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The classical Kolmogorov-Arnold-Moser (KAM) theorem provides the underlying mechanism for the stability
of the solar system under some small chaotic perturbations. Despite many previous efforts, any quantum version
of the KAM theorem remains elusive. In this work, we provide a quantum KAM theorem in the context of
the anisotropic Dicke model, which is the most important quantum optics model. It describes a single mode
of photons coupled to N qubits with both a rotating wave (RW) term and a counter-RW (CRW) term. As the
ratio of the CRW over the RW term increases from zero to one, the systems evolves from quantum integrable
to quantum chaotic. We establish a quantum KAM theorem to characterize such an evolution quantitatively by
both large-N expansion and random matrix theory and find agreement from the two complementary approaches.
Connections and differences between the Dicke models and Sachdev-Ye-Kitaev (SYK) or hybrid SYK models
are examined. A possible quantum KAM theorem in terms of other quantum chaos criteria such as the quantum
Lyapunov exponent is also discussed.

DOI: 10.1103/PhysRevA.106.022213

I. INTRODUCTION

In classical chaos, the Kolmogorov-Arnold-Moser (KAM)
theorem [1] describes how an integrable Hamiltonian H0 re-
sponds to a chaotic perturbation �H , which makes the total
Hamiltonian H = H0 + �H nonintegrable. It states that if
the two conditions are satisfied, i.e., (a) �H is sufficiently
small and (b) the frequencies ωi of H0 are incommensurate,
then the system remains quasi-integrable. The classical KAM
theorem has played important roles in the stability of the solar
system and many other classical chaotic systems. It remains
an outstanding problem to find a quantum analog of the KAM
theorem for a quantum many-body system. Here, we will
try to achieve such a goal in the context of the anisotropic
[J − U (1)/Z2] Dicke model [2,3], given by Eq. (1), which is
the most important model in quantum optics.

There are previous works [4–9] studying both quantum
phase transitions (QPTs) and quantum chaos in several ex-
treme limits of the J − U (1)/Z2 Dicke model given by Eq. (1).
It describes a single mode of photons coupled to N qubits with
both a rotating wave (RW) g term and a counter-RW (CRW)
g′ term at any ratio β = g/g′. For example, the authors in
[4] studied the J − Z2 Dicke model with β = 1 at the ther-
modynamic limit J = ∞ and also its energy level statistics
(ELS) [10,11] at a finite J = N/2. In the J = ∞ limit, as
the atom-photon coupling strength increases above a critical
value, it displays a QPT from the normal to the superradiant
phase [12,13]. However, the system becomes nonintegrable

at any finite J . By studying its ELS by exact diagonalization
(ED) at finite sizes N � 10 at a given parity sector, they found
that in the normal phase, it is Poissonian, Pp(s) = e−s, but in
the superradiant phase becomes a Wigner-Dyson (WD) dis-
tribution in the Gaussian orthogonal ensemble (GOE) class,
Pw(s) = π

2 se− π
4 s2

, in the random matrix theory (RMT) classi-
fication [10,11]. This fact suggests that the quantum chaotic
to integrable transition (CIT) at a finite N may be associated
to the QPT at N = ∞.

On the other limit, the U(1) Dicke model [5,6] with β = 0
is always integrable and still undergoes a QPT from the nor-
mal to the superradiant phase at N = ∞. This fact indicates
that a QPT may not be related to a CIT.

In [6,7], we evaluate the whole energy spectrum of the
J − U (1) Dicke model (with J = N/2) with β = 0 by a
1/J expansion and find nearly perfect agreements with those
found from the ED when N is even as small as N = 2.

It was well known that quantum dynamics are inherently
encoded in any quantum many-body system; one effective
way to characterize any possible quantum chaos in such an
intrinsic quantum dynamics is through random matrix the-
ory (RMT) [10,11,14]. We first propose a quantum version
of the KAM theorem to describe the quantum chaotic to
integrable transition (CIT) in terms of the RMT. Then we
derive the effective Hamiltonian given by Eq. (1) at any ratio
0 < β = g′/g < 1 by the 1/N expansion. By using the effec-
tive Hamiltonian, we investigate the analytic scaling form of
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the quantum KAM theorem at a finite N near its quantum
integrable U(1) limit β = g′/g � 1. By carefully identifying
the chaotic source leading to the energy level correlations near
the quantum integrable U(1) limit, we show that the quantum
KAM theorem given by Eq. (12) holds in the strong-coupling
limit N > g/gc � 1, so the system remains quasi-integrable.
We stress the important roles played by the Berry phase in
its establishment. By using the RMT, we evaluate the energy
level statistic (ELS) at N = 10, 20 at a given parity sector by
exact diagonalizations (EDs) at any 0 < β < 1.

The ED data in the RMT fit well with the analytic quantum
KAM theorem given by Eq. (12) achieved by the 1/N expan-
sion. We explore the intrinsic connections between the QPT
characterized by 1/N expansions and the CIT characterized
by the RMT. Contrasts to the Sachdev-Ye-Kitaev (SYK) and
hybrid SYK models [15–19] are made. A possible quantum
KAM in terms of the Lyapunov exponent is discussed.

II. THE 1/J EXPANSION OF THE J − U (1)/Z2 DICKE
MODEL IN THE SUPERRADIANT PHASE AND QPT

In the J − U (1)/Z2 Dicke model [2,3], a single mode of
photons couple to N two-level atoms projected in the total
angular momentum J = N/2 state [6,8],

HJ = ωaa†a + ωbJz + g√
2J

(a†J− + aJ+)

+ g′
√

2J
(a†J+ + aJ−), (1)

where ωa, ωb are the energy of the cavity photons and the
two atomic levels, respectively; g = √

Ng̃, g′ = √
Ng̃′ are

the collective photon-atom rotating wave (RW) coupling
and counter-rotating wave (CRW) term, respectively. If β =
g′/g = 0, Eq. (1) reduces to the U(1) Dicke model [5] with the
U(1) symmetry a → aeiθ , σ− → σ−eiθ leading to the con-
served quantity P = a†a + Jz, where Jz = 1

2

∑
i σ

z
i . The CRW

g′ term breaks the U(1) to the Z2 symmetry a → −a, σ− →
−σ− with the conserved parity operator � = eiπ (a†a+Jz ). If
β = 1, it becomes the Z2 Dicke model [4,8]. If β = ∞, it
can be mapped to the static version of the Landau-Zener (LZ)
model [20]. In this work, we fix the ratio to be 0 < g′/g = β <

1. The other case with 1 < β < ∞ needs a different treatment
and will be discussed in a separate publication [9].

Inside the superradiant phase, it is convenient to write
both the photon and atom in the polar coordinates a =√

λ2
a + δρaeiθa , b =

√
λ2

b + δρbeiθb . We first minimize the
ground-state energy at the order J and find the saddle-point
values of λa and λb:

λa = g + g′

ωa

√
j

2
(1 − μ2), λb =

√
j(1 − μ), (2)

where μ = ωaωb/(g + g′)2. In the superradiant phase, μ < 1,
so that g + g′ > gt

c = √
ωaωb. In the normal phase, g + g′ <

gt
c, one gets back to λa = λb = 0. At a fixed β, the QPT

happens at gc =
√

ωaωb

1+β
.

Well inside the superradiant phase, λ2
a ∼ λ2

b ∼ J , it is con-
venient to introduce the ± modes: θ± = (θa ± θb)/2, δρ± =
δρa ± δρb, λ

2
± = λ2

a ± λ2
b. The Berry phase in the + sector [6]

can be defined as

λ2
+ = P + α, (3)

where P = 1, 2, . . . is the closest integer to the λ2
+, so

−1/2 < α < 1/2.
After shifting θ± → θ± + π/2, we reach the Hamiltonian

to the order of 1/J ,

H[δρ±, θ±] = D

2
(δρ+ − α)2 + D−[δρ− + γ (δρ+ − α)]2

+ 4ωaλ
2
a

[
1

1+β
sin2 θ− + β

1+β
sin2 θ+

]
, (4)

where D = 2ωa(g+g′ )2

E2
H N

is the phase diffusion constant in the

+ sector, D− = E2
H/16λ2

aωa with E2
H = (ωa + ωb)2 + 4(g +

g′)2λ2
a/N . The γ = ω2

a

E2
H

(1 − (g+g′ )4

ω4
a

) is the coupling between
the + and − sectors. Due to the large gap in the θ− sector
when 0 < β < 1, it is justified to drop the Berry phase in the
− sector.

It is instructive to rewrite Eq. (4) as

H[δρ±, θ±] = HU (1) + 4ωaλ
2
a

β

1 + β
sin2 θ+, (5)

where the HU (1) is the Hamiltonian of the J − U (1) model,

HU (1) = D

2
(δρ+ − α)2

+D−[δρ−+γ (δρ+ − α)]2 + 4ωaλ
2
a

1

1 + β
sin2 θ−,

(6)

which conserves δρ+. Its eigenenergies and eigenstates are
listed in [6] and also reviewed in Appendix A. Equation (5)
naturally separates the chaotic perturbation H ′

c from those
integrable ones. Near the integrable U(1) limit β � 1, the
second term H ′

c in Eq. (5) can be treated as the small
chaotic perturbation [H ′

c, HU (1)] 	= 0; it violates the conserva-
tion of δρ+, but still keeps the parity � = eiπ (P+δρ+ ). Although
Eq. (6) explicitly contains β dependencies, they still keep the
integrability, and so do not change the ELS. This observation
will be analyzed further in the following section.

III. A QUANTUM KAM THEOREM:
GENERAL STATEMENT

Inspired by the classical KAM theorem, we expect that
a quantum analog of the KAM theorem exists near an inte-
grable quantum many-body system whose eigenenergies are
in-commensurate. In Eq. (6), it is the frustration due to the
Berry phase α which make its eigenenergies incommensurate
except at α = 0,±1/2, which have zero measures anyway.
We state the general form of a quantum KAM theorem from
the RMT point of view: Near the integrable limit of an in-
commensurate quantum many-body system, when the energy
level repulsion caused by a small chaotic perturbation is less
than the average many-body energy spacing of the integrable
system, the system remains quasi-integrable, so its ELS remains
to be Poissonian. This is justified because all the energy levels
in the integrable side are uncorrelated. Specifically, taking
two nearest-neighbor (NN) bulk energy states with the NN
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energy level spacing s0 = E0
2 − E0

1 , one can write the 2 × 2
quantum chaotic matrix within the two NN energy level sub-
space as �i j = 〈i|H ′

c| j〉, i, j = 1, 2. By a bulk energy level
EB, we mean limN→∞ EB−E0

N 	= 0, where E0 is the ground-state
energy. Then the perturbed NN energy level spacing is

S =
√

s2 + |�12|2, (7)

where s = s0 + �22 − �11 is the diagonal energy shift due to
the chaotic perturbation, and the �12 is the off-diagonal one. It
is important to observe that if setting �12 = 0 in Eq. (7), then
the ELS still stays Poissonian. This is because the diagonal
shift does not change the ELS, only the off-diagonal shift
does. Indeed, near any integral limit H0, if one adds a per-
turbation H1 which commutes with the integral Hamiltonian
[H0,H1] = 0, H1 is a conserved quantity and the system
remains integrable. However, H1 still induces a diagonal en-
ergy shift, but not the off-diagonal one. Obviously, it is the
off-diagonal one which introduces the level repulsion between
the two NN levels, which, in turn, leads to the change of ELS
to WD. So we conclude that when |�12| < s in Eq. (7), the
ELS stays Poissonian, and the quantum KAM applies. In the
following, instead of giving a rigorous mathematical proof of
this quantum KAM theorem, we derive its analytic finite-size
scaling form by 1/N expansion in Eq. (5) and compare with
our ED at various available values of N .

IV. THE QUANTUM KAM THEOREM: THE 1/N
EXPANSION ON THE DICKE MODEL

Let us take two NN states as |B1〉 = |l〉m|m〉 and |B2〉 =
|l〉m+2|m + 2〉, where l ∼ N/2 and m ∼ 1 with a typi-
cal Berry phase −1/2 < α < 1/2. Then, limN→∞ EB−E0

N =
h̄ω0/2. One can immediately evaluate the diagonal matrix ele-
ment 〈B1|H ′|B1〉 = 〈B2|H ′|B2〉 = 2ωaλ

2
a

β

1+β
. So the chaotic

perturbation does not change the diagonal energy level spac-
ing,

s = E0(l, m + 2) − E0(l, m) = 2D(m − α + 2), (8)

which is independent of the Landau level index l ∼ N/2. This
fact simplifies the computation considerably.

One can also compute the splitting (NN energy level repul-
sion) in terms of the coherent state,

�12 = 〈B1|H ′|B2〉 = ωaλ
2
a

β

1 + β
m〈l|l〉m+2, (9)

where one can evaluate the matrix element,

f (l, l ) = m〈l|l〉m+2 = 〈l|D(iG)|l〉

= e−G2/2l!
l∑

r=0

(−1)l−rG2l−2r

[(l − r)!]2r!
, (10)

where G = gm+2 − gm =
√

2γ

βo
. One can find f (0, 0) =

e−G2/2, f (1, 1) = e−G2/2(1 − G2), . . . . In fact, more straight-
forwardly, in terms of the wave function of a harmonic os-
cillator, f (l, l ) = ∫

dθ−|ψl (θ−)|2ei2γ θ− , l = 1, 2, 3, . . . , one
reaches the same results as Eq. (10).

One can write the general expressions of the three quan-
tities λ2

a in Eq. (2), the diffusion constant D in Eq. (4), and
G2/2 in Eq. (10) in terms of g/gc > 1 inside the superradiant

FIG. 1. QPT vs CIT in the large-N limit. The U(1) limit β = 0 is
integrable, only QPT. In the Z2 limit β = 1, the QPT is accompanied
by the CIT. The quantum KAM scaling βc1 ∼ N−2 given by Eq. (12)
achieved by 1/N expansion matches qualitatively with that extracted
from the ED in RMT in Fig. 2. βc2 sets the quantum chaotic regime
(or dual KAM), which remains finite as N → ∞. R one the left
means the regular regime [21]. Path I: QPT tuned by the coupling
g/gc, with no CIT. Path II: CIT tuned by β, with no QPT. Path III:
The QPT is accompanied by the CIT.

phase. They simplify dramatically in the strong-coupling limit
N > g/gc � 1,

λ2
a =

(
g

gc

)2

N,

D = 2ω

(
g

gc

)−2 1

N
∼ 2ω/λ2

a,

G2/2 =
√

1 + β

2

1

N
. (11)

In the large-N limit, the polynomial in f (l = N/2, l = N/2)
multiplying the exponential e−G2/2 becomes (1 − 1

2 + 1
36 −

1
8×36 + · · · ). So we conclude that f (N/2, N/2) ∼ e−G2/2/2 as
N → ∞.

Applying the general criterion to the two typical bulks
states in Eq. (8) and Eq. (9) leads to a scaling form of the
quantum KAM theorem,

βc1 ∼ N−2e1/2N (g/gc)−4, (12)

which approaches zero in both the thermodynamic limit N →
∞ and the strong-coupling limit N > g/gc � 1.

One may also propose the quantum KAM theorem from
a dual point of view, namely, from the chaotic Z2 limit at
β = 1 inside the super-radiant phase in Figs. 1 and 2, namely,
investigate how the chaotic behaviors change to integrable as
the perturbation 1 − β increases. There is no change of the
symmetry as 1 − β turns on; the stability of quantum chaos is
much more robust than the KAM in the integrable side. If we
define βc2 as the dual form of the KAM theorem in Fig. 2,
then βc2 remains finite as N → ∞. Inside the superradiant
phase g/gc � 1, when βc2 < β < 1, it remains chaotic. When
βc1 < β < βc2, the ELS is in a crossover regime and satisfies
neither GOE nor Poissonian. When 0 < β < βc1, it reaches
the quantum KAM regime.
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FIG. 2. The mean values of the ratio r̃ evaluated by ED at
(a) N = 10 and (b) N = 20 at the resonant case ωa = ωb. The off-
resonant case can also be similarly discussed. The analytical mean
values of r̃ of Poisson 〈̃r〉p and GOE 〈̃r〉w are marked as references.
(a1) The CIT at a fixed g/gc � 1 at three values g/gc = 3, 2, 1
and tuning ln β. See path II in Fig. 1. One can identify the KAM
regime as ln βc1 ∼ ±1.2, which leads to βc1 ∼ 0.3 near g/gc > 1.
One may also identify the stability regime of the quantum chaos as
ln βc2 ∼ ±0.5, which leads to βc2 ∼ 0.6. When βc1 < β < βc2, there
is no well-defined ELS. (a2) At a fixed β vs g/gc at five different
values, β = 0.1, 0.3, 0.5, 0.6, 0.8. See paths III and I in Fig. 1. One
may also identify βc1 ∼ 0.3, βc2 ∼ 0.6. When βc2 < β < 1 (path III
in Fig. 1), there is an accompanying CIT near the QPT at g/gc = 1,
but when 0 < β < βc1 (path I in Fig. 1), there is no such accom-
panying transition. In both cases, when g/gc < 0.15, r̃ shoots up to
1, and the system just tends to be regular instead of random [21].
(b) The ED data at N = 20 has less noise due to the larger finite size.
Compared to N = 10 in (a), one can see that in (b1), when g/gc � 1,
the quantum chaos regime expands and the integrable regime shrinks.
One can identify βc2 ∼ 0.5. (b2) At the same set of β as (a2). The
line with the same color (β) is elevated towards the chaotic side,
indicating βc1 drops as N increases. One can see βc1 ∼ 0.1 near
g/gc > 1. Our ED results also show that βc1 decreases at a fixed
N = 20 and much larger g/gc ∼ 10 − 20 � 1, also in qualitative
agreement with Eq. (12).

V. THE ENERGY LEVEL STATISTICS
IN RMT AND THE CIT

Now we look at the RMT classification of Eq. (1).
The time-reversal symmetry is simply the complex conju-
gate operator T = K which acts as KaK−1 = a, Ka†K−1 =
a†, KiK−1 = −i. Obviously, KJaK−1 = Ja, a = ±, z. It keeps
the commutation relations [a, a†] = 1, [Jz, J±] = ±J±. So the
many-body Hamiltonian given by Eq. (1) has the time-reversal
symmetry, also K2 = 1, so it satisfies GOE.

As shown in [14–18] and reviewed in Appendix B, the
most effective way to characterize an ELS is to study the
distribution of the ratio of two NN energy level spacings 〈̃r〉.
We plot 〈̃r〉 vs ln β at a fixed g/gc = 3, 2, 1 and 〈̃r〉 vs g/gc at a
fixed β = 0.1, . . . , 0.8 in Fig. 2(a) and Fig. 2(b), respectively,
for two different sizes N = 10, 20. The data βc1 ∼ 0.3, 0.1

at the two different sizes N = 10, 20 qualitatively match the
scaling in Eq. (12). A small discrepancy may be attributed to
the cutoff introduced in the ED (see Appendix C).

VI. CONTRAST ANISOTROPIC DICKE MODELS WITH
HYBRID SYK MODELS

So far we have focused on the U (1)/Z2 anisotropic Dicke
model, which is the most important model in quantum optics.
The quantum chaos in the Dicke model is investigated here
by both 1/N expansion and RMT. Similar approaches have
also been used to explore the quantum chaos in the Sachdev-
Ye-Kitaev (SYK) model, which may be dual to a quantum
black hole [15–19,22–24]. It is constructive to contrast the
(anisotropic) Dicke model to the (hybrid) SYK models. (a)
Both have an infinite-range interaction, so are effectively
(0 + 1)-dimensional systems. (b) Both show quantum chaos
and quantum information scramblings which can be studied
by 1/N expansion and random matrix theory (RMT), respec-
tively. But the mechanism leading to the quantum chaos is
very different. The former is due to both interactions and
disorders. The latter is due to the atom-photon interactions. (c)
The former is an interacting fermionic model with quenched
disorders, while the latter is a clean interacting bosonic one
consisting of N qubits interacting with photons. So when
performing the ED in RMT, the Hilbert space in the former
is automatically finite, ∼2N , while the latter is infinite, so
a finite cutoff needs to be introduced (see Appendix C). (d)
The ground state of SYK is a conformably invariant gapless
quantum spin liquid which leads to the maximal Lyapunov
exponent λL = 2π/β by 1/N expansion when 1 < βJ < N .
In the superradiant phase in the Dicke model, there is a
symmetry breaking in the N → ∞ limit, but the symmetry
breaking is restored at a finite N by the quantum tunneling
process [8]. So it has a finite gap ∼ ω at a given parity sector
in the strong-coupling g/gc � 1 limit, the quantum Lyapunov
exponent λL = 0 in the low-temperature range 1 < βω < N .
However, we expect λL = g[1 − (1 − β ) + · · · ] when T � ω

and reach the maximum at the Z2 limit β = 1 and vanish
when β < βc1. (e) Various hybrid SYK models [18] also hold
various CITs from the quantum integrable side of the q = 2
SYK to the quantum chaotic side of the q = 4 SYK tuned by
the ratio of the couplings of the two sides. We expect that the
general statement on a KAM theorem in Sec. III still applies
to the hybrid SYK models. Some preliminary results on the
scaling forms of a quantum KAM in the hybrid SYK contexts
are presented in [18]. However, due to the quenched disorders,
constructing a rigorous quantum KAM to characterize the
CIT in the hybrid SYK models may be more challenging, but
important, to pursue.

VII. CONCLUSIONS

In this work, we take a 2 × 2 matrix spanned by two typical
NN bulk energy levels to find the quantum KAM scaling given
by Eq. (12). This is justified because all the energy levels in
the integrable side are uncorrelated. In principle, one may also
take all the bulk energy levels. However, as shown in [10]
and reviewed in Appendix B, by considering a L × L = 2 × 2
matrix, Wigner derived a simple approximate expression for
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the distribution function P(s) of the NN spacing for GOE,
Gaussian unitary ensemble (GUE), and Gaussian symplectic
ensemble (GSE), respectively. Although this so-called Wigner
surmise was achieved only for 2 × 2 matrices, it is in very
good agreement with the exact large-L expressions. We expect
a similar thing happens here: the exact L → ∞ calculation
will only slightly modify the prefactor in Eq. (12). The qual-
itative agreement between our analytical KAM scaling given
by Eq. (12) with the ED data in the RMT supports this claim.
It is important to extend the concepts and methods developed
here for interacting bosonic systems to interacting fermionic
systems with quenched disorders such as the hybrid SYK
models.

It remains outstanding to construct a quantum KAM the-
orem through the Lyapunov exponent or any other criterion
characterizing the quantum chaos in the context of both
Dicke and SYK models. It is also interesting to establish
some quantum-classical correspondence between the classi-
cal KAM and the quantum KAM in the context of driven
nonequilibrium Dicke [25] or driven nonequilibrium SYK
[26] models.
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APPENDIX A: THE EIGENENERGY AND
EIGENFUNCTIONS IN THE 1/N EXPANSION

Let us start with Eq. (5). Obviously, for [HU (1), δρ+] = 0,
the δρ+ is a conserved quantity, so one can find the simulta-
neous eigenstates of HU (1) and δρ+, which will be achieved in
the following.

As explained in Sec. II, the θ− is very massive; after pin-
ning θ− around θ− ∼ 0, one can approximate sin2 θ− ∼ θ2

−,
and therefore one may ignore the Berry phase in the θ− sector.
Then the above equation can be simplified to

HU (1) = D

2
(δρ+ − α)2 + D−[δρ− + γ (δρ+ − α)]2

+ 2ωaλ
2
a

2

1 + β
(θ−)2, (A1)

whose wave functions can be written as |m〉|l〉m, where

〈θ+|m〉 = 1√
2π

eimθ+ , 〈θ−|l〉m = eiγ (m−α)θ−ψl (θ−), (A2)

where the ψl (θ−) is just the lth wave function of a har-
monic oscillator. So the total wave function ψl,m(θ+, θ−) =
〈θ+, θ−|m〉|l〉m is

ψl,m(θ+, θ−) = 1√
2π

ei(mθ++γ (m−α)θ− )ψl (θ−), (A3)

where the wave function is only periodic in 0 < θ+ < 2π , and
the −∞ < θ− < ∞ is treated as a continuous variable. The
corresponding eigenenergy is

E0(l, m) = (l + 1/2)h̄ωo + D

2
(m − α)2, (A4)

where the ωo = EH/
√

1 + β and where E2
H = (ωa + ωb)2 +

4(g + g′)2λ2
a/N is defined below in Eq. (4).

It is important to observe that Eq. (A1) still contains β

dependence. Only setting β = 0 in Eq. (A1) recovers the
1/N expansion of the original Eq. (1). As stressed below Eq.
(6), despite Eq. (A1) explicitly contains β dependencies, they
still keep the integrability, so do not change the ELS. So it
is a good starting point to look at the effects of a chaotic
perturbation.

Note that the Landau level index l = 0, 1, . . . , N (N + 1
Landau levels) denotes the high-energy Higgs type of ex-
citation, while the magnetic number m = −P + l,−P + l +
1, . . . (no upper bounds) denotes the low-energy Goldstone
types of excitations. The total parity is � = (−1)P+m at the
sector P, where P � l + 1 has no upper bound either. At a
given Landau level l and a given sector P, there are |m| =
P − l � 1 crossings at the Berry phase α = 0 in Eq. (A4).
The m = 0 is always the ground-state energy at a given l and
a given P � l + 1.

In the large-(J = N/2) limit, ωo � D ∼ 1/ j, so the first
term can be considered as the inter-Landau levels, while the
second term can be considered as the intra-Landau levels.

It is instructive to look at the harmonic oscillator in
the − sector from an algebraic point of view. Define βo =√

μωo

h̄ , where μ = 1
2D−

is the mass of the harmonic oscilla-

tor. The annihilation operator a− = 1√
2
(βoθ− + i δρ−

βoh̄ ). Then,
after making a momentum shift δρ− → δρ− − γ (δρ+ − α),
the annihilation operator a− → a−,m = a− + i γ (m−α)√

2βo
, and

the harmonic oscillator’s Hamiltonian is H− = (a†
−,ma−,m +

1/2)h̄ωo. Its eigenstate a†
−,ma−,m|l〉m = l|l〉m is

|l〉m = D†(igm)|l〉 = D(−igm)|l〉, (A5)

where gm = γ (m−α)√
2βo

and |l〉 is just the lth harmonic oscillator
eigenstate. In particular, the ground state |0〉m = D(−igm)|0〉
is a coherent state.

One can show that D(−igm) = eiγ (m−α)θ− , then
|l〉m = eiγ (m−α)θ− |l〉. So 〈θ−|l〉m = eiγ (m−α)θ−〈θ−|l〉 =
eiγ (m−α)θ−ψl (θ−), and we recover Eq. (A2) from the coherent
state.

APPENDIX B: A BRIEF REVIEW OF RANDOM MATRIX
THEORY AND THE ENERGY LEVEL STATISTIC (ELS) OF
NEAREST NEIGHBOR (NN) ENERGY LEVEL SPACINGS

For the three Wigner-Dyson classes, i.e., A(GUE),
AI(GOE), and AII(GSE), no mirror symmetry exists in the
energy levels. Let {En} be an ordered set of energy levels; then
the joint probability distribution for all the eigenvalues can be
described by

P({Ei}) ∝
∏
i< j

|Ei − Ej |β
∏

n

e−E2
n , (B1)
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where β is the Wigner-Dyson index characterizing the
strength of level repulsion. For class A(GUE), AI(GOE), and
AII(GSE), β = 2, 1, 4, respectively.

One can denote sn = En+1 − En as the NN spacings. By
considering a 2 × 2 matrix in Eq. (B1), Wigner [10] derived
a simple approximate expression for the distribution function
P(s) of the NN spacing,

Pw,β (s) = aβsβe−bβ s2
, (B2)

where β = 1, 2, 4 is the Dyson index for GOE, GUE, and
GSE, respectively. Although this so-called Wigner surmise
was achieved only for 2 × 2 matrices, it is in very good
agreement with the exact large-N expressions.

It is also known that independent random energy levels
would yield a Poisson distribution

Pp(s) = e−s. (B3)

However, in order to compare different results from different
systems, the energy levels will need an unfolding procedure,
which is not convenient when large enough statistics is not
available. To get rid of the dependence on the local density of
states, it is convenient to look at the distribution of the ratio
of two adjacent energy level spacings [14–18], rn = sn/sn+1,
which distributes around 1. This quantity has the advantage
that it requires no unfolding since the ratios of consecutive
level spacings are independent of the local density of states.

By considering a 3 × 3 matrix system, the authors in [14]
obtained the Wigner-like surmises of the ratio of consecutive
level spacings distribution,

Pp(r) = 1

(1 + r)2
, Pw(r) = 1

Zβ

(r + r2)β

(1 + r + r2)1+3β/2
, (B4)

where β = 1, 2, 4 and Zβ = 8/27, 4π/81
√

3, 4π/729
√

3 for
GOE, GUE, and GSE, respectively. The distribution PW (r) has
the same level repulsion at small r as PW (s), namely, PW (r) ∼
rβ . However, the large-r asymptotic behavior PW (r) ∼
r−(2+β ) is dramatically different than the fast exponential de-
cay of PW (s).

One may also compute the distribution of the logarithmic
ratio [14,15] P(ln r) = P(r)r. Because P(ln r)dr is symmetric

under r ↔ 1/r, one may confine 0 < r < 1 and double the
probability density P(r̃) = 2P(r). Therefore, the above two
distributions have two different sets of expected values of r̃ =
min{r, 1/r}:

〈r̃〉p =
∫ 1

0
2rPp(r)dr = 2 ln 2 − 1 ≈ 0.38629,

〈r̃〉w =
∫ 1

0
2rPw,β=1,2,4(r)dr, (B5)

which is 4 − 2
√

3 ≈ 0.53590, 2
√

3/π − 1/2 ≈ 0.60266, and
32

√
3/(15π ) − 1/2 ≈ 0.67617 for GOE, GUE, and GSE, re-

spectively. These Wigner-like surmises given by Eqs. (B4) and
(B5) were also shown to be very accurate when compared
to the numerics and exact calculations in the exact large-N
expressions.

In the main text, the CIT is from the GOE to the Poisson,
so only the two values 〈r̃〉p ≈ 0.38629 and 〈r̃〉GOE ≈ 0.53590
are used and plotted in Fig. 2.

APPENDIX C: THE HIGH-ENERGY CUTOFF IN THE
EXACT DIAGONALIZATIONS (ED)

We do the ED in Fig. 2 on the J − U (1)/Z2 Dicke model
given by Eq. (1) in the Fock basis where the complete ba-
sis is |n〉| j, m〉, n = 0, 1, 2, . . . ,∞, j = N/2, m = − j, . . . , j,
where the n is the number of photons and the | j, m〉 are the
Dicke states. In performing the ED, following Ref. [5], one
has to use a truncated basis n = 0, 1, . . . , nc in the photon
sector where the nc ∼ 500–2000 � N is the maximum pho-
ton number in the artificially truncated Hilbert space. The
total number of states is nc × (2 j + 1) = nc × (N + 1). This
is also the size of the RMT, L = nc × (N + 1). The aver-
age many-body energy level spacing at a given parity sector
is ncωa

2nc×(N+1) ∼ ωa
2(N+1) . This qualitative estimate is consistent

with Eq. (8) achieved by the systematic 1/N expansion. As
long as the energy levels in Fig. 2 are well below ncωa, the
energy levels should be very close to the exact results without
the truncation (namely, sending nc → ∞). However, the ED
may no longer be precise when g gets too close to the upper
cutoff.
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