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Multipartite nonlocality and Bell-type inequalities are used to characterize topological quantum phase transi-
tions (QPTs) in a spinless fermion quantum wire, where both uniform potentials and incommensurate potentials
are considered. First, the nonlocality measures show clear signals at the critical points in both the uniform
model and the incommensurate model. It indicates that these QPTs are accompanied by dramatic changes of
multipartite quantum correlations in the ground states. Second, finite-size scaling analysis is carried out. In
particular, in the incommensurate model where translation invariance is broken, with some rescaling techniques,
we successfully establish the scaling formula in the large-L limit. Finally, the full phase diagram of the model
with mixed potentials is figured out. We find a region which is featured with strong randomness in the large-L
limit. The structure of this region is revealed by analyzing the energy spectrum, and an efficient approach to
characterize this region is proposed.
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I. INTRODUCTION

Quantum phase transitions (QPTs) are interesting phenom-
ena in condensed matter physics [1]. They occur at zero
temperature and are driven by quantum fluctuations. Consider
a quantum system described by a Hamiltonian Ĥ (λ) with λ

being the controlling parameter. As λ changes, the ground
states of the system may change dramatically at some point
λ = λc and exhibit fundamentally different properties at the
two sides of this point. Then we say that the system undergoes
a QPT at the QPT point λ = λc. QPTs have been observed
in various quantum systems, and the characterization of these
QPTs is one of the most important topics in condensed matter
physics [2,3].

QPTs may be accompanied by some general features, such
as the breaking of symmetry [1]. Moreover, some QPTs can
be characterized by local order parameters such as the av-
erage magnetization, while some QPTs need to be studied
by nonlocal order parameters, such as the Chern numbers
describing topological orders [4,5]. Recently, many concepts
from the quantum information theory have been widely used
to characterize QPTs in low-dimensional quantum lattices.
For instance, Osterloh et al. have used the entanglement
concurrence (a measure of two-qubit entanglement) to char-
acterize the QPT in the transverse-field Ising chains [6].
Quantum fidelity and closely related quantities have also been
used to characterize QPTs in many models [7]. Nevertheless,
the biggest achievement in this field have been obtained by
the entanglement entropy (a measure of bipartite entangle-
ment) [8]. Entanglement entropy has not just deepened our
understanding on low-dimensional quantum lattices, but also
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greatly promoted the development of the tensor-network algo-
rithms in the field [9].

In some many-body quantum systems, bipartite quan-
tum entanglement may not be sufficient to capture all the
valuable information in the system [10–15]. Thereby, mul-
tipartite nonlocality—a measure of multipartite quantum
correlations—and QPTs have been studied in various quan-
tum lattices [16–26]. In the past ten years, great progress has
been made in several aspects. First, as tensor-network algo-
rithms are introduced into this field, the size of the system that
can be handled has been extended from n = 2, 3 in early ana-
lytical research on several exactly soluble models [16–18,27]
to rather large n in general quantum spin chains (such as
transverse-field Ising chains, XY chains, spin ladders, and
Kitaev chains) [22,24,26]. For instance, in the transverse-field
Ising chains, it is found that the boundary effects on multipar-
tite nonlocality increase steadily in the critical regions, and
converge to a nonzero constant in noncritical regions [28].
Second, the scope of research has extended from traditional
QPTs (which can be captured by local order parameters)
to topological QPTs (which can be captured by non-local
quantities) [17,29–31]. For instance, in the bond-alternating
Heisenberg chains, multipartite nonlocality is observed in one
phase and is absent in the other phase, and thus presents
quite sharp signals for the topological QPT in the ground
states of the model [31]. Third, with the help of matrix
product operators and thermal-state tensor networks [32], the
algorithms for calculating multipartite nonlocality has been
generalized from zero-temperature ground states [22] to finite
temperatures recently [26]. Fourth, these studies have covered
not just one-dimensions (1D) lattices but also several high-
dimensional lattices [25,33,34]. In particular, in some regions
of the Lipkin-Meshkov-Glick (LMG) model, it is found that
multipartite nonlocality can capture multipartite correlations
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[25] while the bipartite entanglement concurrence and the
generalized global entanglement (another measure of many-
body entanglement) fail [15]. It is worth mentioning that quite
recently a transfer-matrix theory has been proposed to offer
a general description about the finite-size scaling behavior of
multipartite nonlocality in 1D translation-invariant quantum
lattices [35].

These studies show unambiguously that multipartite non-
locality can reveal valuable information about quantum
correlations and QPTs in various quantum lattices. Neverthe-
less, their limitations are also clear. In fact, most of these
studies only considered (1) quantum spin models and (2)
translation-invariant lattices. First, quantum spin models are
magnetic models. However, in many important physical sys-
tems, some other models are involved and deserve further
study. Second, translation invariance is indeed an important
fundamental symmetry in many materials. Nevertheless, in
some modern experiments such as in ultra-cold-atom exper-
iments [36], incommensurate potentials can emerge naturally,
where translation invariance is absent and a number of inter-
esting phenomena are observed. Thereby, it shall be valuable
to investigate the behavior of multipartite nonlocality in those
quantum systems without translation invariance.

In this paper, we will investigate multipartite nonlocal-
ity in a spinless fermion quantum wire by considering both
uniform potentials [37] and incommensurate potentials [38].
The model can undergo topological-type QPTs in the ground
states, which cannot be characterized with local order pa-
rameters. The most exciting result of this paper is that the
global nonlocality measure (defined on the wave functions of
the entire lattice) and the partial nonlocality measure (defined
on the reduced density matrices of subchains) can signal the
QPTs in both the uniform model and the incommensurate
model. Furthermore, we will analyze the full phase diagram
of the models with mixed potentials. Especially, we find an
interesting region which is featured with frequent level cross-
ings and a multi-kink-point structure in the nonlocality curves.
The mystery in this region will be revealed by analyzing the
spectrum.

This paper is organized as follows. We will introduce the
concepts of multipartite nonlocality and Bell-type inequalities
in Sec. II. Models and the solutions will be introduced in
Sec. III. The main results will be divided into four sections,
i.e., Secs. IV to VII. A summary and some discussions can be
found in Sec. VIII.

II. MULTIPARTITE NONLOCALITY
AND BELL-TYPE INEQUALITIES

In this section, we will provide a concise introduc-
tion to multipartite nonlocality and Bell-type inequalities
[12,13,39–43].

In n-site systems, the possible patterns of many-body cor-
relations would be much more complex than in two-site
systems. Let us take, for instance, a quantum model consisting
of four sites a, b, c, and d . Suppose only a, b, and c share
nonlocal correlations with each other; then we may label
the model as {abc|d}. In Fig. 1, we have illustrated various
patterns of multipartite correlations, from the local model
{a|b|c|d} which does not present any correlation to the model

FIG. 1. Various patterns of multipartite correlations in n-site sys-
tems with n = 4. Circles denote the sites, and pink shadows denote
regions in which the sites can share nonlocal correlations with each
other. From panels (a) to (d), the hierarchy of the multipartite corre-
lations increases gradually. The hierarchy of multipartite correlations
can be characterized by Bell-type inequalities.

{abcd} which presents the highest hierarchy of multipartite
correlations.

When n is rather large (i.e., n ≈ 102 in condensed matters),
it is expected that a detailed characterization of multipar-
tite correlations in the form of {a|b|cde . . . } becomes both
intractable and unnecessary. A slightly rough and feasible
approach is to classify general n-site quantum states into
various hierarchies according to the grouping number g [12].
For instance, we shall classify {a|b|c|d} into the lowest hier-
archy with a grouping number g = 4 [Fig. 1(a)]. Moreover,
we can classify both {ab|c|d} and {a|bc|d} into a slightly
higher hierarchy with g = 3 [Fig. 1(b)]. Furthermore, we can
classify both {ab|cd} and {a|bcd} into a high hierarchy with
g = 2 [Fig. 1(c)]. Finally, {abcd} should be classified into
the highest hierarchy with g = 1 [Fig. 1(d)]. It is clear that
a model with a larger (smaller) grouping number g presents a
lower (higher) hierarchy of multipartite correlations. Thereby,
the grouping number g with g ∈ {1, 2, . . . , n} can offer a
rough but still informative and intuitive characterization of
multipartite correlations in n-site systems.

For an n-site quantum state ρ̂n, its grouping number g can
be detected by Bell-type inequalities proposed by Mermin,
Klyshko and Svetlichny et al. [44–46]. First of all, on each
site, we can construct two local observables as

ŝi = ai · σ, ŝ′
i = a′

i · σ, (1)

where ai and a′
i are unit vectors in real space, and σ =

(σ̂ x, σ̂ y, σ̂ z ) is the Pauli vector. Then, the n-site Mermin-
Klyshko-Svetlichny operator Ŝn can be constructed recur-
sively as [12,47]

Ŝn = 1
2 Ŝn−1 ⊗ (ŝn + ŝ′

n) + 1
2 Ŝ′

n−1 ⊗ (ŝn − ŝ′
n). (2)

The operator Ŝ′
n−1 is given by exchanging all the ai and a′

i

in Ŝn−1. It is clear that Ŝn depends upon a set of unit vectors
s = {a1, a′

1, a2, a′
2, . . . , an, a′

n}.
Bancal et al. have proved that if the multipartite correla-

tions in ρ̂n can be reproduced by some models with a grouping
number g, the following Bell-type inequalities should hold
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[12]

Sn =
{

maxs Tr(ρ̂nŜn) � 2
n−g

2 , for n-g even,

maxs Tr(ρ̂nŜ+
n ) � 2

n−g
2 , for n-g odd,

(3)

with Ŝ+
n = (Ŝn + Ŝ′

n)/
√

2.
If the inequality is violated, we conclude that the grouping

number of ρ̂n is (at most) g − 1. Thereby, these Bell-type
inequalities offer us an approach to analyze the grouping num-
ber g (and consequently, the multipartite correlations) of the
concerned quantum state. Moreover, multipartite correlations
detected by the violation of Bell-type inequalities are usually
called multipartite nonlocality. For instance, the lowest rank
inequality is Sn � 2

n−n
2 = 1. If it is violated, the grouping

number for ρ̂n is (at most) n − 1. Thus we can conclude that
the state cannot be described by any local model; in other
words, multipartite nonlocality is observed. The highest rank
inequality is Sn � 2

n−2
2 . If it is violated, the grouping number

of ρ̂n would be (at most) 2 − 1; in other words, we have g = 1.
Thus, we conclude that the state presents the highest hierarchy
of multipartite nonlocality, i.e., genuine multipartite nonlocal-
ity. Generally speaking, a larger value of Sn would indicate
that ρ̂n has a smaller grouping number, and consequently, a
higher hierarchy of multipartite nonlocality.

It needs mention that the inequalities in Eq. (3) are just a
special family of Bell-type inequalities. There are some other
Bell-type inequalities in the literature [44–46,48]. Thereby,
the violation of these inequalities is just a sufficient but not
necessary condition to identify the presence of multipartite
nonlocality. Moreover, in condensed matter physics, we are
usually not interested in the specific value of the grouping
number g. Instead, we just want to establish some qualitative
description about multipartite nonlocality in the concerned
system. Thereby, in this paper we shall ignore the parity of
n − g in Eq. (3) and just consider the inequalities with an even
n − g.

III. MODEL AND METHOD

A. Model

We will investigate a p-wave superconductor wire de-
scribed by a 1D spinless fermion quantum model with an open
boundary condition [37,38],

Ĥ = −
L−1∑
i=1

t (c†
i ci+1 + c†

i+1ci )

+
L−1∑
i=1

�(cici+1 + c†
i+1c†

i )

−
L∑

i=1

μic
†
i ci, (4)

where t is the uniform hopping amplitude, � denotes the p-
wave pairing interaction, and μi is the chemical potential on
site i. t = 1 will be used as the unit of energy in this paper.

We will consider both uniform chemical potentials and
incommensurate potentials, i.e.,

μi = U0 + μ cos(2π iα), (5)

where U0 and u denote the strength of the uniform poten-
tials and the incommensurate potentials, respectively, and
α = (

√
5 − 1)/2 is an irrational number. We will call it the

mixed-potential model in this paper.
When μ = 0, the model would be reduced to the uniform

model studied in Ref. [37], with

μi = U0. (6)

This uniform model has two quantum phases. For U0 < 2|t |
with � �= 0, the model is in a topologically nontrivial su-
perconducting (SC) phase, where Majorana bound states are
present at the ends of the lattice. For U0 > 2|t |, the model is
in a topologically trivial localized phase, and the Majorana
bound states are absent. The physical picture of this localized
phase can be understood by considering U0 → ∞, where the
ground state tends to be |1, 1, 1, . . . , 1〉, i.e., a fully occupied
state. A topological QPT occurs at U0c = 2|t |.

When U0 = 0, the mixed-potential model would be re-
duced to the incommensurate model studied in Ref. [38], with

μi = μ cos(2π iα). (7)

This model also has two phases. When the strength μ of the
incommensurate potential is weak enough, it is expected that
the ground state is still in the topologically nontrivial SC
phase with the edge Majorana fermions. When μ is large
enough, the SC phase would be destroyed, and the model
would be driven into a topologically trivial localized phase.
The physical picture of this localized phase can be understood
by considering μ → ∞, where the ground state tends to be a
randomly occupied state |1, 0, 0, . . . , ni, . . . , 1, 0〉, where the
on-site occupation number ni is given by

ni =
{

1, cos(2π iα) > 0
0, cos(2π iα) < 0 . (8)

A topological QPT occurs at μc = 2(t + �).
It is well known that with Jordan-Wigner transformations,

the Hamiltonian in Eq. (4) can be mapped into the XY model
with an (irrationally modulated) transverse field, i.e.,

Ĥ = −
∑

i

[
Jxσ̂

x
i σ̂ x

i+1 + Jyσ̂
y
i σ̂

y
i+1

] +
∑

i

hiσ̂
z
i (9)

with Jx = t+�
2 , Jy = t−�

2 and hi = μi

2 . It has been pointed out
that these nonlocal Jordan-Wigner transformations can change
the physical properties of the models [37]. For instance, Shan
et al. have shown that under a weak random perturbation,
a spinless fermion wire and its corresponding Ising chain
behave quite differently [49]. Moreover, by comparing two-
site reduced density matrices, an in-depth analysis about the
difference between the spinless fermion wire and its corre-
sponding spin chains have been carried out in Ref. [50]. Since
Eqs. (4) and (9) are not physically equivalent, in this paper
we always consider Eq. (4) in our numerical simulations so to
avoid possible misunderstandings.

The model has a Z2 symmetry [51], where the correspond-
ing good quantum number is the fermion parity P, i.e., particle
number modulo 2. We will use |ψ0〉 and |ψ1〉 to denote the
lowest lying state in the P = 0 sector and P = 1 sector, re-
spectively. In the uniform model with an even finite L, |ψ0〉
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is the true ground state and |ψ1〉 is the first-excited state.1 In
the incommensurate model, as we will show, the multipartite
nonlocality measures for |ψ0〉 and |ψ1〉 become approximately
equal to each other for any μ. Thereby, the results reported
in this paper just correspond to |ψ0〉, when there is no clear
statement.

Our research are organized as follows. The uniform model
with the p-wave pairing interaction � = 1 will be discussed
in Sec. IV. The incommensurate model with � = 1 will be
discussed in Sec. V. The interplay between � and chemical
potentials will be studied in Sec. VI. Finally, the full phase
diagram of the mixed-potential model will be reported in
Sec. VII.

B. Method

1. Calculation of energy spectrum

First of all, the Hamiltonian in Eq. (4) is a standard
quadratic form in terms of Fermi operators and can be exactly
diagonalized into

Ĥ =
∑

n

	nη
†
nηn + const. (10)

Explicitly, by defining a symmetric L × L square matrix A as
[52]

Ai j = μiδi, j − tδi+1, j − tδi−1, j, (11)

and an antisymmetric L × L square matrix B as

Bi j = �δi+1, j − �δi−1, j, (12)

Lieb et al. have shown that 	2
n are just the eigenvalues of

the matrix (A − B)(A + B). Suppose we demand 0 � 	1 �
	2 . . . ; then the full spectrum of the model is given by ±	n,
and the ground state corresponds to the state with all negative-
energy modes filled. The energy gap �E is just determined by
the spectrum, i.e., �E = 2	1.

2. Two-site density matrices

For the uniform model in Eq. (6), the reduced density ma-
trices ρ̂2 for two nearest neighboring sites i and i + 1 can been
figured out analytically [50,53]. Because of the symmetry of
the model, ρ̂2 shall take the following form,

ρ̂2 =

⎛
⎜⎝

1 + 2x + y m
1 − y n

n 1 − y
m 1 − 2x + y

⎞
⎟⎠, (13)

with x = 〈σ̂ z
i 〉, y = 〈σ̂ z

i σ̂ z
i+1〉, m = 〈σ̂−

i σ̂−
i+1〉, and

n = 〈σ̂+
i σ̂−

i+1〉. These quantities can be figured out easily
[50,52,53], and we have provided the corresponding formula
in the Appendix of this paper.

3. Ground-state wave functions

In order to investigate multipartite nonlocality in one-
dimensional chains, it is necessary for us to consider long

1For an odd L, |ψ1〉 would be the ground state and |ψ0〉 would be
the first-excited state.

subchains with n > 2. Therefore, numerical algorithms shall
be used, such as the density matrix normalization group
(DMRG) algorithm. Efficient implementations for DMRG can
be found in many open-source packages, such as the ALPS
package [51], the Itensor library [54], and the Matrix-Product
Toolkit [55]. In this paper, we will use the ALPS package
to express the ground states into matrix product states [51].
[In order to verify the modeling and numerical process in
ALPS, we have independently calculated the ground state
of the model (with L = 3, 4) by ALPS and an exact diag-
onalization code, and carefully checked the wave functions.
The reliability of the numerical result of ALPS is confirmed
unambiguously.] In ALPS calculations, we set the maximal
bond dimension as χ = 200, and we always sweep the lattices
for 50–200 times so as to ensure the convergence of the wave
functions. Moreover, Z2 symmetry is adopted so as to improve
the accuracy of the wave functions.

4. Analytical expression for S2

In the second step, we need to calculate the nonlocality
measure Sn for a given ρ̂n. For a two-qubit state ρ̂2, S2 can be
solved exactly by Horodeckis’ formula [56]. To proceed, we
shall construct a 3 × 3 matrix Q as Qi j (ρ̂2) = tr[ρ̂2 · σ̂i ⊗ σ̂ j],
with i, j = x, y, z. Then S2 is just given by

S2 =
√

λ1 + λ2, (14)

with λ1 and λ2 being the two largest eigenvalues of a 3 × 3
matrix QTQ.

For density matrices in the form of Eq. (13), one can easily
find that Q is a diagonal matrix,

Q =
⎛
⎝2(m + n)

2(n − m)
4y

⎞
⎠. (15)

Consequently, λ1 and λ2 are the two largest numbers in
{4(m + n)2, 4(n − m)2, 16y2}.

5. Numerical optimization of Sn

For a general quantum state ρ̂n with n > 2, there is no
analytical solution. Thus, we need to carry out a multivariable
optimization with respect to 2n unit vectors {. . . ak, bk . . .}.
A numerically efficient approach to solve the problem is the
two-site update algorithm proposed in Ref. [22]. That is, we
optimize the unit vectors site by site, and sweep the entire
lattice until convergence is obtained. In order to improve the
reliability of the optimizations, in this paper, for each set of
physical parameters, 20 independent random initial conditions
are adopted to carry out the optimization.

6. Global nonlocality and partial nonlocality

We will use two quantities to characterize the multipartite
nonlocality in the models (Fig. 2). The first one is the global
nonlocality measure Sg(|ψ〉), which is defined on a pure state
|ψ〉 of the model [Fig. 2(a)]. Thereby, Sg(|ψ〉) measures mul-
tipartite nonlocality in the entire lattices. When necessary,
we will use the logarithm measure (i.e., log2 Sg) to display
the numerical results. We mention that real materials often
contain a large number of atoms (i.e., L → ∞). Nevertheless,
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FIG. 2. Two quantities to characterize multipartite nonlocality in
a 1D L-site lattice, i.e., (a) global nonlocality for a pure state |ψ〉 of
the whole lattice, and (b) partial nonlocality for the reduced density
matrices ρ̂n of continuous n-site subchains. Green dots denote the
lattice, and the pink rectangles denote the regions of interest. Two
typical choices of the subchains are also illustrated, i.e., subchains
locating at (b1) the middle part and (b2) the end of the lattice.

due to the limitations of experimental conditions, the actual
measurement may only occur in a certain part of the system,
rather than the entire lattice. Thereby, we will also analyze
the partial nonlocality measure Sn(ρ̂n), which is defined on
the reduced density matrices ρ̂n of some concerned subchains
[Fig. 2(b)]. Thereby, Sn(ρ̂n) measures multipartite nonlocality
in the n-site subchains. Moreover, in this paper, two typical
subchains are involved, that is, subchains at the middle part
[Fig. 2(b1)] and at the end [Fig. 2(b2)] of the lattice.

IV. UNIFORM MODEL

A. Global nonlocality

We will analyze the global nonlocality in the uniform
model in Eq. (6) from three aspects. First, we will offer
an overall description about the influence of the chemical
potential upon the global nonlocality in the model. Second,
we will pay attention to the critical point at U0c = 2 and use
the nonlocality measure to characterize the QPT. Third, we
will carry out a scaling analysis on our finite-L results and
figure out the large-L limit.

The global nonlocality measure as a function of the chem-
ical potential U0 for the uniform model is shown in Fig. 3(a).
These curves would also be the starting point for all the
following discussions. First of all, for any fixed L, as U0

increases, log2 Sg decreases monotonically. For both |ψ0〉
and |ψ1〉, we numerically find that when U0 = 0 we have
Sg = 2

L−1
2 , which is the maximal value allowed by quantum

mechanics. Thereby, the highest rank inequality Sn � 2
L−2

2

is violated and genuine multipartite nonlocality is observed.
On the other hand, in the large-U0 regions, log2 Sg is quite
small. For |ψ0〉, we expect log2 Sg would tend to be zero with
U0 → ∞, since the ground state tends to be |1, 1, 1, . . . , 1〉.
For |ψ1〉, which has an odd parity, when U0 is rather large
but still finite, it becomes a superposition state of the states
|0, 1, 1, . . . , 1〉, |1, 0, 1, . . . , 1〉, |1, 1, 0, . . . , 1〉, and so on.
We have numerically checked |ψ1〉 for U0 = 1000, and found
that the lowest rank Bell-type inequality S � 20 is violated,
but other inequalities are never violated for L = 2, 4, . . . , 12.

1 2 3
0

5

10

15

20

25

0 1 2 3 4
0

1

2

3

FIG. 3. (a) Global nonlocality measure as a function of the chem-
ical potential for the uniform model (i.e., μi = U0) with length L =
10, 20, . . . , 50. U0c = 2 is the topological QPT point for infinite-
size lattices. The crosses and dots correspond to the ground states
|ψ0〉 and |ψ1〉 in the P = 0 and P = 1 sectors, respectively. The
curves reveal how the chemical potential gradually destroys the
global nonlocality in finite-size lattices. (b) The difference between
log2 Sg(|ψ1〉) and log2 Sg(|ψ0〉). In the large-L limit, � log2 Sg van-
ishes for U0 < U0c and is rather large for U0 > U0c, and thus signals
the critical point U0c = 2.

Thereby, |ψ1〉U0�1 would merely present rather low hierarchy
of multipartite nonlocality with the current Bell-type inequal-
ities. Finally, Fig. 3(a) offers an overall description that as the
chemical potential U0 increases, the model gradually changes
from states with genuine multipartite nonlocality to states with
relatively low hierarchy of multipartite nonlocality (for |ψ1〉)
or product states (for |ψ0〉).

Then we pay our attention to the critical point U0c = 2. In
the large-L limit, |ψ1〉 and |ψ0〉 would become degenerate for
U0 < 2. Thus, it is well known that their energy difference
�E can be used as an order parameter of the phase transition,
i.e., �E = 0 for U0 < 2 and �E �= 0 for U0 > 2. In Fig. 3(a),
one can see that log2 S (|ψ0〉) and log2 S (|ψ1〉) are equal to
each other in most regions of the topologically nontrivial
phase U0 < 2, and are significantly different from each other
in the topologically trivial phase U0 > 2. Thereby, we have
calculated their difference, i.e.,

� log2 Sg = log2 Sg(|ψ1〉) − log2 Sg(|ψ0〉), (16)

and the result is shown in Fig. 3(b). As L increases, � log2 Sg

vanishes rapidly for U0 < 2, and increases steadily for U0 >

2. Thereby, � log2 Sg offers an alternative perspective for us
to characterize the difference between |ψ0〉 and |ψ1〉, and
consequently, detect this topological QPT.

Furthermore, in Fig. 3(a) one may find that as U0 increases,
the nonlocality measure changes slowly in noncritical regions
and changes quickly in the vicinity of U0c = 2. Therefore, we
have calculated the first-order derivative of the measures and
the results are present in Fig. 4. We find that ∂ log2 Sg

∂U0
shows

a peak in the vicinity of U0c = 2 even L is quite small, i.e.,
L = 20. Moreover, as L increases, the peak value increases
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FIG. 4. The first-order derivative of the global nonlocality mea-
sure with respect to the chemical potential U0 in the uniform model
for (a) |ψ0〉 and (b) |ψ1〉. The derivative shows a peak in the vicinity
of the critical point U0c = 2. As L increases, the peak increases
steadily and the FWHM gradually narrows. It indicates that in the
large-L limit multipartite quantum correlations in the model change
dramatically at the critical point.

steadily and the full width at half maxima (FWHM) gradually
narrows.2 In particular, for the ground state |ψ0〉, when L
is large enough, the peak is quite close to the critical point
U0c = 2 for L � 30. Thereby, in the large-L limit, it is ex-
pected that a sharp peak (in other words, a dramatic change in
log2 S (|ψ0〉)) would be observed at U0c = 2. We conclude that
the topological QPT is accompanied by a dramatic change of
multipartite quantum correlations in the model.

We have already involved some qualitative discussion
about the large-L limit. Now we begin a quantitative analysis.
In previous papers about 1D translation-invariant models, it
has been found that in the large-L limit, the nonlocality mea-
sure S scales as [22]

log2 S ∼ KL + b, (17)

with K and b two fitting parameters. It is clear that the slope K
plays a central role in characterizing the large-L behavior. In
fact, K has a clear physical meaning. Let us reconsider Eq. (3),
i.e.,

log2 S � L − g

2
. (18)

For the highest hierarchy of multipartite nonlocality, one has
g � L and consequently, log2 S ∼ L

2 . In other words, we have
K = 1

2 . For the lowest hierarchy of multipartite nonlocality,
we have g ∼ L, and consequently, K → 0. Thereby, the quan-
tity K offers an overall description of multipartite nonlocality
in the large-L limit.

2FWHM characterizes the sharpness of a peak. We use U� and Ur to
denote the two potentials which satisfy f (U0 ) = 1

2 maxU0 f (U0 ) with
f (U0 ) denoting the curves in Fig. 4. Then the quantity �U0 = |Ur −
U�| is just the FWHM. As L increases, �U0 decreases gradually.
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FIG. 5. Data collapse of the global nonlocality measure in the
finite-size uniform model, where KL is defined in Eq. (19). The
quantity K = limL→∞ KL with K ∈ [0, 1

2 ] is a measure of the overall
multipartite nonlocality in infinite-size lattices.

We try to extract the value of K from our finite-L results.
Considering Eq. (17), we define the finite-size slope KL as

KL = log2 S (L) − log2 S (L − �L)

�L
, (19)

with some fixed �L. It is expected that KL would converge in
the large-L limit,

K = lim
L→∞

KL. (20)

The finite-size slope KL with different L is illustrated in
Fig. 5. First of all, when L is large enough, the KL(U0)
curves with various L tend to overlap each other, which can
be regarded as a signal of convergence for the large-L limit.
Moreover, when U0 = 0, we have K = 0.5, i.e., the ground
state presents genuine multipartite nonlocality. When U0 is
rather large, K is quite small (or even zero), which indicates
low hierarchy of multipartite nonlocality (or product states).
One can see that Fig. 5 offers us an intuitive and overall
description about multipartite nonlocality in the infinite-size
model.

B. Partial nonlocality

We turn our attention to partial nonlocality. The analytical
results of the nonlocality measure S2 in infinite-size models
are shown in Fig. 6. Its derivative presents a clear divergence
at the critical point U0c = 2. Nevertheless, for any U0 one
can see that the lowest rank of Bell inequality Sn � 1 is not
violated. In other words, quantum nonlocality is not observed.
Therefore, it is necessary to consider large n.

For such a purpose, we will study finite-size models with
total length L = 200, and the lengths of the concerned sub-
chains are n = 2, 4, 6, . . . , 12. The setting n � L is to help us
capture the basic behavior of subchains in infinite-size lattices.
For finite-size models, a brief description about the position
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FIG. 6. Analytical results of (a) partial nonlocality measure and
(b) its derivative in the infinite-size uniform model with n = 2. U0c =
2 is the critical point. Numerical results from ALPS are shown for a
comparison purpose.

dependence of the partial nonlocality would be helpful. Please
see Fig. 7. In the middle part of the lattice, Sn shows no depen-
dence upon i, i.e., it is translation invariant. In the boundary
area, Sn presents some dependence upon i. Furthermore, when
the system is far away from the critical point U0c = 2 (i.e.,
U0 = 1.0 and U0 = 2.9), the boundary area is quite narrow.
Nevertheless, when the system is near the critical point (i.e.,
U0 = 1.9), one can see the boundary area is rather wide. In
the following discussions, we will just consider two typical
subchains, that is, the subchain at the midpoint of the lattice
and the subchain at the left end of the lattice.

In Fig. 8(a), we present the partial nonlocality for sub-
chains at the midpoint of the lattice. We will use the
nonlocality measure Sn to characterize the two quantum
phases, and then pay our attention to the critical point U0c = 2.

First, in most regions of the topologically nontrivial phase
in U0 < 2, as n increases, Sn decreases gradually. As a result,
the lowest rank Bell inequality Sn � 1 is not violated. There-
fore, no quantum nonlocality can be observed by testing the

FIG. 7. Position dependence of the partial nonlocality Sn in the
uniform model. i and n are the location and the length of the sub-
chain, respectively. In a wide area in the middle of the lattice, Sn

is translation invariant. Strong boundary effect is observed when
U0 ≈ U0c = 2.

current Bell-type inequalities on the subchains. Second, for
the quantum phase in U0 > 2, when n � 6, we find Sn � 1 is
violated, and thus quantum nonlocality is observed. Further-
more, as n increases, Sn is enhanced. In particular, for 2 <

U0 < 3, Sn increases significantly as n increases. Therefore,
the quantum phase in U0 > 2 is featured with the presence of
nontrivial multipartite quantum nonlocality in the subchains.
Third, we consider the critical point U0c = 2. When n is large
enough, one can see that the first-order derivative ∂Sn

∂U0
would

tend to diverge in the vicinity of U0c = 2. It indicates that the
QPT is accompanied by fundamental changes of multipartite
quantum correlations in these subchains.

In Fig. 8(b), we present the partial nonlocality for sub-
chains at the end of the lattice. First of all, on the two sides of
the critical point, the behavior of Sn(U0) is qualitatively dif-
ferent. Moreover, Sn shows a peak in the vicinity of U0c = 2.
Thereby, the result is quite similar to Fig. 8(a). Nevertheless,
there is a subtle difference; that is, in the vicinity of U0c = 2 of
Fig. 8(b), ∂Sn

∂U0
does not present a strong signal of divergence.

We would like to mention that a QPT is a quantum many-body
phenomenon. For translation-invariant lattices, subchains in
the middle part of the lattices are more representative than the
edge subchains to capture the bulk property of the models.
That is why the former presents a sharper signal of the QPT
than the latter.

It may be interesting to carry out a scaling analysis of the
partial nonlocality in the model. Let us consider the peak of
the Sn(U0) curves, i.e.,

S∗
n = max

U0

Sn(U0). (21)

In Fig. 8(c), we have illustrated the dependence of log2 S∗
n

upon n. It is clear that when n is large enough, log2 S∗
n also

scales linearly; i.e.,

log2 S∗
n ∼ K′n + b′. (22)

In our settings, we have n � L. Thereby, we expect this scal-
ing should hold for long subchains in infinite-size lattices.

V. INCOMMENSURATE MODELS

In this section, we will investigate the incommensurate
model defined in Eq. (7). We mention that the Z2 symmetry
survives, and thereby we have also considered both |ψ0〉 and
|ψ1〉 in our calculations. However, we numerically find that
in this incommensurate model, the global nonlocality of the
two states are approximately equal to each other for any μ. A
possible reason is that these incommensurate potentials have
weakened (or eliminated) the difference between the lowest
lying state with an odd particle number and the lowest lying
state with an even particle number. Thereby, in our following
discussions, we just report our results for |ψ0〉.

One of the key features of the incommensurate model is
that the translation invariance is broken. Thereby, first of all,
we will use the position dependence of the partial nonlocality
to offer an intuitive description of the model. Please see Fig. 9.
One sees that Sn exhibits some irregular periodicity. It results
from the cosine function in the incommensurate potentials,
i.e., μi = μ cos(2π iα). Specifically, strong irregularity is ob-
served in the vicinity of critical point μc = 4.
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FIG. 8. Partial nonlocality measure for n-site subchains at (a) the middle part and (b) the left end of the uniform model. The total length
of the model is L = 200 and n denotes the length of the subchains. For panel (a), in most regions of the topologically nontrivial phase U0 < 2,
the Bell inequality Sn � 1 is not violated, and thus quantum nonlocality is not observed. In the quantum phase U0 > 2, multipartite quantum
nonlocality is observed. When n is large enough, Sn tends to be singular at the critical point U0c = 2. For panel (b), the measure just presents
a peak in the vicinity of U0c = 2. (c) Scaling analysis of the peak value of the partial nonlocality measure, i.e., S∗

n = maxU0 Sn(U0 ). log2 S∗
n

scales linearly when n is large enough.

Next, we shall resort to the global nonlocality and the
partial nonlocality to characterize the ground state |ψ0〉 and
the QPT in the model.

A. Global nonlocality

The global nonlocality in the incommensurate model is
illustrated in Fig. 10(a). In the limit μ → 0, the models would
be reduced into the uniform model. Thus, genuine multipar-
tite nonlocality survives and we still have Sg|μ=0 = 2

L−1
2 , or

alternatively,

log2 Sg|μ=0 = L − 1

2
. (23)

As μ increases, the measure decreases gradually. One can see
that the trend of the log2 Sg(μ) curves is quite similar to that
in the uniform mode.

We pay attention to the L dependence of the nonlocality
measure Sg. Unlike the uniform model, it seems that when the
incommensurate potential strength μ is large enough, the scal-
ing formula log2 Sg ∼ KL + b does not hold for short chains.
For instance, let us consider μc = 4 in Fig. 10(a), where as
L increases, log2 Sg does not increase linearly. Therefore, in
order to capture the large-L behavior, the finite-L slope KL

0 10 20 30 40 50

1

1.5

2

2.5

FIG. 9. Position dependence of the partial nonlocality Sn in the
incommensurate model. i and n are the location and the length of the
subchain, respectively. Sn exhibits some irregular periodicity for any
μ. Rather strong irregularity is observed in the vicinity of the critical
point μc = 4.

used in the uniform model may not be the best quantity to be
considered. Instead, we try to rescale the log2 Sg(μ) curves as

log2 S̃g(μ) = 1
L−1

2

log2 Sg(μ), (24)

where the scale factor is related to S = 2
L−1

2 , i.e., the max-
imal value of the nonlocality measure allowed by quantum
mechanics. The results are illustrated in Fig. 10(b). It is quite
clear that the rescaled curves for L = 40, 50, and 60 almost
overlap each other. It indicates that for any given μ, in the
large-L limit we have

lim
L→∞

log2 S̃g = lim
L→∞

1
L−1

2

log2 Sg → const. (25)
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FIG. 10. (a) Global nonlocality measure log2 Sg and (b) the
rescaled measure log2 S̃g = (log2 Sg)/ L−1

2 as a function of the chem-
ical potential strength μ in the incommensurate model [i.e., μi =
μ cos(2π iα)]. The collapse of the log2 S̃g(μ) curves indicates that
multipartite correlations in the infinite-size incommensurate model
can be characterized quite well by global nonlocality.
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FIG. 11. The first-order derivative of the global nonlocality mea-
sure as a function of the chemical potential strength μ in the
incommensurate model. The derivative shows a peak in the vicin-
ity of the critical point μc = 4. As L increases, the peak increases
steadily. It indicates that the quantum phase transition can be charac-
terized by a dramatic change of multipartite nonlocality in the ground
state.

In other words, in this incommensurate model the scaling
behavior

log2 Sg ∼ KL + b (26)

should recover in the large-L limit.
We mention that in Fig. 10(b), log2 S̃g = 1 indicates gen-

uine multipartite nonlocality, and log2 S̃g = 0 indicates that
no nonlocality could be observed by the current Bell-type
inequalities. Thereby, Fig. 10(b) captures the process how the
incommensurate potentials destroy multipartite nonlocality in
infinite-size models.

We then turn our attention to the critical point μc = 4.
In Fig. 11, we have illustrated the first-order derivative of
the nonlocality measure. One can see that for finite L, the
derivative shows a peak in the vicinity of μc = 4. Moreover,
as L increases, the peak value increases steadily. Thereby,
just as in the uniform model, the QPT in the incommensurate
model is also accompanied by dramatic changes of multipar-
tite nonlocality in the ground state. We would like to mention
that this QPT has been characterized with the average two-
site correlation function C̄ = 1

L

∑
i Ci,i+ L

2
in the model with

periodic boundary conditions [38]. In particular, it is found
unambiguously that C̄ is nonzero in μc < 4 and vanishes in
μ > 4, and thus C̄ signals the QPT perfectly. One might find
that the definition of C̄ is not very intuitive. Nevertheless, a
possible reason for its success is that C̄ characterizes some
quantum correlations spreading among multisites (rather than
just two sites) in the lattice. In this paper, our results about
Sg in Figs. 10 and 11 show that multipartite correlations
offer another informative (and much more intuitive) perspec-
tive to characterize the ground state and the QPT in this
model.

B. Partial nonlocality

In this section, we investigate the partial nonlocality in the
incommensurate model. Considering its incommensurability,
we may need to analyze long chains. Thereby, we have set
L = 500 in our simulations. We have also considered the two
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FIG. 12. Partial nonlocality measure for n-site subchains at
(a) the middle part and (b) the left end of the incommensurate model.
The total length of the model is L = 500 and n denotes the length
of the subchains. The behavior of Sn is quite similar to that in the
uniform model. A key difference is that the linear scaling behavior
observed in the uniform lattice in Fig. 8(c) no longer holds in the
incommensurate lattice.

typical subchains in Fig. 2, and the final results are shown in
Fig. 12. First of all, most of the results are similar to those in
the uniform model. For instance, in Fig. 12(a), in the vicinity
of the critical point μc = 4, the nonlocality measure for the
middle subchains presents a singularity. Moreover, in most
regions of μ < μc, the lowest rank of Bell-type inequalities
S � 1 is not violated.

However, as n increases, one sees that the peak value of
the Sn(μ) curves does not present a clear scaling behavior.
Especially, in Fig. 12(b), as n increases, the measure Sn for
the left end subchains even does not present a monotonous
increment. For instance, at μc = 4 we have S12 > S8 > S10.
The n dependence of the partial nonlocality measure in this
model is quite different from that in the uniform model
[see Fig. 8(c)] and reflects the incommensurate nature of the
model.

A comment on Fig. 12(a) is necessary. It is quite clear
that the first-order derivative ∂Sn

∂μ
tends to be infinite in the

large-n limit, which is a strong signal for the QPT. It is
interesting that partial nonlocality of subchains can signal the
QPT in an incommensurate model. The underlying mechanics
is as follows. When incommensurate potentials are present,
although translation invariance is destroyed, the ground state
still presents some irregular periodicity along the lattice, as
disclosed by the position dependence of the partial nonlocality
in Fig. 9. When the subchain length is significantly greater
than the space period of the wave functions, the partial nonlo-
cality can capture part of the bulk properties (such as the QPT)
of the model. That is why the partial nonlocality measure for
the middle subchains can present a clear signal for the QPT at
μc = 4.
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FIG. 13. (a) Phase diagram of the uniform model (i.e., μi = U0)
on the �-U0 plane, with U0c = 2 being the phase boundary. x and z
denote two paths in parallel with the phase boundary. (b) Global non-
locality measure with � = 0.2, 0.4, 0.6, . . . , 2.0. The total length of
the model is L = 30. In the vicinity of U0c = 2, the derivative of
log2 Sg always shows a maximum. (c) In the large-� region, when
the system moves along the phase boundary, the nonlocality measure
changes little in the SC phase (see path x), and changes considerably
in the localized phase (see path z).

VI. INTERPLAY BETWEEN P-WAVE PAIRING
INTERACTION � AND CHEMICAL POTENTIALS

In this section, we will use multipartite nonlocality to in-
vestigate the interplay between p-wave pairing interaction �

and chemical potentials.

A. Uniform model

For the uniform model with any finite nonzero �, the crit-
ical point is still at U0c = 2 [37]. The phase diagram is shown
in Fig. 13(a). For several fixed �, we change U0 gradually so
as to cross the phase boundary, and the numerical results are
shown in Fig. 13(b). One can see that the derivative of the
nonlocality measure always presents a maximum in the vicin-
ity of the critical point U0c = 2. According to the finite-size
analysis in Secs. IV and V, these maximum points correspond
to sharp peaks when L is large enough. Therefore, we expect
that in the large-L limit, the topological QPTs in the uniform
models with finite � are accompanied by dramatic changes of
multipartite nonlocality.

We then pay our attention to the influence of � upon
the nonlocality curves. When � is small (i.e., � = 0.2), the
log2 Sg ∼ U0 curve exhibits a sharp change around U0c = 2.
As � increases, the changing trend of the log2 Sg ∼ U0 curves
becomes flatter gradually. Furthermore, when � is large
enough, we find the curves almost overlap each other in the
SC phase (U0 < 2), and do not overlap in the localized phase
(U0 > 2). This behavior is shown quantitatively in Fig. 13(c),
where x and z correspond to the paths with U0 = 1 (in the
SC phase) and U0 = 2.9 (in the localized phase), respectively.
One sees that on the two sides of the phase boundary, when
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FIG. 14. (a) Phase diagram of the incommensurate model [i.e.,
μi = μ cos(2π iα)] on the μ-� plane, with the dashed line μ =
2� + 2 denoting the phase boundary. x and z denote two paths in
parallel with the phase boundary. (b) Global nonlocality measure
with various �. The total length of the model is L = 30. (c) In the
large-� region, when the system moves along the phase boundary,
the nonlocality measure decreases in the SC phase(see path z) and
increases in the localized phase(see path x). (d) The nonlocality
measure as a function of μ − 2�.

we tune the system along paths in parallel with the phase
boundary, the nonlocality measure behaves quite differently.

B. Incommensurate model

In the incommensurate model [38], for any finite �, the
critical points locate along the path μc = 2� + 2 in the phase
diagram [see Fig. 14(a)]. For several fixed �, we change μ

gradually so as to cross the phase boundary, and the corre-
sponding numerical results are shown in Fig. 14(b). Again,
we find ∂ log2 Sg

∂μ
always presents a maximum in the vicinity of

the critical point μc = 2� + 2. We expect that in the large-L
limit, the topological QPTs in the models would be accompa-
nied by dramatic changes of multipartite nonlocality.

Next, just as in the uniform model in Fig. 13, we try to
move the incommensurate model along paths which are in
parallel with the phase boundary μc − 2� = 2. Let us con-
sider three paths x (i.e., μ − 2� = 2 + δ) and z (i.e., μ −
2� = 2 − δ) with δ = 1, which are illustrated in Fig. 14(a).
The corresponding results about nonlocality are shown in
Fig. 14(c). For path x in the localized phase, as � increases
the nonlocality measure increases gradually. For path z in the
SC phase, when � is not too small, as � increases the non-
locality measure decreases gradually. Thereby, along the two
paths, the measure behaves in opposite ways. Nevertheless,
this behavior is not specific just to these two paths with δ = 1.
In fact, in Fig. 14(d) we have redrawn the nonlocality curves
as a function of μ − 2�, with � = 0.2, 0.6, 1.0, 1.4, 1.8. By
drawing vertical lines in Fig. 14(d), one can see clearly that
the above opposite trends are general on the two sides of the
phase boundary μ − 2� = 2.
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FIG. 15. Phase diagram of the mixed-potential model [i.e., μi =
U0 + μ cos(2π iα)] on the μ-U0 plane. The ground states of the
model have a topologically SC phase and three localized regions
marked as GL1, GL2, and L3. The phase boundaries are obtained
by analyzing the exact energy spectrum of the model with L = 2000.

Therefore, in both the uniform model and the incommen-
surate model, it is quite interesting that when the model moves
in parallel with the phase boundary on the μi − � plane, the
ground-state nonlocality behaves quite differently on the two
sides of the phase boundary. This result provides an alternative
perspective to describe the phase transitions.

VII. INTERPLAY BETWEEN UNIFORM POTENTIALS U0

AND INCOMMENSURATE POTENTIALS μ

In this section, we will consider the mixed-potential model
with μi = U0 + μ cos(2π iα), and investigate the interplay
between the uniform potential U0 and the incommensurate
potential μ. For simplicity, we shall fix � = 1, and analyze
the ground states on the μ − U0 plane.

A. Phase diagram and energy spectrum

First of all, the phase diagram of this mixed-potential
model is unknown. Therefore, we have analyzed the exact
energy spectrum 	n of the model with L = 2000 so as to
figure out the phase diagram. Please see Fig. 15. There are
four phases on the μ-U0 plane, that is, an SC phase and three
localized regions marked as GL1, GL2, and L3. The energy
spectrum in these phases and in the corresponding phase tran-
sitions have been illustrated in Fig. 16.

When both U0 and μ are weak (i.e., lower left corner on the
phase diagram), the system would be in the SC phase. The SC
phase is featured with an unambiguous zero-energy mode and
a finite gap above zero energy [see Figs. 16(a)–16(c)]. When
the uniform potential U0 or the incommensurate potential μ

is large enough, the SC phase would be destroyed, and the
system would be driven into localized phases.

In situations where the incommensurate potential μ is
weak and the uniform potential U0 dominates (i.e., lower
right corner on the phase diagram), the system would un-
dergo a phase transition from the SC phase into the GL1
phase. In Fig. 16(a), we have shown the energy spectrum
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FIG. 16. The lowest two modes 	1 and 	2 in the energy spec-
trum of the mixed-potential model with the ground states crossing
the phase boundaries. The length of the model is L = 2000.

in an SC-GL1 transition by fixing μ = 2 and changing U0.
The critical point locates at U0c = 2.5. One can see that the
GL1 phase does not have zero-energy mode. Instead, it is
featured with an unambiguous energy gap. Moreover, it is
clear that the topological QPT in the uniform model studied in
Sec. IV is just an instance of the SC-GL1 transitions with
μ = 0.

When the uniform potential is absent and the incommensu-
rate potential is strong (i.e., the μ axis in the phase diagram),
the system would undergo a transition from the SC phase into
the GL2 phase, which is just the topological QPT studied
in the incommensurate model in Sec. V. In Fig. 16(b), we
have shown the energy spectrum in the SC-GL2 transition,
where the critical point locates at μc = 4. From the inset of
Fig. 16(b), one can see that the GL2 phase does not have
zero-energy mode and has a nonzero gap. The gap increases
as μ. Nevertheless, even with μ = 10, we merely have 	1 =
2.5 × 10−3. Therefore, when μ is finite, the gap of the GL2
phase is rather narrow. Consequently, this phase just exists in
a rather narrow region in the vicinity of the μ axis. A small
uniform potential U0 can easily destroy this phase and drive
the system into other localized states in the L3 region.

In Fig. 16(c), we have presented the energy spectrum in
an SC-L3 transition by fixing U0 = 1 and changing μ. The
system is in the L3 region for μ > 4. From the inset of the
figure one, can see that the L3 region is featured with a strong
random fluctuation in 	1. We mention that for general U0,
the phase boundary between the SC phase and the L3 region
is still located at μc = 4. Please see the squares in Fig. 15.
A rather slight offset from μc = 4 should origin from the
combination of the irrational number α in the incommensu-
rate potential and finite-size effects in the one-dimensional
lattices.

We have also considered a transition from the GL1 phase to
the L3 region; please see Fig. 16(d). As shown in its inset, the
L3 region is indeed featured with strong random fluctuation
in 	1. Moreover, numerical result indicates that the boundary
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FIG. 17. Global nonlocality measure of the mixed-potential
model as a function of (a) U0 and (b) μ. The length of the model
is L = 30. Vertical dashed lines denote the corresponding SC-GL1
critical points from Fig. 15. The derivative of the measure always
presents a maximum in the vicinity of the critical points.

between the GL1 phase and the L3 region is just along the line
μ = U0 on the phase diagram.

B. SC-GL1 transitions

We shall characterize the SC-GL1 transitions with multi-
partite nonlocality. We consider two approaches to cross the
phase boundary, i.e., along the horizontal direction or the
vertical direction on the phase diagram.

In the first approach, the numerical results of the log2 Sg ∼
U0 curves with several fixed μ are shown in Fig. 17(a). For
a comparison purpose, locations of the critical points from
Fig. 15 have also been illustrated in the figure (see the dashed
vertical lines). For each μ, one can find that the nonlocality
measure always presents a maximum in the vicinity of the
corresponding critical point and thus signals the QPT.

Then let us take a closer look at the results and regard the
incommensurate potential μ as a perturbation to the uniform
model. That is, we express the Hamiltonian of the mixed-
potential model as

Ĥ = Ĥ0 + Ĥ ′, (27)

where Ĥ0 describes the 1D spinless fermion quantum model
with a uniform potential, given by Eqs. (4) and (6), and Ĥ ′
denotes the perturbation from the incommensurate chemical
potentials,

Ĥ ′ = −μ

L∑
i=1

cos(2π iα)c†
i ci. (28)

The effect of the perturbation can be evaluated by the dif-
ference between the log2 Sg ∼ U0 curve with μ = 0 and that
with a small μ. In Fig. 17(a), it is clear that the curves of
μ = 0 (the black solid line) and μ = 0.2 (the black dots)
almost overlap each other. It means that the topological QPT
in the uniform model is quite robust under the perturbation.

As shown in the phase diagram in Fig. 15, when μ is zero,
the SC-GL1 transition point just locates at U0c = 2. The in-
commensurate potential μ of course would have some effect
upon the SC-GL1 critical point. Nevertheless, no considerable
shift of the critical point from U0c = 2 can be observed when
μ � 0.6. This robustness has two causes. First, both the SC
phase and the GL1 phase have a large energy gap. Second,
the cosine-function-modulated incommensurate potential may
not be regarded as an efficient global perturbation. It is ex-
pected that a topological QPT would be robust against local
perturbation [53].

We mention that a quite different situation emerges in the
incommensurate model. For the pure incommensurate model
(i.e., U0 = 0), there is an SC-GL2 transition at μc = 4. This
transition is also a topological QPT. Nevertheless, as shown
in the phase diagram of Fig. 15, a slightly nonzero U0 would
destroy the GL2 phase, and the system would be driven into
the L3 region. Thus, this topological QPT turns out to be
quite fragile. This frangibility also has two causes. First, as
we have shown, the energy gap of the GL2 phase is rather
narrow (i.e., 	1 ≈ 10−3). Second, the uniform potential U0 is
unambiguously a global (rather than local) perturbation.

Let us turn our attention back to the SC-GL1 boundary,
and cross this boundary by fixing U0 and changing μ. The
numerical results are illustrated in Fig. 17(b). First, the dashed
vertical lines denote the critical points from Fig. 15. One
finds the nonlocality measure always presents a maximum in
the vicinity of the critical point. Second, as μ increases, the
log2 Sg ∼ μ curve behaves quite differently from the mono-
tonically decreasing curves in the incommensurate model
(i.e., with U0 = 0) and the uniform model (i.e., μ = 0). In-
stead, a round peak is observed in the SC phase. Thereby,
the interplay between U0 and u can induce rich changes in
multipartite nonlocality in the mixed-potential models.

Figures 17(a) and 17(b) together indicate that the mixed-
potential model presents high nonlocality in the SC phase
and low nonlocality in the LG1 phase. Furthermore, when the
system crosses the phase boundary, the nonlocality measure
would always exhibit a maximum in its first-order derivative.
According to the finite-size analysis in previous sections, it is
expected that in the thermodynamic limit, the SC-GL1 tran-
sitions in the mixed-potential models would be accompanied
by dramatic changes of multipartite correlations in the ground
states.

C. L3 region

We have already analyzed the SC-GL2 phase transition in
Sec. V and the SC-GL1 phase transitions in Sec. IV and VII B.
On the phase diagram, the only region which has not yet been
covered is the L3 region. In this section, we pay our attention
to this region.

First, we try to enter the L3 region on the phase diagram
by fixing U0 and changing μ, and the results of nonlocality
are shown in Fig. 18. One can see that while the nonlocal-
ity measure keeps analytic in all other phases, it exhibits a
multi-kink-point structure in the L3 region. In order to inves-
tigate the origin of this multi-kink-point structure, we shall
investigate a short chain with L = 20. We have considered
the ground states in both the P = 0 sector and the P = 1
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FIG. 18. Global nonlocality measure of the mixed-potential
model as a function of μ for several U0. The length of the model
is L = 30. Vertical dashed lines denote the phase boundary from
Fig. 15. The L3 region is featured with a multi-kink-point structure
in the nonlocality curves.

section, and the results are shown in Fig. 19(a). Moreover, for
a comparison purpose, the energy gap of the model has also
been illustrated in Fig. 19(b). One can check that every kink
point in the log2 Sg ∼ μ curves is related to a level crossing
point (i.e., the turning points of 	1). We have also consid-
ered a model with L = 200 [Fig. 19(c)]. It is clear that as L
increases, more level crossings would occur in the L3 region.
Therefore, the randomness in the spectrum of Figs. 16(c) and
16(d) results from frequent level crossings. Consequently, the
log2 Sg ∼ μ curve would exhibit a multi-kink-point structure
for finite L and would present a randomness feature in the
thermodynamic limit.
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FIG. 19. Origin of the multi-kink-point structure in the L3 region
by considering U0 = 4.5. (a) Global nonlocality measure for the
lowest lying states |ψ0〉 and |ψ1〉 in the P = 0 and P = 1 sectors,
respectively. (b) 	1 in the spectrum of the model with L = 20.
	1 = 0 are related to level crossings between the two lowest lying
states, and the sharp spikes of 	1 are related to level crossings in
the excited states. There is a clear correspondence between the kink
points in the nonlocality curve and the level crossings. (c) 	1 of the
model with L = 200.
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FIG. 20. Location of the zeros of 	1 (indicated by shaded area)
of the mixed-potential model on the μ-U0 plane with (a) L = 10 and
(b) L = 20.

Since the key feature (that is, the randomness) of the region
is caused by level crossings, this region may be better under-
stood and described by considering level crossings for short
chains in details and taking finite-size effects into account.

In Fig. 20, we have illustrated the location of the ze-
ros of 	1 by the shaded area on the μ-U0 plane. The
results are numerically obtained by calculating the curved
surface 	1(μ,U0) and setting a rather small threshold ε as
	1(μ,U0) � ε.

The wide shaded area in the lower left corner of Fig. 20
corresponds to the SC phase, which has unambiguous zero-
energy mode (i.e., 	1 = 0). Nevertheless, shaded areas in
other phases correspond to level crossings. For instance, in
the L = 10 (L = 20) model, if one fixes μ = 4 and increases
U0 from 0 to 5, there would be five (ten) level crossings.
Alternatively, we can say that in the L3 region (i.e., between
GL2 and GL1), as U0 increases, N = 4 (N = 9) states would
take turn to serve as the ground states of the L = 10 (L = 20)
model. As L increases, on one hand, the value of N would
dramatically increase, and on the other hand, the span space
for each of these N states would be greatly suppressed. In the
large-L limit, the L3 region would be divided by numerous
subregions where each subregion has its own ground state.
Therefore, when we scan this region with a finite step (i.e.,
δμ = 0.01 or δU0 = 0.01), the system would easily jump for
a subregion into other subregions, and a randomness feature
in the L3 region is finally formed.

Figure 20 also suggests that the GL2 phase may have no
fundamental difference from the N states (subregions) in the
L3 region. In order to check this idea, we consider a subregion
[marked as GL3 in Fig. 20(b)] in the L3 region and design a
special path (i.e., μ = 2.7U0 + 0.27) connecting the SC phase
and the GL3 subregion. We have calculated the nonlocality
measure along this path, and the result is shown in Fig. 21.
One can see that the nonlocality curve for this SC-GL3 tran-
sition is quite similar to that in the SC-GL2 transition in
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FIG. 21. Global nonlocality measure in an SC-L3 transition
along a special path μ = 2.7U0 + 0.27, which connects the SC phase
and the GL3 subregion in Fig. 20(b). The length of the model is
L = 20.

Fig. 10. For instance, it first-order derivative along the path
also presents a maximum.

Thereby, we conclude that the GL2 phase and the states
in the L3 region belong to the same family. Consequently,
we expect that previously established conclusions in the GL2
phase (for instance, the scaling behavior of the global non-
locality, the singularity of the partial nonlocality Sn in the
SC-GL2 transition, etc.) can also be qualitatively applied in
each subregion in the L3 region.

Finally, it needs mentioning that Fig. 20 also reveals clearly
that the boundary between the SC phase and the L3 region
is composed of the borders between the SC region and N
subregions of the L3 region. In other words, this boundary
is composed of N segments. That explains the slight random
fluctuation of the SC-L3 boundary reported in the phase dia-
gram of Fig. 15.

VIII. SUMMARY AND DISCUSSION

Previous studies on multipartite nonlocality and QPTs are
mainly concentrated on uniform quantum magnetic lattices.
In this paper, we have extended the study to a 1D spinless
fermion quantum wire with a mixed chemical potential, i.e.,
μi = U0 + μ cos(2π iα), where U0 and μ denote the strength
of uniform and incommensurate chemical potentials, respec-
tively. On one hand, when μ = 0 this model would be reduced
to the uniform model with μi = U0, where a topologically
QPT from an SC phase to a localized phase occurs at U0c = 2.
On the other hand, when U0 = 0 the model would be reduced
to the incommensurate model with μi = μ cos(2π iα), where
a topological QPT occurs at μc = 2� + 2.

We have mainly considered models with � = 1 and inves-
tigated the ground states on the μ-U0 plane. There are four
phases on the phase diagram, i.e., an SC phase and several
localized regions marked as GL1, GL2, and L3. The SC phase
is featured with an unambiguous zero-energy mode and a
finite gap above zero energy. The GL1 phase and the GL2
phase are featured with an unambiguous energy gap and a
rather narrow gap, respectively. The L3 region is featured with
a strong randomness. Detailed investigations reveal that the
L3 region is composed of N subregions. In the large-L limit,
N would be a rather large number. Thereby, numerous states
squeeze in the limited area of the L3 region. Moreover, the
GL2 phase, which is reachable by tuning the parameter μ in

the incommensurate model, can be regarded as an instance for
these N states of the L3 region.

Both the SC-GL1 transitions and the SC-GL2 transition
can be characterized by the global nonlocality quite well.
First, the SC phase presents high nonlocality, and the lo-
calized phases present low nonlocality. Second, when the
finite-size model crosses the phase boundary, the nonlocality
measure would always exhibit a maximum in its first-order
derivative.

We have also carried out some finite-size scaling analysis
by just considering the uniform model and the incommen-
surate model. First, in the uniform model, the nonlocality
measure scales as log2 Sg ∼ KL + b, which has been previ-
ously observed in many translation-invariant quantum chains.
In the incommensurate model where translation-invariance is
broken, with some rescale technique we find that this scaling
formula recovers in the large-L limit. Second, the maximum
of the derivative of the nonlocality measure, which is observed
in the vicinity of the critical points, tends to be quite sharp
when L is large. It indicates that in the thermodynamic limit,
the topological QPTs in these two models are accompanied
by dramatic change of multipartite quantum correlations. It is
quite reasonable that these conclusions are also valid to the
general SC-GL1 transitions and the SC-GL2 transition in the
mixed-potential models.

Some robustness of the topologically SC-GL1 transition
in the mixed-potential model is also observed. We regard the
incommensurate potential μ as a perturbation to a uniform
model. When μ is small, we find that the entire log2 Sg ∼ U0

curve is nearly unaffected by μ. In fact, with μ up to 0.2,
the perturbed nonlocality curve and the original curve of the
uniform model almost overlap each other. We suggest two
causes for this robustness. First, the uniform model has a
large energy gap. Second, the incommensurate perturbation
may not be efficiently regarded as global perturbations. It is
expected that a topological QPT would be robust against local
perturbations.

Additionally, the SC-GL1 transition with fixed μ = 0 (i.e.,
in the uniform model) and the SC-GL2 transition with U0 = 0
(i.e., in the incommensurate model) have also been charac-
terized by partial nonlocality of n-site subchains. In both
situations, first, we find that the first-order derivative of Sn

tends to be singular at the critical points, which is a strong sig-
nal for the QPTs. Second, in most regions of the topological
nontrivial SC phase, the lowest rank of Bell-type inequality
S � 1 is not violated, while in the localized phases, non-
trivial multipartite nonlocality is observed. Thereby, partial
nonlocality for the subchains also provides us an informative
perspective to characterize the QPTs.

We comment that the global nonlocality and the partial
nonlocality provide a complementary characterization for the
topologically nontrivial SC phase. This phase is featured with
high hierarchy of global multipartite nonlocality. In contrast,
in n-site subchains, the lowest rank of Bell-type inequality is
not violated in most regions of the phase. The situation is sim-
ilar to the n-qubit Greenberger-Horne-Zeilinger (GHZ) state
|�GHZ〉 = |0〉⊗n+|1〉⊗n√

2
[57], where |�GHZ〉 as a whole contains

nontrivial multipartite quantum entanglement, but in any of its
two-qubit reduced states, quantum entanglement is absent.
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On the phase diagram, the most mystical region should
be the L3 region. While the nonlocality measure is smooth
in all other phases, it presents a multi-kink-point structure
in the L3 region. The underlying mechanics is as follows.
Because of the interplay between the uniform potentials and
the incommensurate potentials, this region is composed of
N subregions, and each subregion has its own ground state.
We mention that in the thermodynamic limit, the value of N
would be extremely large. All these N sub-regions squeeze
in a limited area of the L3 region. Therefore, in the large-L
limit, when we scan this region by fixing μ and changing
U0 (or fixing U0 and changing μ), this multi-kink-point struc-
ture would evolve into some strong random fluctuations. We
mention that the GL2 phase and the states in the L3 region
belong to the same family. Thereby, if one can design some
special paths to investigate the L3 region, it is expected that
the main conclusions established in the GL2 phase would be
recovered. Nevertheless, we mention that when L is large,
since numerous subregions squeeze together, it may become
difficult to figure out a proper path for a specific state in the
L3 region.

Some issues may deserve further investigations. First, al-
though we have considered (1) the interplay between � and
U0 in the uniform model and (2) the interplay between �

and μ in the incommensurate model, the interplay between
these three parameters in the mixed-potential model has not
been discussed. In this complex situation, more phases may
emerge and the phase diagram may be more rich. Second,
although the incommensurate potential μ cos(2π iα) breaks
the translation invariance, the cosine function itself still has a
periodicity. We mention that for some quantum systems under
random fields or with random interactions [58], the periodicity
is completely destroyed. The performance of multipartite non-
locality in characterizing the quantum correlations and QPTs
in these systems remains an open question. Third, it deserves
mention that the violation of some Bell-type inequalities have
been observed experimentally in Josephson phase qubits [59],
photons [60], and trapped ions [61]. In particular, in Ref. [61]
the violation of multipartite Bell-type inequalities in Eq. (3)
with n up to 14 has been observed experimentally. How
to design and carry out a Bell-type experiment on spinless
fermion quantum wires would be a challenging but valuable
task.
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APPENDIX: FORMULA FOR CORRELATION FUNCTIONS

In this Appendix, we just provide the final formula for the
correlation functions involved in the two-site reduced density
matrix in Eq. (13) for the uniform model. For the detailed
derivation process, readers are referred to original literature
such as Ref. [52].

First, one shall calculate three summations over the Bril-
louin zone as follows,

a = 1

L

∑
k

ωk + 2t cos k + μ

2ωk
,

b = 1

L

∑
k

� sin2 k

ωk
,

c = 1

L

∑
k

ωk + 2t cos k + μ

2ωk
cos k, (A1)

where

ωk =
√

(2t cos k + μ)2 + (2� sin k)2. (A2)

In the thermodynamic limit, the above summation needs to
be rephrased as an integral over the Brillouin zone, i.e.,

lim
L→∞

1

L

∑
k

f (k) = 1

2π

∫ π

−π

f (k)dk. (A3)

Then, correlation functions of the fermion operators can be
expressed by a, b, and c. For instance,

〈c†
i ci〉 = a, 〈c†

i c†
i+1〉 = 〈ci+1ci〉 = −b,

〈c†
i ci+1〉 = 〈c†

i+1ci〉 = c. (A4)

Finally, correlation functions of the spin operators can be
identified readily, 〈

σ̂ z
i

〉 = 2〈c†
i ci〉 − 1,

〈σ̂+
i σ̂+

i+1〉 = 〈σ̂−
i σ̂−

i+1〉 = 〈c†
i+1c†

i 〉,
〈σ̂+

i σ̂−
i+1〉 = 〈σ̂−

i σ̂+
i+1〉 = 〈c†

i ci+1〉 (A5)

A slightly complex one is the correlation function 〈σ̂ z
i σ̂ z

i+1〉,
which needs to be calculated with the help of Wick’s theory
as〈
σ̂ z

i σ̂ z
i+1

〉 = 4〈c†
i ci〉〈c†

i+1ci+1〉 − 4〈c†
i c†

i+1〉〈cici+1〉
+ 4〈c†

i ci+1〉〈cic
†
i+1〉 − 2〈c†

i ci〉 − 2〈c†
i+1ci+1〉 + 1.
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