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Time periodicity from randomness in quantum systems

Giacomo Guarnieri ,1,* Mark T. Mitchison ,2 Archak Purkayastha ,2,3 Dieter Jaksch ,4,5,6
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Many complex systems can spontaneously oscillate under nonperiodic forcing. Such self-oscillators are
commonplace in biological and technological assemblies where temporal periodicity is needed, such as the
beating of a human heart or the vibration of a cello string. While self-oscillation is well understood in classical
nonlinear systems and their quantized counterparts, the spontaneous emergence of periodicity in quantum
systems is more elusive. Here, we show that this behavior can emerge within the repeated-interaction description
of open quantum systems. Specifically, we consider a many-body quantum system that undergoes dissipation
due to sequential coupling with auxiliary systems at random times. We develop dynamical symmetry conditions
that guarantee an oscillatory long-time state in this setting. Our rigorous results are illustrated with specific spin
models, which could be implemented in trapped-ion quantum simulators.
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I. INTRODUCTION

Periodic dynamics is ubiquitous in our everyday experi-
ence and forms a convenient basis for understanding more
complex time-dependent phenomena. Self-oscillators are an
especially important class of oscillatory system, which spon-
taneously oscillate under nonperiodic forcing [1,2]. A familiar
example is the harmonic tone produced when a steady stream
of air is blown across the top of a glass bottle [3]. This emer-
gent regularity makes self-oscillators useful for technologies
based on periodic motion, such as reciprocating engines and
clocks. Recent years have seen a growth of interest in minia-
turizing such devices to the extreme limit where only a few
quantum degrees of freedom are involved [4–10]. This natu-
rally raises the question of how self-oscillations can emerge
from basic principles of quantum dynamics.

A standard approach to this problem is to start from a
classical model of a self-oscillator and then quantize it. Per-
haps the most prominent example is the van der Pol oscillator,
which incorporates the nonlinearity and dissipation necessary
for self-oscillations in the classical domain. This model de-
scribes nonlinear electrical circuits [11] and the semiclassical
dynamics of a laser near threshold [12], for instance. The
quantized van der Pol oscillator has been found to exhibit
a rich variety of behaviors including criticality [13,14] and
quantum synchronization [15,16], replicating known prop-
erties of the corresponding classical model. However, the
rich physics of self-oscillations remains largely unexplored
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in open quantum systems with a finite-dimensional Hilbert
space.

In this paper, we demonstrate that periodic dynamics can
emerge in quantum systems that are driven by dissipation
processes distributed randomly in time. We describe how this
self-oscillatory behavior can arise in quantum many-body
systems. Our approach is based on the so-called repeated-
interaction scheme, or collision model [17–20], where a
stream of auxiliary systems interact sequentially with the sys-
tem of interest. In general, collision models provide a versatile
description of dissipation that reduces to a standard Lindblad
equation in an appropriate limit of fast collisions [21–23].
Here, we consider the case where the collisions are separated
by finite but random time intervals [24].

In this context, we provide precise conditions that guaran-
tee the spontaneous emergence of periodic dynamics at long
times. Our rigorous proof extends the concept of dynamical
symmetries—extensive or local algebraic conditions that have
been recently studied in relation to Hamiltonian and Lind-
blad dynamics [25–35]—to general linear quantum evolutions
(quantum channels). Remarkably, we show that periodicity
appears both at the level of individual random realizations
and in the ensemble average. We illustrate our results with
the example of a four-site XXZ spin ring with an excitation
sink on one site [36–46]. We argue that the self-oscillatory
behavior of this model is generic and not a product of fine
tuning by demonstrating full nonperturbative stability to a
wide set of generic external dissipative perturbations. We also
discuss how the same physics may be observed in a long-range
Ising model, as realized in recent experiments [47–50]. We
work in units with h̄ = 1 throughout.
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τ

p(θ) = γe−γθ

FIG. 1. Schematic representation of the randomized collision
model, where a many-body system interacts with an ancilla for
a fixed interaction time τ and where two consecutive interactions
happen at a random time θ .

II. ONSET OF TIME PERIODICITY FROM RANDOMIZED
COLLISION MODELS

Consider a system S with Hamiltonian ĤS , initially pre-
pared in a generic many-body state ρ̂

(0)
S , and an environment

consisting of a large number of noninteracting copies of
another quantum system called the “ancilla” A. The free evo-
lution of the system under ĤS is occasionally interrupted by
an interaction with one of the ancillae over a time interval
τ , which is described by a joint unitary transformation Û (τ )
acting on S + A (see Fig. 1). Discarding the ancillae leads to
an effective dissipative evolution for the system alone. The
main advantage of this construction compared to standard
models of open quantum systems theory is the replacement
of a complex environment with a series of small ancillae,
such that the consequent dynamics is analytically tractable
but produces the same physics. Collision models have been
recently employed to investigate the thermodynamics of open
quantum systems under very general conditions [51–53] and
can be generalized to include dynamical effects such as non-
Markovianity [22,54] or structured reservoir spectra [55].

Crucially, while each system-ancilla interaction is assumed
to have a fixed duration τ , the free evolution time θ in be-
tween two consecutive collisions is taken to be a random
variable governed by a probability distribution p(θ ). This
scenario, which generalizes the usual repeated-interaction
scheme where θ is deterministic, was recently introduced in
Ref. [24] to model the uncontrollable degrees of freedom
of a thermal environment. Following the above picture, the
dynamics after n collisions have taken place leads to the state

ρ̂
(n)
S = US,θn ◦ �τ ◦ US,θn−1 ◦ �τ ◦ . . . ◦ US,θ1 ◦ �τ

[︸ ︷︷ ︸
n times

ρ̂
(0)
S

]
, (1)

where θ1, . . . , θn are n possible outcomes of the random
variable θ , US,θ [•] = ÛS (θ ) • Û †

S (θ ) denotes the free sys-
tem evolution, and �τ [•] = ∑

k �̂k (τ ) • �̂
†
k (τ ) represents the

completely positive and trace-preserving (CPTP) map that
describes a single collision, with Kraus operators �̂k (τ ) ≡
�̂αβ,τ = √

pα 〈β| Û (τ ) |α〉 and ρ̂A = ∑
α pα |α〉 〈α|.

Let us now define the composite map �̃τ,θ [•] ≡ US,θ ◦
�τ [•] and denote with a subscript I the interaction picture
with respect to the system’s free evolution. Due to its being
CPTP, all the eigenvalues of �̃τ,θ lie inside or on the unit circle
in the complex plane and there is always at least one right
eigenvector with eigenvalue 1 (the stationary state) [56–58],

which we denote by ω̂D, such that �̃τ,θ [ω̂D] = ω̂D. If there
exist other eigenvalues with unit modulus then the corre-
sponding eigenvectors oscillate under the action of �̃τ,θ and
do not decay. These eigenvectors and corresponding eigen-
values, which lie on the unit circle, are referred to as the
peripheral spectrum of �̃τ,θ . The following theorem, which
represents our main result, provides a set of precise conditions
that guarantee the existence of such asymptotic oscillating
states given a general quantum channel, yielding furthermore
a direct way to explicitly construct them from the stationary
state ω̂D (see Appendix B for a detailed proof).

Theorem 1. Consider the CPTP map �̃τ,θ [•] = US,θ ◦
�τ [•] and let ω̂D be its invariant state such that �̃τ,θ [ω̂D] =
ω̂D. If there exists a system operator 
̂ such that the following
two conditions are satisfied,

(i) [ĤS, 
̂] = λ 
̂, (ii) [�̂k,I (τ ), 
̂]ω̂D = 0, ∀k, τ (2)

with λ ∈ R, then the operator 
̂ ω̂D will evolve according to

�̃τ,θ [
̂ω̂D] = e−iλ(τ+θ ) 
̂ ω̂D. (3)

Note that Theorem 1 holds for any dynamics described
by a CPTP map, and thus is valid beyond the randomized
collision model considered here. Physically, conditions (i) and
(ii) characterize the operator 
̂ as a generalized dynamical
symmetry [59]. In particular, condition (i) defines a dynamical
symmetry of the system’s autonomous evolution [25] while
condition (ii) expresses the requirement that this symmetry
must be insensitive to the dissipation. Verifying the latter
condition can be quite demanding in the presence of a generic
environment; however, this complexity is substantially re-
duced in the case of collision models due to the simplicity of
the ancillae. The oscillation frequency λ is clearly unrelated
to any timescale of the system-environment interaction, e.g.,
τ, θ , and solely depends on the spectrum of ĤS . We finally
point out that, due to the symmetry of the spectrum under
complex conjugation of any generic CPTP map, if a dynami-
cal symmetry 
̂ relative to eigenfrequency λ exists, also 
̂† is
a dynamical symmetry relative to λ∗.

An important consequence of Eq. (3) is the onset of stable
oscillations in generic (possibly local) system observables at
long times. Here, the structure of repeated-interaction mod-
els, combined with Theorem 1, plays a key role. Using the
fact that all quantum channels �̃τ,θ share the same periph-
eral spectrum [60], we demonstrate that taking the limit of
many collisions n 
 1 automatically singles out the oscilla-
tory asymptotic states 
̂ω̂D.

The CPTP nature of a dynamical map � allows us to draw
general insightful considerations on its spectrum, of relevance
for the present paper. First of all, its complete positivity guar-
antees that it is always at least “Jordan diagonalizable.” The
set of all proper or generalized left and right eigenoperators,
denoted, respectively, with {ω̂μ} and {ζ̂μ}, forms a basis in
the system’s operator space B(HS ) according to the Hilbert-
Schmidt scalar product, i.e., Tr[ζ̂μ ω̂ν] = δμν . Due to the fact
that every CPTP map is a contraction, its complex eigenvalues
satisfy the constraint |λμ| � 1, i.e., they all lie either on the
border or within the unit circle of the complex plane [56–58].
Finally, being trace preserving implies that the subset of
invariant eigenoperators will always consist of at least one
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element. If there exists at least one μ such that (λμ)l = 1, with
l ∈ [2,+∞), then the CPTP map has multiple invariant states.
Let us now denote with P[•] the projection superoperator onto
the subspace relative to the modulo-1 eigenvalues |λμ| � 1,
and with Q[•] = 1[•] − P[•] its orthogonal projector. Then
for any state such that P[ρ̂] = 0, which physically correspond
to decaying states, one has that∏

j

�̃τ,θ j [ρ̂] =
∏

j

Q�̃τ,θ j Q[ρ̂], (4)

where �̃τ,θ j [•] ≡ US,θ j ◦ �τ [•]. Moreover, one can easily re-
alize that the eigenvalues of Rj[•] ≡ Q�̃τ,θ j Q[•] all strictly lie
inside the unit circle because the spectral gap for each �̃τ,θ j is
nonzero. A finite spectral gap follows from the assumptions
that (a) the Hilbert space of the system is finite dimensional
and (b) the gap is a continuous function of the norm of the
collision CPTP part of the map �τ . In other words, if one
keeps both �τ and collision times finite, then the spectral
gap is finite for each �̃τ,θ j . As a consequence, the maxi-
mal singular value of each satisfies Re[Rj[•]] < 1. Using the
submultiplicativity of the norm ||R1R2...|| � ||R1||||R2...|| �
σ1Re[R1]||R2...|| repeatedly, one obtains the result that the
norm of the product goes to zero. The above considerations
physically imply that, in the long-time limit or, equivalently, in
the infinite number of collisions limit, the peripheral spectrum
of the full map is the one given by the conditions of Theorem 1
on each individual map.

We emphasize that the above considerations hold true for
generic choices of τ and θ . As a consequence, the expectation
value of any system observable Ô at time t = nτ + ∑n

j=1 θ j ,
where n 
 1, becomes

〈Ô(t )〉 � r0Tr[Ô ω̂D] +
∑

α

eiλαt rαTr[Ô 
̂α ω̂D] + H.c., (5)

where r0 = Tr[ω̂Dρ
(0)
S ], rα = Tr[ω̂D

α ρ
(0)
S ], and ω̂D

α ≡ 
̂αω̂D,
and where we allow for multiple dynamical symmetries la-
beled by α. Therefore, under the mild assumption that the
initial state of the system and the chosen observable have
nonzero overlap with at least one ω̂D

α , we find that oscillations
spontaneously arise as a result of Eq. (1), i.e., due to the
randomized collisions with the ancillae. We stress that the
amplitudes of these oscillations are given by rαTr[Ô 
̂α ω̂D],
and therefore opportune strategies to maximize these overlaps
will be required on a case by case basis in order to maximize
the magnitude of oscillations. This periodicity manifests even
at the level of a single realization of the stochastic process,
provided that the many-body system under consideration fea-
tures dynamical symmetries satisfying Theorem 1.

It is instructive to consider what happens when the waiting
time θ takes a fixed, deterministic value. In the regime of
ultrafast collisions θ  τ  1, it is known that the dynamics
described by Eq. (1) becomes equivalent to a Markovian mas-
ter equation in Lindblad form [21–23]. Furthermore, due to
the constancy of θ , the underlying dynamics Eq. (1) acquires
a discrete time-translation symmetry, with period τ + θ . In
Appendix B we explicitly show that conditions (i) and (ii)
of Theorem 1 reduce in this limit to the set of conditions
first derived in Ref. [25] that guarantee the spontaneous

time-translation symmetry breaking and the manifestation of
dissipative time crystals for Lindblad dynamics.

III. EXAMPLE: THE XXZ SPIN RING

We now demonstrate our results with an application to a
physically relevant many-body system. Consider a uniform
Heisenberg XXZ spin chain with four sites arranged in a
one-dimensional ring [61–63]. The Hamiltonian is given by

ĤS =
M∑

j=1

[
σ̂ ( j)

x σ̂ ( j+1)
x + σ̂ ( j)

y σ̂ ( j+1)
y

]

+
M∑

j=1

[
�σ̂ ( j)

z σ̂ ( j+1)
z + ω0

2
σ̂ ( j)

z

]
, (6)

where σ̂ (k)
x,y,z ≡ 1̂

k−1 ⊗ σ̂x,y,z ⊗ 1̂
M−k

denotes a Pauli matrix
acting on site (k) of the chain, with periodic boundary
conditions imposed, σ̂ (M+1)

x,y,z ≡ σ̂ (1)
x,y,z. The above system inter-

acts with a stream of identical ancillae through a repeated
interaction scheme as in Fig. 1. Specifically, the system-
ancilla Hamiltonian is ĤSA = g(σ̂ (A)

x σ̂ (1)
x + σ̂ (A)

y σ̂ (1)
y ), where

g = √
�/4τ . Finally, the ancillae are assumed to be initialized

in the ground state ρ̂A = |0〉(A) 〈0|(A), where the standard com-
putational basis states |0〉( j) and |1〉( j) denote the eigenvectors
of σ̂

( j)
z . To determine the dynamical symmetries satisfying

conditions (i) and (ii) of Theorem 1 analytically, we perform
in this case a Jordan-Wigner transformation of the Hamilto-
nian Eq. (6) to fermionic normal modes and then identify the
eigenfunctions having a node at the site where the system-
ancilla collision takes place. We furthermore note that such
eigenfunctions can be found within the single-particle sub-
space in the case � > 0, while they exist in all particle sectors
in the quadratic case � = 0. For M = 4, the above procedure
leads to two solutions: the first, corresponding to the eigen-
value λ1 = −ω0, is


̂1 = 1̂ ⊗ |ψ1〉 〈φ1| ,
|ψ1〉 = |0〉(2)|0〉(3)|1〉(4) − |1〉(2)|0〉(3)|0〉(4),

|φ1〉 = |0〉(2)|1〉(3)|1〉(4) − |1〉(2)|1〉(3)|0〉(4), (7)

with 1̂ being the identity at site 1, the site which couples to the
ancilla. The second, corresponding to eigenvalue λ2 = ω0 −
4�, is


̂2 = |ψ2〉 〈φ2| ,
|ψ2〉 = 1

2 (|0〉(1)|1〉(2)|0〉(3)|0〉(4) − |0〉(1)|0〉(2)|0〉(3)|1〉(4) ),

|φ2〉 = |0〉(1)|0〉(2)|0〉(3)|0〉(4). (8)

The existence of two distinct dynamical symmetries is
reflected in the rich behavior of local observables on different
sites of the ring. Figure 2 shows the time evolution of 〈σ̂ (k)

x (t )〉,
for k = 1, 2, 3, and their corresponding long-time Fourier
spectra (in absolute value), with ω0 = 1, τ = 1, and various
values of �. We take the time interval between collisions to be
drawn from an exponential distribution p(θ ) = γ e−γ θ , with
γ = 0.5. In addition, we choose the initial density matrix ρ̂

(0)
S

to be a random pure state. Remarkably, despite this random
initial condition and random collisional dynamics, we observe
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FIG. 2. Upper panels: Plots of 〈σ̂ (k)
x 〉, with (a) k = 1 (i.e., the site where the system-ancilla interaction takes place), (b) k = 2 (i.e., the

adjacent site; due to symmetry reasons, the site k = 4 shows the same behavior and thus is not plotted), and (c) k = 3 (i.e., the opposite site)
for different values of the parameter �, as reported in the legend, and for ω0 = 1, γ = 0.5, and τ = 1. The respective insets show a zoom
of these oscillations in the long-time limit, which are present for k = 2, 3. Lower panels: Plots of the absolute value of the corresponding
long-time limit spectra F [〈σ̂ (k)

x 〉] = | ∫R dte−iωt 〈σ̂ (k)
x (t )〉�(t − t∗)|, with �(t − t∗) being the Heaviside step function and t∗ = 250 being an

arbitrarily chosen large value of time after which the above oscillations, when present, have appeared. The peaks in panel (e) are at frequency
ω = ω0 − 4�, while the peaks in panel (f) are at ω = ω0.

stable oscillations emerging predictably at the level of single
stochastic realizations and in all parameter regimes consid-
ered.

Spin observables on the site where the system-ancilla inter-
action takes place have zero overlap—in the Hilbert-Schmidt
sense of Eq. (5)—with both the dynamical symmetries 
̂1,2

and consequently 〈σ̂ (1)
x (t )〉 shows no oscillation for any choice

of parameters [see Fig. 2(a)]. This behavior is also reflected in
the absence of any systematic peak in the long-time spectrum
[Fig. 2(d)]. However, periodicity emerges for observables
defined locally on one of the adjacent sites [sites 2 and 4,
for symmetry reasons, behave in the exact same way; see
Fig. 2(b)] as well as the opposite site [i.e., site 3; see Fig. 2(c)].
Since the former have nonzero overlap with 
̂2, the resulting
oscillations have frequency λ2 = ω0 − 4�, as evident from
the Fourier analysis [see Fig. 2(e)]. It is therefore possible
to tune the oscillation period by changing the asymmetry
parameter � of the many-body system. Conversely, σ̂ (3)

x only
has overlap with the other dynamical symmetry 
̂1 and thus
the resulting oscillations become insensitive to �, being af-
fected only by the on-site energy ω0 [see Fig. 2(f)]. Moreover,
since 
̂1 has identity at the site which couples to the ancilla
[see Eq. (7)], it is unaffected by any nonperturbative change
of system-ancilla interaction. As a result, the oscillations in
〈σ̂ (3)

x (t )〉 are nonperturbatively robust against modifications of
the system-ancilla interaction Hamiltonian [64].

In order to provide evidence of the robustness of this phe-
nomenon, we finally consider an Ising chain with Hamiltonian
given by

ĤS =
M∑

i=1

Bσ̂ (i)
z +

∑
i< j

Ji j σ̂
(i)
x σ̂ ( j)

x , (9)

where B is an on-site magnetic field and exchange interac-
tions are proportional to Ji j = J/|i − j|α with the exponent
α describing the distance dependence. This model has the
merit of having been realized in recent state-of-the-art ion-trap
experiments [47–50]. The system once again is assumed to
interact through a randomized collision model scheme with a
series of qubit ancillae coupled to the central site of the chain,
via the interaction Hamiltonian

ĤSA = Bσ̂ (A)
z + g

(
σ̂ (A)

x σ̂ (4)
x + σ̂ (A)

y σ̂ (4)
y

)
, (10)

where g = √
�/4τ . The ancillae, as before, are initialized in

the ground state. We stress that this collisional dynamics could
be practically implemented by means of a single qubit that is
reset to its ground state after each interaction, e.g., via optical
pumping in an ion-trap setting. As mentioned above, this
model is considered in order to advocate for the robustness
of the effect found in this paper, i.e., the onset of oscillations
provided the system possesses dynamical symmetries satisfy-
ing conditions (i) and (ii) of Theorem 1. The reason is that,
at variance with the XXZ ring considered in the previous
example, the model Eq. (9) is not translation invariant and
lacks the U (1) symmetry. Consequently, an exchange between
different particle sectors cannot be avoided and the dynamical
symmetry defined through the eigenfunction having a node at
the central site satisfies conditions (i) and (ii) only approx-
imately but not exactly. In particular we present the results
of the simulations obtained by choosing the parameters from
the experiments reported in Ref. [50], i.e., M = 7, α = 1.1,
and B = 5J . In Fig. 3 we plot results for the odd and even
population imbalance, I = ∑

j odd〈σ̂ ( j)
z 〉 − ∑

j even〈σ̂ ( j)
z 〉, as a

function of time starting from a random, pure initial state.
We find that the imbalance generically exhibits long lasting
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FIG. 3. Left panel: Time evolution of the odd and even popula-
tion imbalance for the long-range Ising model. The inset shows a
close-up of the oscillations at long times, for three different random
initial conditions. Right panel: Frequency spectrum of the long-time
imbalance, for the same initial conditions. A dominant Fourier peak
is clearly visible. To evaluate the Fourier transform we take only
the long-time data for t > t∗, with Jt∗ = 100. Parameters: M = 7,
B = 5J , � = 4J , τJ = 0.5, and γ τ = 0.5.

oscillations, which however disappear in the asymptotic long-
time limit. Interestingly, we find that the frequency of the
oscillations is the same for each random preparation, but the
phase and amplitude of the resulting oscillations differ. The
random phase of the oscillations in the long-time limit may be
understood to be analogous to the random orientation of the
order parameter in the ordered phase of a symmetry-breaking
phase transition. As a result of this analysis, one can conclude
that if a system operator exists such that it satisfies conditions
(i) and (ii) approximately, then oscillations in an opportune
observable will spontaneously arise in the prethermal regime.
It is also finally worth stressing that the spontaneous onset of
oscillations due to Theorem 1 is not restricted to the two-body
interaction considered in the Ising model, but can be found
for more general many-body types of interactions through the
identification of the corresponding dynamical symmetry 
̂.

IV. CONCLUSIONS

In this paper, we have demonstrated the onset of periodic
time dynamics in a quantum many-body system even though

the underlying evolution is random, and therefore has neither
discrete nor continuous time translation symmetry. In a sense,
this represents the opposite of a time crystal [65,66] because
the long-time behavior of observables—being invariant under
discrete translations by the oscillation period—has more sym-
metry than the governing equations of motion, not less. The
emergence of a stable time reference from timeless resources
is a problem of perennial interest in quantum physics, with
relevance for cosmology [67], thermodynamics [7,10], and
precision measurement [68]. Our paper shows that dynamical
symmetries provide a natural mechanism for this temporal
regularity to arise from randomness in finite-dimensional
quantum systems.

The generality of our formal result and the versatility of
the repeated-interaction framework immediately suggest sev-
eral directions for future research. These include optimization
strategies to produce oscillations in certain target observables,
and a careful analysis of the thermodynamic cost of maintain-
ing a stable time-periodic state.
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APPENDIX A: MATHEMATICAL PRELIMINARIES AND
USEFUL NOTATION

Let us consider an open quantum system consisting of a
system S interacting with an environment E . The total Hamil-
tonian is given by Ĥ = ĤS + ĤE + ĤSE . Assume moreover
that the system and the bath are initially prepared in a factor-
ized state, i.e., ρ̂SE (0) = ρ̂S (0) ⊗ ρ̂E . Then, if we denote with
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τ (H ) the set of trace 1 positive linear operators, i.e., density
matrices, on the Hilbert space H , the total unitary evolution
dictating the evolution of the full composite system induces a
CPTP map �t : τ (HS ) −→ τ (HS ) which can be expressed
in Kraus form as

�t (ρ̂S ) =
∑

k

�̂k (t )ρS�̂
†
k (t ), (A1)

where �̂k (t ) ≡ �̂αβ (t ) = √
pα 〈β| Û (t ) |α〉, Û (t ) = e−itĤ,

and {|α〉} denotes an orthonormal basis of HE such that
ρ̂E = ∑

α pα |α〉 〈α|. Local observables of the system are rep-
resented by self-adjoint bounded linear operators on HS and
form a set denoted by B(HS ). The trace induces a duality form
between τ (HS ) and B(HS )

Tr :B(HS ) × τ (HS ) → R, (Ô, ρ̂ ) �→ Tr[Ô†ρ̂] (A2)

which can be used to define a scalar product on τ (HS ), known
as the Hilbert-Schmidt scalar product. The latter is widely em-
ployed in the so-called vectorization procedure, which maps
operators to vectors and maps (superoperators) to matrices.
To make things explicit, consider an orthonormal basis {σ̂α}
with respect to the Hilbert-Schmidt scalar product (A2), i.e.,
Tr[σ̂ †

α σ̂β] = δα,β . Each operator O can thus be expanded as

Ô =
∑

α

Oασ̂α, Oα = Tr[σ̂ †
α Ô] ∈ R. (A3)

The entries Oα can then be collected in a vector O. Similarly,
each linear map �t acting on a generic ρ̂ ∈ τ (HS ) can be
decomposed on this basis:

�t [ρ̂] =
∑
α,β

�αβ (t )Tr[σ̂ †
β ρ̂]σ̂α,

�αβ (t ) = Tr[σ̂ †
α �t [σ̂β]] ∈ R. (A4)

The numbers �αβ (t ) can be rearranged into a matrix �(t ).
It is worth stressing that the particular Hilbert-Schmidt rep-
resentation of an operator or superoperator depends on the
choice of the basis in the expansions Eqs. (A3) and (A4). The
vectorization procedure is widely employed, together with the
fundamental relation that expresses linear transformations in
terms of matrix multiplications: given three generic operators
{Ôi}i=1,2,3 ∈ B(HS ),

Ô1Ô2Ô3 �→ (
OT

3 ⊗ O1
)
O2, (A5)

with the superscript T denoting the transpose. A straight-
forward application is readily provided: given a Kraus
decomposition of a dynamical map, one can find its matrix
representation as

�t =
∑

k

�k (t ) ⊗ �k (t ), (A6)

with �(t ) denoting the complex conjugate of �(t ).
Finally, it is useful to introduce the concept of a dual map

�
‡
t (sometimes also known as an adjoint map). The latter is

defined by the following relation:

Tr[�‡
t [Ô] ρ̂] = Tr

[
Ô �t [ρ̂]

)
, ∀Ô ∈ B(HS ), ρ̂ ∈ τ (HS ).

(A7)

As it is easy to check, the Hilbert-Schmidt matrix �‡(t ) asso-
ciated to the dual map coincides with the Hermitian conjugate
(i.e., conjugate transpose) of the matrix �(t ), i.e.,

�‡(t ) = �†(t ). (A8)

APPENDIX B: PROOFS OF THE THEOREM AND
COROLLARIES

In what follows, the symbols and quantities refer to the
ones introduced in Appendix A. It will be useful to introduce
the interaction picture with respect to the system’s free Hamil-
tonian, which allows us to “separate” the purely coherent
evolution generated by ĤS and the nonunitary part induced
by the interaction with the environment. For this purpose, we
will adopt the following notation:

�τ [•] = US,τ ◦ �I,τ [•], (B1)

where US,τ [•] ≡ ÛS (τ ) • Û †
S (τ ) [with ÛS (τ ) = e−iτĤS ] de-

notes the free system evolution superoperator and where
�I,τ [•] = ∑

k �̂k,I (τ ) • �̂
†
k,I (τ ) is the quantum channel in the

interaction picture with respect to the system’s free evolution,
with �k,I (τ ) ≡ �̂αβ (τ ) = √

pα 〈β| ÛI (τ ) |α〉, with ÛI (τ ) =
Û †

S (τ )Û (τ ) and ρ̂A = ∑
α pα |α〉 〈α|. Finally, in light of the

main focus of the present paper, we will be interested in
characterizing the CPTP map �t [•] = US,θ ◦ �τ [•], where
t = τ + θ .

Theorem 2. Let us consider a CPTP map �̃τ,θ [•] = US,θ ◦
�τ [•] and let ω̂D be its invariant state such that �̃τ,θ [ω̂D] =
ω̂D. If there exists a system operator 
̂ such that the following
two conditions are satisfied,

(i) [ĤS, 
̂] = λ 
̂, (ii) [�̂k,I (τ ), 
̂]ω̂D = 0, ∀k, τ, (B2)

then the operator will evolve according to

�̃τ,θ [
̂ω̂D] = e−iλ(τ+θ ) 
̂ ω̂D, ∀t, (B3)

with λ ∈ R.
Proof. First of all, let us consider the adjoint of condition

(i), which reads [ĤS, 
̂
†] = −λ∗
̂†. Then the superopera-

tor �(•) ≡ [ĤS, 
̂
†
̂]• is clearly skew Hermitian, being a

commutator of two Hermitian operators, and consequently
its spectrum is purely imaginary. This in particular implies
that, for the Hilbert-Schmidt inner product of any self-
adjoint operator Â = Â† ∈ B(HS ), one has that 〈〈Â�(Â)〉〉 ≡
TrS Â�(Â) = iθ , θ ∈ R. On the other hand, by exploiting the
above condition (i), one finds that

〈〈1̂�(1̂)〉 = TrS 1̂[ĤS, 
̂
†
̂]1̂

= TrS 1̂(
̂†[ĤS, 
̂] + [ĤS, 
̂
†]
̂)1̂

(i)= TrS 1̂
̂†(λ
̂1̂) − λ∗1̂
̂†
̂1̂

= (λ − λ∗)TrS 
̂†
̂

= (λ − λ∗)||
̂||1. (B4)

Since the trace norm of any product of bounded operator and
density matrix is always � 0, this implies that λ = λ∗, i.e.,
λ ∈ R.
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Let us now calculate �̃τ,θ [
̂ω̂D]. Straightforward algebra then allows us to show that

�̃τ,θ [
̂ω̂D] ≡ US,θ ◦ �τ [
̂ω̂D] = US,θ ◦ US,τ ◦ �I,τ [
̂ω̂D] = US,θ+τ ◦ �I,τ [
̂ω̂D]

= ÛS (τ + θ )�I,τ
[

̂ ω̂D

]
Û †

S (τ + θ ) = ÛS (τ + θ )

(∑
k

�̂k,I (τ )
̂ ω̂D�̂
†
k,I (τ )

)
Û †

S (τ + θ )

(ii)= ÛS (τ + θ )

(

̂

∑
k

�̂k,I (τ )ω̂D�̂
†
k,I (τ )

)
Û †

S (τ + θ )

= ÛS (τ + θ )
̂Û †
S (τ + θ )ÛS (τ + θ )

(
�I,τ [ω̂D]

)
Û †

S (τ + θ )

= US,τ+θ

[

̂

]
US,τ+θ ◦ �I,τ [ω̂D] = US,τ+θ [
̂]�̃τ,θ [ω̂D]

= US,τ+θ [
̂]ω̂D, (B5)

where in the first line the group composition law of unitary
superoperators US,τ ◦ US,θ = US,τ+θ has been used, the third
line was obtained from the second by making use of (ii), an
identity 1̂ = Û †

S ÛS was inserted in the fourth line, and the
property of ω̂D to be the invariant state of the composite map
�̃τ,θ was used to get the last line.

To complete the proof, one needs to compute US,τ+θ [
̂].
In order to do that, let us for brevity denote t ≡ τ + θ and
let us consider the time derivative of the above expression
with respect to t . By making use of the explicit expression
for ÛS (t ), i.e., ÛS (t ) = e−itĤS , as well as the trivial relation
[ÛS (t ), ĤS] = 0, one obtains

dUS,t [
̂]

dt
= ÛS (t )(−iĤS )
̂Û †

S (t ) + ÛS (t )
̂
(
iĤS

)
Û †

S (t )

= −iÛS (t )[ĤS, 
̂]Û †
S (t )

(i)= −iÛS (t )λ
̂Û †
S (t )

= −iλUS,t [
̂], (B6)

where condition (i) was used to obtain the second-to-last
line. Let us now introduce the operator σ̂ (t ) ≡ US,t [
̂], which
obviously satisfies the boundary condition σ̂ (0) = 
̂. Then,
Eq. (B6) can be compactly expressed as

d

dt
σ̂ (t ) = −iλσ̂ (t ), σ̂ (0) = 
̂, (B7)

which leads to the solution

σ̂ (t ) ≡ US,t [
̂] = e−iλt 
̂. (B8)

Inserting Eq. (B8) into Eq. (B5) and reexpressing t = τ + θ

finally allows us to demonstrate that

�̃τ,θ [
̂ω̂D] = e−iλ(τ+θ )
̂ ω̂D. (B9)

Here below we furthermore study which form conditions
(i) and (ii) of the previous theorem take in the limiting regime
where the randomized collision model dynamics described
by Eq. (1) of the main text reduces to a Lindblad master
equation. For the latter to be valid, one needs to consider the
case where the collisions stop happening at random times but
occur periodically after a time θ , which then becomes a fixed
quantity. This implies that the underlying dynamics described
by this collision model acquires a time-periodic symmetry,
i.e., the dynamics is given in terms of a repeated interaction

scheme with period τ + θ . For simplicity and without loss
of generality, let us consider the case where θ = 0; the case
where θ is finite is straightforwardly obtained by a simple
change of variable τ → τ + θ .

Corollary 1. Let us consider a state ω̂D and an operator

̂ such that they satisfy the conditions in Theorem 1. Let
us moreover assume that the interaction time τ is vanishing
small while the system-environment interaction Hamiltonian
scales as ĤSE (τ ) = τ−1/2V̂SE , and that the initial state of the
environment ρ̂E = ∑

α pα |α〉 〈α| satisfies the Kubo-Martin-
Schwinger (KMS) condition [69]. Then, the conditions (i) and
(ii) of Theorem 1 become

(i′) [ĤS, 
̂] = λ
̂,

(ii′) [L̂k (τ ), 
̂]ω̂D = [L̂†
k (τ ), 
̂]L̂k (τ )ω̂D0, ∀k,

where L̂k (τ ) ≡ L̂αβ (τ ) = √
pα/t 〈β| V̂SE |α〉 is a Lindblad op-

erator.
Proof. Being a stationary state of the dynamics, ω̂D satis-

fies the following equation:

ω̂D = �τ (ω̂D) = TrE Û (τ )ω̂D ⊗ ρ̂EÛ †(τ ), (B10)

where Û (τ ) denotes the unitary evolution operator acting on
the composite system. Performing the above-mentioned limit
limτ→0+ means Taylor expanding the unitary evolution oper-
ator in powers of τ ; exploiting the particular scaling of the
interaction Hamiltonian and retaining only the terms up to first
order in t leads to

Û (τ ) = 1̂ + i
√

τV̂SE − τ (iĤS + iĤE + V̂SE ). (B11)

The choice of initial state for the environment, i.e., one that
satisfies the KMS condition (e.g., a thermal state) guarantees
that, without loss of generality, we can set TrEV̂SE ρ̂E = 0. By
exploiting this fact, inserting Eq. (B11) into Eq. (B10) then
leads after a little algebra to

Dτ (ω̂D) = −i[ĤS, ω̂
D], (B12)

where we introduced the superoperator Dτ (ρ̂) ≡∑
k[L̂k (τ )ρ̂L̂†

k (τ ) − 1
2 {L̂†

k (τ )L̂k (τ ), ρ̂}] and where L̂k (τ ) ≡
L̂αβ (τ ) = √

pα/τ 〈β| V̂SE |α〉. It is now immediate to
recognize that Eq. (B12) corresponds to

Lτ (ω̂D) = 0, (B13)
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with Lτ being a superoperator in Gorini-Kossakowski-
Sudarshan-Lindblad form. Equation (B13) thus implies that
ω̂D corresponds to the fixed point of the Lindblad superop-
erator and thus belongs to its so-called peripheral spectrum.

By thus retracing the same steps performed in the Proof of
Supplementary Theorem 1 of Ref. [25], it then follows that
conditions (i) and (ii) translate in this limiting case to (i′)
and (ii′).
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Phys. Lett. A 373, 320 (2009).
[58] A. Riera-Campeny, M. Moreno-Cardoner, and A. Sanpera,

Quantum 4, 270 (2020).
[59] Formally, the operator 
̂ thus corresponds to a generalized

rotation on the unit circle of the subspace of invariant states.
It is possible to prove [70] that condition (ii) in fact is satisfied

022209-8

https://doi.org/10.1016/j.physrep.2012.10.007
https://doi.org/10.1103/PhysRevResearch.3.013130
https://doi.org/10.1119/1.2201854
https://doi.org/10.1103/PhysRevE.72.066118
https://doi.org/10.1103/PhysRevE.90.022102
https://doi.org/10.1103/PhysRevE.95.062131
https://doi.org/10.1103/PhysRevX.7.031022
https://doi.org/10.1007/s00023-018-0736-9
https://doi.org/10.1103/PhysRevLett.123.080602
https://doi.org/10.1103/PhysRevX.11.011046
https://doi.org/10.1103/RevModPhys.47.67
https://doi.org/10.1103/PhysRevE.96.052210
https://doi.org/10.1103/PhysRevLett.123.250401
https://doi.org/10.1103/PhysRevLett.111.234101
https://doi.org/10.1103/PhysRevLett.117.073601
https://doi.org/10.1103/PhysRev.129.1880
https://doi.org/10.1103/PhysRevLett.88.097905
https://doi.org/10.1103/PhysRevA.72.022110
https://doi.org/10.1209/0295-5075/133/60001
https://doi.org/10.1103/PhysRevLett.108.040401
https://doi.org/10.1103/PhysRevLett.117.230401
https://doi.org/10.1103/PhysRevA.96.032107
https://doi.org/10.1103/PhysRevE.99.042103
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1103/PhysRevB.102.041117
https://doi.org/10.21468/SciPostPhys.12.3.097
https://doi.org/10.1103/PhysRevLett.125.060601
https://doi.org/10.1088/1367-2630/ababc4
https://doi.org/10.1103/PhysRevB.101.165139
https://doi.org/10.1103/PhysRevB.102.085140
https://doi.org/10.1038/srep28027
https://doi.org/10.1088/1367-2630/aba0e4
https://doi.org/10.1063/5.0045308
https://doi.org/10.1103/PhysRevLett.126.040601
https://doi.org/10.1103/PhysRevLett.125.240404
https://doi.org/10.1103/PhysRevB.102.100301
https://doi.org/10.1103/PhysRevB.101.075139
https://doi.org/10.1103/PhysRevB.101.144301
https://doi.org/10.1103/PhysRevA.102.032205
https://doi.org/10.1103/PhysRevLett.123.193605
https://doi.org/10.1093/nsr/nww023
https://doi.org/10.1103/PhysRevLett.122.040604
https://doi.org/10.1088/1367-2630/abd124
https://doi.org/10.1103/PhysRevB.105.054303
https://doi.org/10.1103/PhysRevResearch.2.032003
https://doi.org/10.1103/PhysRevLett.103.120502
https://doi.org/10.1126/science.1232296
https://doi.org/10.1038/nature13461
https://doi.org/10.1103/PhysRevLett.115.100501
https://doi.org/10.1038/srep14873
https://doi.org/10.1088/1367-2630/aaecee
https://doi.org/10.1016/j.physleta.2020.126576
https://doi.org/10.1142/S123016121740011X
https://doi.org/10.1103/PhysRevB.104.045417
https://doi.org/10.1016/j.physleta.2008.11.043
https://doi.org/10.22331/q-2020-05-25-270


TIME PERIODICITY FROM RANDOMNESS IN QUANTUM … PHYSICAL REVIEW A 106, 022209 (2022)

if 
̂ belongs to a matrix subalgebra of invariant operators of
the adjoint map �̃τ,θ , i.e., �̃†[
̂] = 
̂, which defines dynamical
symmetries and conserved quantities of the dynamical map. The
converse is also true.

[60] The rest of the spectrum may be different due to the random
nature of θ .

[61] M. Takahashi, Thermodynamics of One-Dimensional Solvable
Models (Cambridge University, New York, 2005)

[62] J. Mendoza-Arenas, S. Al-Assam, S. Clark, and D. Jaksch, J.
Stat. Mech.: Theory Exp. (2013) P07007.
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