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Effects of rotation on a magnetic quadrupole moment system around a cylindrical cavity
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We analyze the interaction of the magnetic quadrupole moment of a neutral particle with magnetic and electric
fields around a cylindrical cavity in a rotating reference frame. In contrast to the energy levels yielded by a
Coulomb-type potential that stems from the interaction of the magnetic quadrupole moment with a nonuniform
magnetic field, we show that the effects of rotation break the degeneracy of the energy levels. Moreover, we show
that the effects of rotation can gives rise to an Aharonov-Bohm-type effect. Further, we discuss the appearance
of persistent currents and the revival time.
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I. INTRODUCTION

Effects of rotation on Dirac fields [1], scalar fields [2], and
the Landau quantization [3] have shown a great interesting
in field theory. From the perspective of the classical physics,
Landau and Lifshitz [4] showed that the line element of the
Minkowski space time becomes singular at large distances for
a system in a uniformly rotating frame. In quantum physics,
in turn, the most well-known effect associated with rotation
is the phase shift that appears in interferometry experiments
[5–9]. It is called the Sagnac effect [5–7]. At present, this
kind of phase shift is also known as geometric quantum
phase, where we can include the Mashhoon effect [10] and the
Aharonov-Carmi geometric phase [11] as geometric quantum
phases that stem from the effects of rotation. Besides the ap-
pearance of geometric quantum phases, effects of rotation can
contribute to the energy levels of a quantum system. As shown
in Refs. [12–14], the energy levels can acquire a coupling
between the angular momentum and the angular velocity of
the rotating frame. From the perspective of observing effects
of rotation in quantum system we cite the studies of quantum
Hall effect [15], spintronics [16–18], quantum rings [19–21],
Bose-Einstein condensation [22], and neutral particles sys-
tems [23–27].

In this work, we search for effects of rotation on the in-
teraction of the magnetic quadrupole moment of a neutral
particle with magnetic and electric fields around a cylin-
drical cavity. Besides the main interest in the magnetic
quadrupole moment in systems with molecules [28–31] and
atoms [32,33], the interest in the magnetic quadrupole mo-
ment of atoms and molecules also extends to studies in
PT symmetry [34,35], CP symmetry [36], time-reversal
symmetry in molecules [37], and chiral anomaly [38]. Non-
commutative quantum mechanics has been dealt with in
the magnetic quadrupole system in Refs. [39,40]. Geometric
quantum phases have been studied in Refs. [41,42]. Recently,
we have shown that bound states can be achieved for an
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attractive inverse-square-type potential and Coulomb-type po-
tentials in the magnetic quadrupole moment system [42–44].
Thereby, by searching for effects of rotation in the magnetic
quadrupole moment system around a cylindrical cavity, in this
work we show that the degeneracy of the energy levels of a
Coulomb-type potential can be broken. We also show that the
effects of rotation can gives rise to an Aharonov-Bohm-type
effect [45,46]. Further, we extend our discussion to the ap-
pearance of persistent currents [21,47] and quantum revivals
[48–51].

The structure of this paper is as follows. In Sec. II, we
analyze the effects of rotation on a Coulomb-type potential
around a cylindrical cavity. In search of bound states in the
rotating reference frame, we show that the effects of rotation
break the degeneracy of energy levels in contrast to the case of
absence of rotation [44]. Furthermore, we show that the effects
of rotation can give rise to an Aharonov-Bohm-type effect
[45,46]. In Sec. III, we discuss the appearance of persistent
currents [21,47]. In Sec. IV, we discuss the quantum revivals
[48–51]. In Sec. V, we present our conclusions.

II. QUANTUM DESCRIPTION IN THE ROTATING
REFERENCE FRAME

According to Refs. [21,52–55], we can deal with a non-
relativistic quantum system in a rotating reference frame by
writing the time-independent Schrödinger equation in the
form:

Eψ = Ĥ0 ψ − �ω · L̂ψ. (1)

In Eq. (1), the quantum operator Ĥ0 corresponds to the
Hamiltonian operator of the particle system in the absence of
rotation, �ω is the angular frequency of the rotating reference
frame, and the operator L̂ corresponds to the angular momen-
tum operator.

We will study a particle system that describes the inter-
action of the magnetic quadrupole moment of a (moving)
neutral particle with magnetic and electric fields in a rotat-
ing reference frame. In short, the Hamiltonian operator of
this magnetic quadrupole moment system in the absence of
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rotation is given by (with h̄ = 1 and c = 1) [23,24,42]

Ĥ0 = 1

2m
[ p̂ − �M × �E ]2 − �M · �B, (2)

where �E and �B are the electric and magnetic fields (in the
laboratory frame), respectively. In addition, the vector �M is
defined in such a way that its components are determined
by Mi = ∑

j Mi j ∂ j , where Mi j is a symmetric and traceless

tensor. Moreover, p̂ = −i �∇ is the momentum operator and m
is the mass of the neutral particle.

In recent years, one of us has studied quantum effects
associated with rotation on the interaction of the magnetic
quadrupole moment with a nonuniform electric field produced
by a nonuniform distribution of electric charges inside a non-
conducting cylinder [23,24]. In the present work, we focus
on the effects of rotation and the Aharonov-Bohm-type effect,
which can appear when the magnetic quadrupole moment
interacts with magnetic and electric fields around a cylindrical
cavity. Henceforth, we assume that the magnetic quadrupole
moment of the neutral particle has the components [42]:

Mr z = Mz r = M;

Mr r = Mϕϕ = M;

Mzz = −2M, (3)

where M is a constant (M > 0).
Next, let us consider the magnetic field produced by the

current density �J = −B0
r ϕ̂ (B0 > 0 is a constant and ϕ̂ is a unit

vector in the azimuthal direction) inside a long conducting
cylinder, which possesses an inner radius r0. This magnetic
field is in the z direction and its expression is given by �B1 =
B0 ln r

r0
ẑ [44]. From Eq. (2), the interaction of the magnetic

quadrupole moment (3) with this magnetic field yields the
effective scalar potential: Veff (r) = − �M · �B = −M B0

r .
In addition, when we consider the presence of the time-

dependent magnetic field �B2 = E0 t
r ϕ̂ (E0 > 0 is a constant),

then, it produces the induced electric field: �E = E0 ln r
r0

ẑ.
Thereby, when the magnetic quadrupole moment (3) interacts
with the induced electric field, this interaction gives rise to the
appearance of a geometric quantum phase [41,42]:

φ1 =
∮

�Aeff · d�r = −2π M E0, (4)

where the effective vector potential is defined as �Aeff = �M ×
�E .1 It is worth noting that the magnetic quadrupole moment
(3) does not interact with the time-dependent magnetic field
�B2. Therefore, there is no contribution to the effective scalar
potential Veff (r) that stems from the magnetic field �B2 [42].

Returning to Eq. (1), hence, we have that the angular
momentum operator can be written in terms of the effec-
tive vector potential �Aeff = �M × �E . Its expression is given by
L̂ = �r × ( p̂ − �Aeff ). From Eq. (4), we have �Aeff = φ1

2π r ϕ̂ [42].

1Note that �Aeff = �M × �E = (r̂ × ẑ) Mrr (∂rEz ) = (−ϕ̂) M E0
r , where

we have used Eq. (3) and Ez = E0 ln r
r0

in order to have a non-null

�M × �E . Thereby, with d�r = r dϕ ϕ̂, we have in Eq. (4): φ1 = ∮ �Aeff ·
d�r = − ∫ 2π

0
M E0

r × r dϕ = −2π M E0.

Furthermore, for the two-dimensional system, we have �r = r r̂
(r̂ is a unit vector in the radial direction).

From now on, we consider a rotating reference frame with
a constant angular velocity: �ω = ω ẑ. Then, in the region r >

r0, the Schrödinger equation (1) becomes (with h̄ = 1 and
c = 1)

Eψ = − 1

2m
∇2ψ − i

m

φ1

2π r2

∂ψ

∂ϕ
+ 1

2m

(
φ1

2π r

)2

ψ

− M B0

r
ψ + ω

[
i

∂

∂ϕ
− φ1

2π

]
ψ, (5)

where the operator ∇2 is the Laplacian (in cylindrical coor-
dinates). Let us write ψ (r, ϕ, z) = eikz ei�ϕu(r), where k is a
constant, � = 0,±1,±2, . . . and u(r) is an unknown function.
After substituting ψ (r, ϕ, z) = eikz ei�ϕu(r) into Eq. (5), we
obtain the radial equation:

u′′ + 1

r
u′ −

(
� + φ1

2π

)2

r2
u + 2m MB0

r
u

+
[

2mE − k2 + 2mω

(
� + φ1

2π

)]
u = 0. (6)

By searching for bound states solutions to the Schrödinger
equation (5), we assume that E < 0 from now on.
We also take k = 0 and define the parameter τ =√

−2mE − 2mω(� + φ1

2π
). In this way, the radial equation (6)

becomes:

u′′ + 1

r
u′ −

(
� + φ1

2π

)2

r2
u + 2m MB0

r
u − τ 2 u = 0. (7)

Next, we define the parameter y = 2τ r, and thus, Eq. (7)
becomes

u′′ + 1

y
u′ −

(
� + φ1

2π

)2

y2
u + δ

y
u − 1

4
u = 0, (8)

where δ = m MB0
τ

.
Let us take a solution to Eq. (8) in which u(y) → 0 when

y → ∞. This solution can be written as

u(y)=e− y
2 y|�+ φ1

2π | U

(∣∣∣∣�+ φ1

2π

∣∣∣∣+1

2
− δ, 2

∣∣∣∣�+ φ1

2π

∣∣∣∣ + 1; y

)
,

(9)

where U (a, b; y) = U (|� + φ1

2π
| + 1

2 − δ, 2|� + φ1

2π
| + 1; y) is

the confluent hypergeometric function regular at y → ∞ [56].
Then, let us impose that the wave function vanishes at

r = r0 (where r0 is the inner radius of the long conducting
cylinder), i.e., there is an infinite wall at r = r0 [44,57,58].
With y0 = 2τ r0, we have that u(y0) = 0. With the pur-
pose of obtaining the eigenvalues of energy explicitly, we
consider the case where U (a, b; y0) ∝ cos(

√
2b y0 − 4a y0 −

bπ
2 + aπ + π

4 ). According to Ref. [56], this particular case of
the confluent hypergeometric function U (a, b; y) is given for
y0 and b fixed, and for large a. Thereby, from u(y0) = 0, we
obtain

En,� = − m π2(M B0)2

2
[√

8m M B0 r0 − nπ − π
4

]2 − ω

(
� + φ1

2π

)
, (10)
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where n = 0, 1, 2, 3, . . . is the radial quantum number and
� = 0,±1,±2,±3, . . . is the angular momentum quantum
number.

Hence, Eq. (10) shows the energy levels in the rotating
reference frame, which stem from the interaction of a mag-
netic quadrupole moment of the neutral particle (3) with the
magnetic field �B1 = B0 ln r

r0
ẑ and the induced electric field

�E = E0 ln r
r0

ẑ around the cylindrical cavity (which corre-
sponds to the region r > r0). The discrete spectrum of energy
(10) is influenced by the rotation, where its contribution is
given by the last term of the right-hand side of Eq. (10). This
contribution corresponds to an analog of the Page-Werner
et al. term [12–14], i.e., it yields the coupling between the an-
gular velocity of the rotating frame ω and the effective angular
momentum quantum number �eff = � + φ1/2π . Besides, the
energy levels (10) are also influenced by the geometric quan-
tum phase φ1, which gives rise to an Aharonov-Bohm-type
effect for bound states [46].

Note that with ω → 0 we recover the energy levels in ab-
sence of rotation [44]. As shown in Ref. [44], in the absence of
rotation, the interaction of a magnetic quadrupole moment of
the neutral particle (3) with the magnetic field �B1 = B0 ln r

r0
ẑ

around the cylindrical cavity yields energy levels which are
infinitely degenerated (with respect to the quantum number �

or �eff ). On the other hand, in the present work, the presence
of the analog of the Page-Werner et al. term [12–14] in the
energy levels (10) breaks the degeneracy of the energy levels
obtained in Ref. [44]. In addition, the Aharonov-Bohm-type
effect [46] occurs only in the presence of rotation [57].

Another aspect to observe is the upper limit of
the radial quantum number. Due to the fact that τ =√

−2mE − 2mω(� + φ1

2π
) > 0, then, the radial quantum num-

ber takes values inside the range: 0 � n � nmax. This upper
limit is determined by

nmax <

√
8m M B0 r0

π
− 1

4
. (11)

Without the upper limit (11), we would have τ < 0.
Finally, the bound states associated with the energy levels

(10) can be achieved for large values of r in agreement with
Refs. [41,42,44]. This occurs due to the fact that the electric
current density �J can disturb the system, but it vanishes for
large values of r.

III. PERSISTENT CURRENTS

From Eq. (10), we can observe that En,�(φ1 ± 2π ) =
En,�±1(φ1), which means that the energy eigenvalues are
a periodic function of the geometric quantum phase φ1.
The corresponding periodicity is φ0 = ±2π . According to
Refs. [21,47], persistent currents can appear in the quan-
tum system due to the dependence of the energy levels on
the geometric quantum phase φ1. The persistent currents (at
temperature T = 0) can be obtained through the Byers-Yang
relation [21,47]:

I = −
∑
n, �

∂En, �

∂φ1
= ω

2π
. (12)

The non-null persistent current (12) shows us that the per-
sistent currents can appear in this system only in the presence
of rotation. It depends only on the angular velocity of the
rotating reference frame. This occurs because the analog of
the Page-Werner et al. term [12–14] brings the dependence
of the energy levels (10) on the geometric quantum phase φ1.
With ω → 0, in turn, no persistent current exists.

IV. QUANTUM REVIVALS

Quantum revivals are obtained when the wave function
recovers its initial shape at a time called the revival time
[48–51]. In this work, we have dealt with a bidimensional sys-
tem, which is characterized by having two quantum numbers
{ν1 = n, ν2 = �}. In this case, the eigenvalues of energy can
be expanded about central values ν ′

1 and ν ′
2 of these quantum

numbers through the Taylor series as [48,49,59–61]

Eν1,ν2 ≈ Eν ′
1,ν

′
2
+

(
∂E
∂ν1

)
ν ′

1ν
′
2

(ν1 − ν ′
1) +

(
∂E
∂ν2

)
ν ′

1ν
′
2

(ν2 − ν ′
2)

+ 1

2

(
∂2E
∂ν2

1

)
ν ′

1ν
′
2

(ν1 − ν ′
1)2 + 1

2

(
∂2E
∂ν2

2

)
ν ′

1ν
′
2

(ν2 − ν ′
2)2

+
(

∂2E
∂ν1∂ν2

)
ν ′

1ν
′
2

(ν1 − ν ′
1)(ν2 − ν ′

2) + · · · (13)

The revival times, hence, are defined as follows [48,49]:

τ (1) = 4π h̄∣∣( ∂2E
∂ν2

1

)
ν ′

1ν
′
2

∣∣ ; τ (2) = 4π h̄∣∣( ∂2E
∂ν2

2

)
ν ′

1ν
′
2

∣∣
τ (12) = 2π h̄∣∣( ∂2E

∂ν1∂ν2

)
ν ′

1ν
′
2

∣∣ . (14)

The revival time τ (12) is called the cross-revival time. From
the energy levels (10), the revival times (14) are defined in
terms of the quantum numbers {n, �}. Then, with respect to
the radial quantum number n, the corresponding revival time
is

τ (1) = 4π∣∣ ∂2En, �

∂ n2

∣∣ = 4
[√

8m M B0 r0 − nπ − π
4

]4

3m π3(M B0)2 . (15)

The revival time related to the angular momentum quantum
number is

τ (2) = 4π∣∣ ∂2En, �

∂ �2

∣∣ = 0. (16)

Finally, the cross-revival time [49] is

τ (12) = 2π∣∣( ∂2En, �

∂n∂�

)∣∣ = 0. (17)

Hence, there is just one non-null revival time in the present
system, which is not influenced by the effects of rotation. As
a consequence, it is not influenced by the geometric quantum
phase φ1.

V. CONCLUSIONS

Hence, the main aspect of the bound states achieved around
the cylindrical cavity in the rotating reference frame is the
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break of the degeneracy of the energy levels. In contrast to the
energy levels in the absence of rotation obtained in Ref. [44],
the presence of the analog of the Page-Werner et al. term
[12–14] in the energy levels (10) is responsible for breaking
the degeneracy of the energy levels. In addition, the analog of
the Page-Werner et al. term [12–14] is responsible for yielding
the dependence of the energy levels on the geometric quantum
phase, and thus, by yielding the Aharonov-Bohm-type effect
for bound states [46].

Furthermore, due to the dependence of the energy levels on
the geometric quantum phase, we have seen that a persistent
current arises in this system. However, the persistent current

can appear only in the rotating reference frame. With ω → 0,
hence, there is no persistent current.

Finally, we have seen that there is only one non-null revival
time related to the radial quantum number n. Besides, this
revival time is not influenced by the effects of rotation and, as
a consequence, there is no influence of the geometric quantum
phase on it.
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