takes into account
the non-Markovian evolution. We then derive the correction to the QRT for the non-Markovian case by focusing only on the
two-point correlation functions [14]. Extension to higher-point multi-time correlators can be similarly obtained, even for the
non-Markovian case.

A. Lindblad-type non-Markovian equation for one-point reduced operator

Let the Hamiltonian of the composite system be

H = HS + HR + HSR = HS +
∑

k

ωkb†
kbk +

∑
k

αk (Lb†
k + L†bk ). (48)

Here, the system is coupled with the bath through a generic system operator L. Let us assume that the initial density operator
of the total system can be written as ρSR(0) = ρS ⊗ ρR. Now, following the master equation in the Heisenberg picture [please see
Eq. (A10)], one can show that the reduced density operator for the system obeys the following non-Markovian master equation at
zero temperature (T = 0) and is correct up to the second order of system-bath coupling,

d

dt
OS (t ) = i[HS, OS (t )] +

∫ t

0
dτ α(τ )[L†(0), OS (t )]L̃(−τ ) +

∫ t

0
dτ α∗(τ )L̃†(−τ )[OS (t ), L(0)], (49)

where L̃(t ) = U0(t )LU †
0 (t ) is the coupled system operator in the interaction picture with U0(t ) representing the free evolution

due to the Hamiltonian HS . α(τ ) denotes the bath correlation function, which is given as

α(τ ) =
∑

k

|αk|2 TrR[b̃k (0)b̃†
k (−τ )ρR] =

∑
k

|αk|2e−iωkτ . (50)

B. Extension of QRT to non-Markovian case

Having obtained the non-Markovian master equation in the Heisenberg picture, we now extend the QRT for the non-
Markovian dynamics. To achieve that let us first assume that there exists a complete set of system operators AμS (t ) such that

d

dt
AμS (t ) =

∑
λ

Mμλ(t ) AλS (t ). (51)
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Note the crucial explicit time dependence in Mμλ(t ) for the non-Markovian case, which is typically time independent for the
case of Markovian dynamics. Using the above results, it is easy to generalize QRT for the non-Markovian case, and it is given
by (see Appendix E for derivation)

d

dt2
[O(t1)Aμ(t2)]S =

∑
λ

Mμλ(t2)[O(t1)Aλ(t2)]S

−
∫ t1

0
dτ1 α(t2 − τ1) OS (t1)L̃†(−τ1)AμS (t2)L̃(−t2)

−
∫ t1

0
dτ1 α(t2 − τ1) L̃†(−τ1)OS (t1)L̃(−t2)AμS (t2)

+
∫ t1

0
dτ1 α(t2 − τ1) L̃†(−τ1)OS (t1)AμS (t2)L̃(−t2)

+
∫ t1

0
dτ1 α(t2 − τ1) OS (t1)L̃†(−τ1)L̃(−t2)AμS (t2), (52)

where we have assumed t2 > t1 and that the operator AμS follows Eq. (51). The above equation is the extension of QRT to the
non-Markovian dynamics. In the Markovian limit Eq. (52) correctly reproduces the QRT, as given in Eq. (11). To illustrate, in
the Markovian limit, the system timescale is much larger than the bath characteristic timescale τB, that is t2 − τ1 	 τB, and the
bath correlation function α(t2 − τ1) vanishes beyond τB in (52). So in the Markovian limit, all the integrals in Eq. (52) vanish,
thus reproducing the standard QRT (11) for the two-point function.

C. Example: Dissipative spin-boson model

To illustrate the above result, we once again focus on the dissipative spin-boson model as defined in Eq. (28). Following the
non-Markovian master equation in Eq. (49), we receive

d

dt
OS (t ) = i

ω0

2
[σz, OS (t )] + λ2

∫ t

0
dτα(τ )[σ+, OS (t )]σ−eiω0τ + λ2

∫ t

0
dτα∗(τ )σ+[OS (t ), σ−]e−iω0τ . (53)

It is easy to check that in the Markovian limit the above equation reduces to Eq. (29). We now consider OS = σxS in Eq. (53),
which gives us the following solution:

σxS (t ) =
⎡
⎣ 0

(
1 − λ2

∫ t
0 dτγ (τ )

)
ei

∫ t
0 dτω′

0(τ )(
1 − λ2

∫ t
0 dτγ (τ )

)
e−i

∫ t
0 dτω′

0(τ ) 0

⎤
⎦, (54)

where

ω′
0(t ) = ω0 + λ2Im[R(t )],

γ (t ) = Re[R(t )],

R(t ) =
∫ t

0
dτα(τ )eiω0τ . (55)

Using Eq. (E2), we then calculate all four irreducible terms Ii, and using them we find the following two-point reduced operator:

(σx(t1)σx(t2))S =
[

M(t1, t2) 0
0 M∗(t1, t2)

]
+ η(t1, t2)N (t1, t2)

[
1 0
0 1

]
, (56)

where

M(t1, t2) =
(

1 − λ2
∫ t1

0
dt ′

1γ (t ′
1) − λ2

∫ t2

0
dt ′

2γ (t ′
2)

)
N (t1, t2),

N (t1, t2) = ei
∫ t1

0 dt ′
1ω

′
0(t ′

1 ) e−i
∫ t2

0 dt ′
2ω

′
0(t ′

2 ),

η(t1, t2) = λ2
∫ t2

0
dτ2

∫ t1

0
dτ1α(τ2 − τ1)eiω0(τ2−τ1 ). (57)

If we now take the derivative of Eq. (56) with respect to t2, we do not receive the standard QRT derived in Eq. (13); rather, we
receive the extended QRT derived in Eq. (52). In the Markovian limit, the bath correlation function α(τ ) decays very fast with
time, and Eq. (56) reduces to Eq. (42). Also in the Markovian limit, the extended QRT reduces to the standard QRT.
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VI. DISCUSSION

While defining the multi-time correlation function, it is
natural to work in the Heisenberg picture. Even though the
multi-time correlation function is of great physical impor-
tance, the Heisenberg picture has not received much attention
in the context of quantum open systems. In this paper we make
use of the recently developed Heisenberg picture technique
[20] to calculate correlation functions in the Markovian limit
and derive the quantum regression theorem. In particular, we
generalize the regression theorem for multi-time correlation
functions with general time arguments. What we observe is
that the form of the regression theorem remains the same
for two or multi-time correlation functions as long as the
following mild restriction on the time arrangements is met,
ti < tN with i = 1, 2, .....N − 1. We also extend our approach
to compute out-of-time-ordered correlators in the Markovian
limit and find that regression theorem gets a modification from
the known two-time regression theorem. We further extend
our study to the non-Markovian dynamics. However, in this
case the QRT receives a complicated correction term with the
two-point correlation function requiring information about the
four-point function. As a possible future direction, an interest-
ing topic would be to use the Heisenberg picture [20] and go
beyond the standard second-order perturbation scheme. For
example, one can consider exactly solvable systems such as
the spin-boson dephasing model or the well-known Caldeira-
Leggett model and investigate the possibility to sum up the
perturbation series exactly in the Heisenberg picture.
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APPENDIX A: REVIEW OF HEISENBERG
PICTURE DYNAMICS

For completeness, in this Appendix we briefly review the
Heisenberg picture results in [20]. We follow the same no-
tation and convention as is used in [20]. Let us consider the
Hamiltonian of the total system is given by H = HS + HR +
λ HSR, where we have introduced an extra parameter λ to keep
track of the order of perturbation in terms of system-bath cou-
pling. We assume that the interaction between system and bath
is turned on at t = 0. Before turning on the interaction, the
system and bath were decoupled and their total density matrix
can be written as ρSR = ρS ⊗ ρR. In the Heisenberg picture,
the density matrix is time independent. The expectation value
of any operator can be written as

〈O(t )〉 = TrS[TrR[O(t )ρR]ρS] = TrS[OS (t )ρS], (A1)

where the reduced one-point operator is defined as OS (t ) =
TrR[O(t )ρR]. Similarly, we can define the N-point reduced

operator as

[O1(t1)O2(t2)....ON (tN )]S

= TrR[O1(t1)O2(t2)....ON (tN )ρR]. (A2)

This definition has a property that [O1(t1)O2(t2)]S �=
O1S (t1)O2S (t2). However, we can express the reduced N-point
operator in terms of one-point reduced operators using what
are called image operators [20]. The image operator of any
operator O(t ) is defined as

Oαβ (t ) = T †
α O(t )Tβ, (A3)

with Tα = ∑
i |iα〉 〈i|, where {|i〉} is an orthonormal basis of

HS and {|α〉} is an orthonormal basis of HR. It is easy to see
that ∑

α

TαT †
α = I, (A4)

where I is the identity operator. One can show that the N-point
image operators can be written in terms of one-point image
operators as

[O1(t1)O2(t2)....ON (tN )]αβ

=
∑

γ1,..,γN−1

O1αγ1 (t1)O2γ1γ2 (t2)....ONγN−1β (tN ). (A5)

The N-point reduced operators defined in (A2) can also be
expressed in terms of one-point image operators by inserting
(A4) and using (A5) as follows:4

[O1(t1)O2(t2)....ON (tN )]S

=
∑

α,β,γ1,..,γN−1

O1αγ1 (t1)O2γ1γ2 (t2)....ONγN−1β (tN )ρRβα.

(A6)

We next consider a general form of the interaction Hamilto-
nian between system and bath and write

HSR =
∑

i

Si ⊗ Ri, (A7)

where Si is a Hermitian operator acting on the system’s Hilbert
space, and Ri is a Hermitian operator in the bath’s Hilbert
space. The corresponding image operators of HSR are [using
Eq. (A3)]

HSRαγ =
∑

i

SiRi
αγ , (A8)

where Ri
αγ is the α, γ th element of Ri (|α〉, |γ 〉 are the

eigenstates of bath Hamiltonian HR). We define the interaction
picture operators H̃SRαγ (t ) as

H̃SRαγ (t ) =
∑

i

S̃i(t )R̃i
αγ (t ), (A9)

where S̃i(t ) = U0(t )SiU †
0 (t ) = ∑

ω Si
ωeiωt , and R̃i

αγ (t ) =
Ri

αγ e−i(Eα−Eγ )t ; here U0(t ) = e−iHSt , and Eα , Eγ are the

4We can explicitly express the one-point image operator in terms of
the one-point reduced operator [20].
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eigenvalues of bath Hamiltonian HR. Then the exact equation (written to all orders in λ) that satisfies the reduced one-point
system operator OS (t ) is [20]

d

dt
OS (t ) = i[HS, OS (t )] +

∞∑
n=1

∞∑
k=0

∞∑
n1,n2,..nk=1

(−1)kλn+n1+···+nk Dt P
n
s Pn1

s . . . Pnk
s OS (t ), (A10)

where the superoperator Dt Pn
s is defined as

Dt P
n
s A(t ) =

n∑
r=0

∑
α,β,γ

in−2rU †
0 (t )

d

dt

[
U0(t )K (n−r)†

γα (t )U †
0 (t )

]
U0(t )A(t )Kr

γ β (t )ρBβα

+
n∑

r=0

∑
α,β,γ

in−2rK (n−r)†
γα (t )A(t )U †

0 (t )
d

dt

[
U0(t )Kr

γ β (t )U †
0 (t )

]
U0(t )ρBβα, (A11)

where

Kr
αβ (t ) = ei(Eα−Eβ )tU †

0 (t )K̃r
αβ (t )U0(t ),

K̃n
αβ (t ) =

∑
γ1,..,γn−1

∫ t

0
dt1....

∫ tn−1

0
dtnH̃SRαγ1 (t1)....H̃SRγn−1β (tn) (A12)

with

K̃0
αβ (t ) = δαβ. (A13)

1. Correlation function in the Heisenberg picture

a. Expression for two-point reduced operators

We now compute the two-point reduced operator in the Heisenberg picture, which can be written as [20]

[O1(t1)O2(t2)]S = O1S (t1)O2S (t2) + I[O1S (t1), O2S (t2)], (A14)

where I[O1S (t1), O2S (t2)] is the irreducible part.5 This irreducible part can be expressed up to λ2 order, following Eq. (A6), as

I[O1S (t1), O2S (t2)]

=
∑

n1
0,l

1
0 ,n2

0,l
2
0

∑
α,β,γ ,γ0,γ

′
0

(
(−iλ)n1

0 K
n1

0
γ0α (t1)

)†
O1S (t1)

(
(−iλ)l1

0 K
l1
0

γ0γ (t1)
)(

(−iλ)n2
0 K

n2
0

γ ′
0γ

(t2)
)†

O2S (t2)
(
(−iλ)l2

0 K
l2
0

γ ′
0β

(t2)
)
ρRβα, (A15)

such that n1
0 + l1

0 = 1 and n2
0 + l2

0 = 1, so these are the following four possible combinations:

(1) n1
0 = 0, l1

0 = 1 and n2
0 = 0, l2

0 = 1

(2) n1
0 = 1, l1

0 = 0 and n2
0 = 0, l2

0 = 1

(3) n1
0 = 0, l1

0 = 1 and n2
0 = 1, l2

0 = 0

(4) n1
0 = 1, l1

0 = 0 and n2
0 = 1, l2

0 = 0.
We can then write I as the sum over these four combinations i.e.,

I = I1 + I2 + I3 + I4. (A16)

One can write down the expressions for each Ii. For example, using (A12), (A13),(A15), we obtain

I1 = −λ2
∑
ω,ω′

∑
i, j

O1S (t1)Si
ωO2S (t2)S j

ω′

∫ t1

0
dτ1e−iωτ1

∫ t2

0
dτ2e−iω′τ2 TrR[R̃i(−τ1)R̃ j (−τ2)ρR], (A17)

where τ1 = t1 − t ′
1 and τ2 = t2 − t ′

2.
Similarly, we can show that the other contributions give, s

I2 = − λ2
∑
ω,ω′

∑
i, j

Si†
ω O1S (t1)O2S (t2)S j

ω′

∫ t1

0
dτ1eiωτ1

∫ t2

0
dτ2e−iω′τ2 TrR[R̃i(−τ1)R̃ j (−τ2)ρR],

I3 = − λ2
∑
ω,ω′

∑
i, j

O1S (t1)Si
ωO2S (t2)S j†

ω′

∫ t1

0
dτ1 e−iωτ1

∫ t2

0
dτ2eiω′τ2 TrR[R̃i(−τ1)R̃ j (−τ2)ρR],

5It can’t be expressed simply as the multiplication of two one-point reduced operators, but it’s a function of one-point reduced operator and
it starts from λ2 order.
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I4 = − λ2
∑
ω,ω′

∑
i, j

Si†
ω O1S (t1)S j†

ω′ O2S (t2)
∫ t1

0
dτ1eiωτ1

∫ t2

0
dτ2 eiω′τ2 TrR[R̃i(−τ1)R̃ j (−τ2)ρR]. (A18)

Note that all these expressions are correct up to order λ2 and are valid for arbitrary dynamics.

b. Expression for three-point reduced operator

Similarly, we can work out expressions for a three-point reduced operator up to λ2 order. We receive [20]

[O1(t1)O2(t2)O3(t3)]S = O1S (t1)O2S (t2)O3S (t3) + W1,2,3{I[O1S (t1), O2S (t2)]O3S (t3)} + W1,2,3{O1S (t1)I[O2S (t2), O3S (t3)]}
+ W1,2,3{I[O1S (t1), O3S (t3)]O2S (t2)}. (A19)

The operator W1,2,3 makes sure that the operator product is ordered such that O1S comes before O2S , and O2S comes before O3S .
Let us illustrate this by one example. Considering the last term of the above equation (A19) we get

W1,2,3{I[O1S (t1), O3S (t3)]O2S (t2)} = λ2
∑

n1
0,l

1
0 ,n2

0,l
2
0

∑
α,β,γ ,γ0,γ

′
0

(
K

n1
0

γ0α (t1)
)†

O1S (t1)Kl1
0

γ0γ (t1)O2S (t2)

× in1
0+n2

0−l1
0 −l2

0
(
K

n2
0

γ ′
0γ

(t3)
)†

O3S (t3)Kl2
0

γ ′
0β

(t3)ρRβα, (A20)

such that n1
0 + l1

0 = 1 and n2
0 + l2

0 = 1.

c. Expression for four-point reduced operators

We can now calculate the four-point function as well. The four-point reduced operator (up to λ2 order) is [20]

[O1(t1)O2(t2)O3(t3)O4(t4)]S = O1S (t1)O2S (t2)O3S (t3)O4S (t4) + W1,2,3,4{I[O1S (t1), O2S (t2)]O3S (t3)O4S (t4)}
+ W1,2,3,4{O1S (t1)I[O2S (t2), O3S (t3)]O4S (t4)} + W1,2,3,4{I[O1S (t1), O3S (t3)]O2S (t2)O4S (t4)}
+ W1,2,3,4{I[O4S (t4), O3S (t3)]O2S (t2)O1S (t1)} + W1,2,3,4{I[O1S (t1), O4S (t4)]O3S (t3)O2S (t2)}
+ W1,2,3,4{O1S (t1)I[O2S (t2), O4S (t4)]O3S (t3)}, (A21)

where functions W and I have the same property as before. For our purposes we need to calculate the explicit form of the function
I. Below we give an explicit example.

2. Results in the Markovian limit

In the Markovian limit [20] the bath correlation function, i.e., TrR[R̃(t )R̃(t − τ )ρR], is a rapidly decaying function of τ . Using
this property we can show that the general equation (A10) reduces to the well-known master equation for the reduced operator
[20],

d

dt
OS (t ) = iHSOS (t ) + (iλ)2

∑
ω,ω′

∑
i, j

Ji j (ω)
[
Si†

ω S j
ω′OS (t ) − Si†

ω OS (t )S j
ω′

] + H.c., (A22)

where Ji j (ω) is the Fourier transformation of the bath correlation functions, and Si
ω is the Fourier decomposition of S̃i(t ) and is

given as

Ji j (ω) =
∫ ∞

0
dτe−iωτ TrR[R̃i(0)R̃ j (−τ )ρR], S̃i(t ) =

∑
ω

Si
ωeiωt . (A23)

One can also simplify the expressions for the I in the Markovian limit. Let us first analyze Eq. (A17) in this limit. As
mentioned before, since in the Markovian limit the bath correlation function TrR[R̃(−τ1)R̃(−τ2)ρR] is a rapidly decaying function
of τ2 − τ1 only, this implies we can ignore the bath correlation after a characteristic timescale τB, determined by bath dynamics.
Using this fact, it becomes easy to analyze Eq. (A17).

Let us now make an important choice and assume that t2 is the maximum time, i.e., t2 > t1. One can easily perform the
calculation in the other limit as well. We now proceed and first compute the τ2 integration. Significant contribution to the
integral will come within the range |τ2 − τ1| � τB, which gives τ1 − τB � τ2 � τB + τ1. Using this fact, we can write Eq. (A17)
as

I1 = −λ2
∑
ω,ω′

∑
i, j

O1S (t1)Si
ωO2S (t2)S j

ω′

∫ t1

0
dτ1e−iωτ1

∫ τ1+τB

τ1−τB

dτ2e−iω′τ2 TrR[R̃i(−τ1)R̃ j (−τ2)ρR]

= −λ2
∑
ω,ω′

∑
i, j

O1S (t1)Si
ωO2S (t2)S j

ω′

∫ t1

0
dτ1e−iωτ1

∫ τB

−τB

dτe−iω′(τ1−τ )TrR[R̃i(0)R̃ j (τ )ρR], (A24)
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where in the last line we have used the variable τ = τ1 − τ2 to rewrite the integral. In the Markovian limit, the correlation
function decays very fast beyond τB, which implies that the integration limit in the last line of (A24) can be extended to infinity.
This gives

I1 = −λ2
∑
ω,ω′

∑
i, j

O1S (t1)Si
ωO2S (t2)S j

ω′

∫ t1

0
dτ1e−i(ω+ω′ )τ1

∫ ∞

−∞
dτeiω′τ TrR[R̃i(0)R̃ j (τ )ρR],

= −
∑
ω,ω′

∑
i, j

O1S (t1)Si
ωO2S (t2)S j

ω′α1(ω,ω′, t1)β i j
1 (ω′), (A25)

where in the last line we have defined α1 and β1 for simplicity, and their explicit expression is given below (A27). By following
the identical steps, we can find I2, I3, and I4,

I2 =
∑
ω,ω′

∑
i, j

Si†
ω O1S (t1)O2S (t2)S j

ω′ α2(ω,ω′, t1) β
i j
2 (ω′),

I3 =
∑
ω,ω′

∑
i, j

O1S (t1)Si
ωS j†

ω′ O2S (t2) α3(ω,ω′, t1) β
i j
3 (ω′),

I4 = −
∑
ω,ω′

∑
i, j

Si†
ω O1S (t1)S j†

ω′ O2S (t2) α4(ω,ω′, t1) β
i j
4 (ω′), (A26)

where

α1(ω,ω′, t1) = λ2
∫ t1

0
dτ1e−i(ω+ω′ )τ1 β

i j
1 (ω′) =

∫ ∞

−∞
dτ eiω′τ TrR[R̃i(0)R̃ j (τ )ρR]

α2(ω,ω′, t1) = λ2
∫ t1

0
dτ1ei(ω−ω′ )τ1 β

i j
3 (ω′) =

∫ ∞

−∞
dτe−iω′τ TrR[R̃i(0)R̃ j (τ )ρR]

α3(ω,ω′, t1) = λ2
∫ t1

0
dτ1e−i(ω−ω′ )τ1 β

i j
2 (ω′) = β

i j
1 (ω′)

α4(ω,ω′, t1) = λ2
∫ t1

0
dτ1ei(ω+ω′ )τ1 β

i j
4 (ω′) = β

i j
3 (ω′). (A27)

Using Eqs. (A25), (A26) we get the explicit form of the irreducible part I [Eq. (A14)] in the Markovian limit.

3. Secular approximation

We can further simplify the expression of αi’s, as defined in Eq. (A27), using the secular approximation. Let us first substitute
s1 = λ2τ1 and σ = λ2t1 in the expression of α1 defined in (A27),

α1(ω,ω′, t1) = λ2
∫ t1

0
dτ1e−i(ω+ω′ )τ1 =

∫ σ

0
ds1e−i (ω+ω′ )

λ2 s1 . (A28)

Now the Riemann-Lebesgue lemma states that if f (t ) is an integrable function in [a, b], then

lim
x→∞

∫ b

a
dteixt f (t ) = 0. (A29)

In the weak-coupling limit, i.e., in the limit λ → 0 (keeping s1 and σ finite), if we compare Eq. (A28) with the Riemann-Lebesgue
lemma (A29), we can conclude that α1 is nonzero only when (ω + ω′) = 0, i.e., α1(ω,ω′, t1) = λ2t1δω,−ω′ . Similarly, we can
show that α4(ω,ω′, t1) = α1(ω,ω′, t1) = λ2t1δω,−ω′ and α2(ω,ω′, t1) = α3(ω,ω′, t1) = λ2t1δω,ω′ . We use this Markov-secular
approximation to obtain our results for the dissipative spin-boson model, as presented in the main text.

Note that using the same Markovian-secular approximation, the quantum master equation for the one-point reduced operator
Eq. (A22) reduces to

d

dt
OS (t ) = iHSOS (t ) + (iλ)2

∑
ω

∑
i, j

Ji j (ω)
[
Si†

ω S j
ωOS (t ) − Si†

ω OS (t )S j
ω

] + H.c. (A30)

As mentioned earlier, this master equation is used to derive Eq. (29) for the dissipative spin-boson model in the main text.

APPENDIX B: SOME FURTHER DETAILS ON QRT IN THE MARKOVIAN LIMIT

In this Appendix we discuss some further details on QRT in the Markovian limit and in particular, some useful properties of
the irreducible function I as also discussed in the main text. One of the interesting properties of the function I in (A25), (A26) is
to note that its dependence on the maximum time is quite simple. This in turn helps us to obtain the quantum regression theorem.
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1. Irreducible part for two-point function

Let us first set O2 = Aμ and assume t1 < t2 in Eq. (A14). Taking the derivative of Eq. (A14) with respect to t2, the first term
of the right-hand side of Eq. (A14) trivially gives the regression-type form [using Eq. (8)]. Equations (A16), (A25)–(A27) gives
us the explicit form of the second term, i.e., the irreducible part of Eq. (A14). Notice that the t2 dependency in the irreducible
part I[OS (t1), AμS (t2)] comes from AμS (t2) only. So if we take the derivative of I with respect to t2, it simply gives

d

dt2
I[OS (t1), AμS (t2)] =

∑
λ

MμλI[OS (t1), AλS (t2)]. (B1)

In addition, in the expression of I[OS (t1), AμS (t2)] [see Eqs. (A25)–(A27)], it is easy to notice that if we swap the position of
OS (t1) and AμS (t2), Eq. (B1) still holds, i.e.,

d

dt2
I[AμS (t2), OS (t1)] =

∑
λ

MμλI[AλS (t2), OS (t1)]. (B2)

Interestingly, if we consider t2 < t1 and take derivative of Eq. (A14) with respect to t2, then we will not get the regression-type
form. The simple reason behind this in the Heisenberg picture is that in the expression of I , t2 dependency comes from both AμS

and αi’s defined in (A27). Now taking derivative with respect to t2 will give rise to complicated terms,6 i.e.,

d

dt2
〈O(t1)Aμ(t2)〉 �=

∑
λ

Mμλ〈O(t1)Aλ(t2)〉. (B3)

2. Irreducible part for three-point function

Now let us first set O3 = Aμ and assume ti < t3 with i = 1, 2 in Eq. (A19). Taking the derivative of Eq. (A19) with respect to
t3, the first term of the right-hand side gives [using Eq. (8)]

d

dt3
[O1S (t1)O2S (t2)AμS (t3)] =

∑
λ

Mμλ[O1S (t1)O2S (t2)AλS (t3)]. (B4)

Now the third term of the right-hand side of Eq. (A19) is, using Eq. (A16),

W1,2,3{O1S (t1)I[O2S (t2), AμS (t3)]} = W1,2,3{O1S (t1)(I1 + I2 + I3 + I4)}. (B5)

The first term of the right-hand side of Eq. (B5) in the Markovian limit is given by, using Eq. (A26),

W1,2,3{O1S (t1)I1[O2S (t2), AμS (t3)]} = −λ2
∑
ω,ω′

∑
i, j

O1S (t1)O2S (t2)Si
ωAμS (t3)S j

ω′ α1(ω,ω′, t2) β
i j
1 (ω′). (B6)

If we differentiate Eq. (B6) with respect to t3, we get [using Eq. (8)]

d

dt3
W1,2,3{O1S (t1)I1[O2S (t2), AμS (t3)]} =

∑
λ

MμλW1,2,3{O1S (t1)I1[O2S (t2), AλS (t3)]}, (B7)

since in the expression of W1,2,3{O1S (t1)I1[O2S (t2), AμS (t3)]}, t3 dependency comes from AμS (t3) only. Similarly, we can show
that all the other terms of Eq. (B5) follows the identical equation to (B7). This finally gives

d

dt3
W1,2,3{O1S (t1)I[O2S (t2), AμS (t3)]} =

∑
λ

MμλW1,2,3{O1S (t1)I[O2S (t2), AλS (t3)]}. (B8)

3. Irreducible part for four-point function

Set O4 = Aμ, ti < t4 with i = 1, 2, 3 in Eq. (A21), and if we take the derivative of Eq. (A21) with respect to t4 then the first
term of the right-hand side will simply give [using Eq. (8)]

d

dt4
[O1S (t1)O2S (t2)O3S (t3)AμS (t4)] =

∑
λ

Mμλ[O1S (t1)O2S (t2)O3S (t3)AλS (t4)]. (B9)

We can straightforwardly conclude that the second term will obey the following equation [using Eq. (8)]:

d

dt4
W1,2,3,4{I[O1S (t1), O2S (t2)]O3S (t3)AμS (t4)} =

∑
λ

MμλW1,2,3,4{I[O1S (t1), O2S (t2)]O3S (t3)AλS (t4)}. (B10)

6We shall see that this observation is true for the general multi-time correlation function. In the Schrödinger picture as well, we have seen
that the regression theorem holds only for derivatives with respect to the highest time.
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By giving the exactly similar argument we can show that the third and fourth term of the right-hand side of Eq. (A21) will
follow identical to the above equation. Now using Eq. (B1) we can show that the fifth term of the right-hand side of the same
equation will give

d

dt4
W1,2,3,4{I[AμS (t4), O3S (t3)]O2S (t2)O1S (t1)} =

∑
λ

MμλW1,2,3,4{I[AλS (t4), O3S (t3)]O2S (t2)O1S (t1)}, (B11)

since in the expression of I[AμS (t4), O3S (t3)], the t4 dependency comes from AμS (t4) only. By giving a similar argument, we
can show that the last two terms of Eq. (A21) will also follow the identical equation. Then, finally, we arrive at the following
equation [using Eq. (A21)]:

d

dt4
[O1(t1)O2(t2)O3(t3)Aμ(t4)]S =

∑
λ

Mμλ[O1(t1)O2(t2)O3(t3)Aλ(t4)]S. (B12)

APPENDIX C: OUT-OF-TIME-ORDERED CORRELATORS (OTOCS)

In this section we calculate the out-of-time-order correlator (OTOC). More specifically, we want to derive a regression-type
theorem for OTOC [19]. Now set t1 = t3, t2 = t4, t2 > t1, O2(t2) = Aμ(t2), and O4(t2) = Aν (t2) in Eq. (A21), and then we get

[O1(t1)Aμ(t2)O3(t1)Aν (t2)]S = O1S (t1)AμS (t2)O3S (t1)AνS (t2) + W1,2,3,4{I[O1S (t1), AμS (t2)]O3S (t1)AνS (t2)}
+ W1,2,3,4{O1S (t1)I[AμS (t2), O3S (t1)]AνS (t2)} + W1,2,3,4{I[O1S (t1), O3S (t1)]AμS (t2)AνS (t2)}
+ W1,2,3,4{I[AνS (t2), O3S (t1)]AμS (t2)O1S (t1)} + W1,2,3,4{I[O1S (t1), AνS (t2)]O3S (t1)AμS (t2)}
+ W1,2,3,4{O1S (t1)I[AμS (t2), AνS (t2)]O3S (t1)}. (C1)

Differentiate the above equation by t2, and then the first term of the right-hand side gives

d

dt2
[O1S (t1)AμS (t2)O3S (t1)AνS (t2)] =

∑
λ

Mμλ[O1S (t1)AλS (t2)O3S (t1)AνS (t2)] +
∑
λ′

Mνλ′ [O1S (t1)AμS (t2)O3S (t1)Aλ′S (t2)].

Similarly, the second term of the right-hand side gives

d

dt2
W1,2,3,4{I[O1S (t1), AμS (t2)]O3S (t1)AνS (t2)} =

∑
λ

MμλW1,2,3,4{I[O1S (t1), AλS (t2)]O3S (t1)AνS (t2)}

+
∑
λ′

Mνλ′W1,2,3,4{I[O1S (t1), AμS (t2)]O3S (t1)Aλ′S (t2)}. (C2)

All the other terms in (C1) also follow the identical equation except for the last term. The last term gives

d

dt2
W1,2,3,4{O1S (t1)I[AμS (t2), AνS (t2)]O3S (t1)} = W1,2,3,4

{
O1S (t1)

d

dt2
(I[AμS (t2), AνS (t2)])O3S (t1)

}
. (C3)

Using the expression of I ,

d

dt2
I[AμS (t2), AνS (t2)] =

∑
λ

MμλI[AλS (t2), AνS (t2)] +
∑
λ′

Mνλ′I[AμS (t2), Aλ′S (t2)] + F [AμS (t2), AνS (t2)], (C4)

where

F [AμS (t2), AνS (t2)] = − λ2
∑
ω,ω′

∑
i, j

Si†
ω AμS (t2)S j†

ω′ AνS (t2) ei(ω+ω′ )t2 β
i j
4 (ω′)

+ λ2
∑
ω,ω′

∑
i, j

Si†
ω AμS (t2)AνS (t2)S j

ω′ ei(ω−ω′ )t2 β
i j
2 (ω′) + λ2

∑
ω,ω′

∑
i, j

AμS (t2)Si
ωS j†

ω′ AνS (t2) e−i(ω−ω′ )t2 β
i j
3 (ω′)

− λ2
∑
ω,ω′

∑
i, j

AμS (t2)Si
ωAνS (t2)S j

ω′ e−i(ω+ω′ )t2 β
i j
1 (ω′), (C5)

and Eq. (C3) becomes

d

dt2
W1,2,3,4{O1S (t1)I[AμS (t2), AνS (t2)]O3S (t1)} =

∑
λ

MμλW1,2,3,4{O1S (t1)I[AλS (t2), AνS (t2)]O3S (t1)}

+
∑
λ′

Mνλ′W1,2,3,4{O1S (t1)I[AμS (t2), Aλ′S (t2)]O3S (t1)}

+ W1,2,3,4{O1S (t1)F [AμS (t2), AνS (t2)]O3S (t1)}. (C6)
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Finally, adding all the different contributions we receive

d

dt2
[O1(t1)Aμ(t2)O3(t1)Aν (t2)]S =

∑
λ

Mμλ[O1(t1)Aλ(t2)O3(t1)Aν (t2)]S

+
∑
λ′

Mνλ′[O1(t1)Aμ(t2)O3(t1)Aλ′ (t2)]S + W1,2,3,4{O1S (t1)F [AμS (t2), AνS (t2)]O3S (t1)}. (C7)

We observe that the regression theorem for OTOC takes a different form than discussed in the previous section.

APPENDIX D: EXAMPLE—DISSIPATIVE SPIN HALF SYSTEM

In this Appendix we provide the details of the calculation for the dissipative spin-1/2 system as discussed in the main text.

1. Correlation function in the Heisenberg picture

Here we give out expressions for three- and four-point reduced operators using the Heisenberg picture.

a. Three-point functions

To get the three-point reduced operators we have to calculate all the W terms of Eq. (A19). Once we receive the expression
for the irreducible component I , it is easy to compute W . Here we give out expressions for various W ’s, which are necessary
to compute the three-point correlation 〈σx(t1)σx(t2)σx(t3)〉. In this case to compute the W ’s we need I[σxS (t ), σxS (t ′)]. This is
already computed in the main text (see Sec. IV A) and is given as

I[σxS (t1), σxS (t2)] = γ t1eiω′
0(t2−t1 )

[
1 0
0 1

]
. (D1)

We then obtain the various W ’s as

W1,2,3{I[σxS (t1), σxS (t2)]σxS (t3)} = γ t1

[
0 eiω′

0(−t1+t2+t3 )

eiω′
0(−t1+t2−t3 ) 0

]
, (D2)

W1,2,3{I[σxS (t1), σxS (t3)]σxS (t2)} = −γ t1

[
0 eiω′

0(−t1+t2+t3 )

eiω′
0(−t1−t2+t3 ) 0

]
, (D3)

W1,2,3{σxS (t1)I[σxS (t2), σxS (t3)]} = γ t2

[
0 eiω′

0(t1−t2+t3 )

eiω′
0(−t1−t2+t3 ) 0

]
. (D4)

As a result, the three-point reduced operator is given as

σxS (t1)σxS (t2)σxS (t3) =
[
1 − γ

2
(t1 + t2 + t3)

][ 0 eiω′
0(t1−t2+t3 )

eiω′
0(−t1+t2−t3 ) 0

]
. (D5)

b. Four-point correlation function

Now we want to verify the regression theorem for four-point function (24) in this example. To do that let us first set O1 =
O2 = O3 = σx, Aμ = {σx, σy} in Eq. (24) and assume t1 < t2 < t3 < t4. We then compute the following reduced operators, which
turns out to be diagonal. More explicitly, the matrix elements are given as

[σx(t1)σx(t2)σx(t3)σx(t4)]S|11 =
[
1 − 1

2γ (t1 + t3 − t2 − t4)
]

eiω′
0(t1+t3−t2−t4 ) + γ t1 eiω′

0(−t1+t2−t3+t4 ) + γ (t3 − t2)eiω′
0(t1−t2−t3+t4 )

[σx(t1)σx(t2)σx(t3)σx(t4)]S|22 =
[
1 − 1

2γ (t1 + t2 + t3 + t4)
]

eiω′
0(−t1+t2−t3+t4 ) + γ t1 eiω′

0(−t1+t2−t3+t4 ) + γ t3 eiω′
0(−t1+t2−t3+t4 ),

and

[σx(t1)σx(t2)σx(t3)σx(t4)]S|12 = [σx(t1)σx(t2)σx(t3)σx(t4)]S|21 = 0. (D6)

In a similar way we receive

[σx(t1)σx(t2)σx(t3)σy(t4)]S|11 = i
[
1 − 1

2γ (t1 + t3 − t2 − t4)
]

eiω′
0(t1+t3−t2−t4 ) − i γ t1 eiω′

0(−t1+t2−t3+t4 ) − i γ (t3 − t2) eiω′
0(t1−t2−t3+t4 )

[σx(t1)σx(t2)σx(t3)σy(t4)]S|22 = −i
[
1 − 1

2γ (t1 + t2 + t3 + t4)
]

eiω′
0(−t1+t2−t3+t4 ) − i γ t1 eiω′

0(−t1+t2−t3+t4 ) − i γ t3 eiω′
0(−t1+t2−t3+t4 ),

[σx(t1)σx(t2)σx(t3)σy(t4)]S|12 = [σx(t1)σx(t2)σx(t3)σy(t4)]S|21 = 0. (D7)
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Now, taking the derivative of Eq. (D6) with respect to t4, we receive the QRT as

d

dt4
[σx(t1)σx(t2)σx(t3)σx(t4)]S = −1

2
γ [σx(t1)σx(t2)σx(t3)σx(t4)]S − ω′

0[σx(t1)σx(t2)σx(t3)σy(t4)]S. (D8)

This immediately verifies Eq. (24). Note that we choose here a particular order of time, but note that one can show the validity
of the QRT as long as ti < t4 with i = 1, 2, 3. There are no constraints on the order of (t1, t2, t3).

APPENDIX E: EXTENSION OF QRT FOR TWO-POINT REDUCED OPERATORS FOR NON-MARKOVIAN DYNAMICS

In this Appendix we provide details about the extension of the QRT for two-point reduced operators for systems following
non-Markovian dynamics. The main results for this Appendix are provided in Sec. V of the main text.

Recall that the two-point reduced operator can be written as

[O1(t1)O2(t2)]S = O1S (t1)O2S (t2) + I[O1S (t1), O2S (t2)], (E1)

where the complete irreducible function I consists of four components, I = I1 + I2 + I3 + I4. We once again assume t2 as the
maximum time, i.e., t2 > t1, and then using Eqs. (A17) and (A18), we obtain the irreducible components for the non-Markovian
dynamics correct up to order λ2. We receive

I1[O1S (t1), O2S (t2)] = −λ2
∫ t1

0
dτ1

∫ t2

0
dτ2[α(τ2−τ1)O1S (t1)L̃†(−τ1)O2S (t2)L̃(−τ2)]I2[O1S (t1), O2S (t2)]

I2[O1S (t1), O2S (t2)] =λ2
∫ t1

0
dτ1

∫ t2

0
dτ2[α(τ2−τ1)L̃†(−τ1)O1S (t1)O2S (t2)L̃(−τ2)]I3[O1S (t1), O2S (t2)]

I3[O1S (t1), O2S (t2)] = λ2
∫ t1

0
dτ1

∫ t2

0
dτ2 [α(τ2−τ1)O1S (t1)L̃†(−τ1)L̃(−τ2)O2S (t2)]I4[O1S (t1), O2S (t2)]

I4[O1S (t1), O2S (t2)] = −λ2
∫ t1

0
dτ1

∫ t2

0
dτ2 [α(τ2 − τ1)L̃†(−τ1)O1S (t1)L̃(−τ2)O2S (t2)], (E2)

where recall that L̃(t ) = U0(t )LU †
0 (t ) is the system operator in the interaction picture that is coupled with the bath, and α(τ ) is

the bath correlation function. Then by differentiating Eq. (E2) with respect to the maximum time t2 we receive

d

dt2
I1 = −λ2

[ ∫ t1

0

∫ t2

0
dτ1dτ2 α(τ2 − τ1)(O1S (t1)L̃†(−τ1)[iHS, O2S (t2)]L̃(−τ2))

−
∫ t1

0
dτ1 α(t2 − τ1)O1S (t1)L̃†(−τ1)O2S (t2)L̃(−t2)

]

d

dt2
I2 = λ2

[ ∫ t1

0

∫ t2

0
dτ1dτ2 α(τ2 − τ1)(L̃†(−τ1)O1S (t1)[iHS, O2S (t2)]L̃(−τ2))

+
∫ t1

0
dτ1 α(t2 − τ1)L̃†(−τ1)O1S (t1)O2S (t2)L̃(−t2)

]

d

dt2
I3 = λ2

[ ∫ t1

0

∫ t2

0
dτ1dτ2 α(τ2 − τ1)(O1S (t1)L̃†(−τ1)L̃(−τ2)[iHS, O2S (t2)])

+
∫ t1

0
dτ1 α(t2 − τ1)O1S (t1)L̃†(−τ1)L̃(−t2)O2S (t2)

]

d

dt2
I4 = −λ2

[ ∫ t1

0

∫ t2

0
dτ1dτ2 α(τ2 − τ1)(L̃†(−τ1)O1S (t1)L̃(−τ2)[iHS, O2S (t2)])

−
∫ t1

0
dτ1 α(t2 − τ1)L̃†(−τ1)O1S (t1)L̃(−t2)O2S (t2)

]
. (E3)

Now, as done for the Markovian dynamics, in this case also we assume that there exists a closed set of system operators such
that

d

dt
AμS (t ) =

∑
λ

Mμλ(t )AλS (t ). (E4)
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Once again, note the crucial time dependence in Mμλ(t ) for the non-Markovian dynamics. By setting the operators O1 = O and
O2 = Aμ and by using Eqs. (E3) and (E4), we receive for the first irreducible component I1,

d

dt2
I1[OS (t1), AμS (t2)] =

∑
λ

Mμλ(t2)I1[OS (t1), AλS (t2)] − λ2
∫ t1

0
dτ1 α(t2 − τ1)OS (t1)L̃†(−τ1)AμS (t2)L̃(−t2). (E5)

Following the similar steps we receive similar equations for I2, I3, and I4, which finally provides us with the central equation pre-
sented in the main text Eq. (52). We therefore receive an extension of the QRT-like expression for the non-Markovian dynamics,
where the additional correction term depends crucially on the correlation timescale of the bath correlation functions. As argued
in the main text, in the Markovian limit one can show that the additional correction term vanishes and one recovers the standard
QRT.
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