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Quasilocalization dynamics in a Fibonacci quantum rotor
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We analyze the dynamics of a quantum kicked rotor (QKR) driven with a binary Fibonacci sequence of
two distinct drive amplitudes. While the dynamics at low drive frequencies is found to be diffusive, a long-
lived preergodic regime emerges in the other limit. Furthermore, the dynamics in this preergodic regime can be
associated with the onset of a dynamical quasilocalization, similar to the dynamical localization observed in a
regular QKR. We establish that this peculiar behavior arises due to the presence of localized eigenstates of an
approximately conserved effective Hamiltonian, which drives the evolution at Fibonacci instants. However, the
effective Hamiltonian picture does not persist indefinitely, and the dynamics eventually becomes ergodic after
asymptotically long times.

DOI: 10.1103/PhysRevA.106.022206

I. INTRODUCTION

The quantum kicked rotor (QKR) [1,2] is central to under-
standing the basics of quantum chaos and has been subjected
to a plethora of analytical [3–8] as well as experimental [9–15]
investigations over the years [16–19]. In contrast to the clas-
sical rotor, which shows a transition from a regular phase
to the chaotic phases, the QKR seemingly exhibits a non-
ergodic behavior. Using Floquet theory [20–23], it is found
that the eigenstates of the effective Floquet Hamiltonian are
exponentially localized in the angular momentum space. This,
together with quantum interference effects, leads to dynamical
localization in periodic QKRs. Remarkably, the nonergodicity
in the dynamics is manifested for any finite amplitude and
frequency of the kicks (see Appendix A for a brief recapit-
ulation).

The dynamical localization observed in the QKR has far-
reaching implications. It was realized that this localization
can be exactly mapped to the spatial Anderson localization
problem [24] in one dimension [4,5]. However, the Anderson
problem in more than one dimension is known to exhibit a
localization-delocalization transition [25]. In the case of the
QKR, similar transitions were also found, albeit in a slightly
modified version in which the rotor is driven with three
incommensurate frequencies. In this case, the rotor Hamilto-
nian with time-dependent kick amplitude is first mapped to a
three-dimensional rotor [26] with time-independent kick am-
plitudes at equal time intervals [27]. The temporal evolution
at stroboscopic intervals is then found to be governed by a
Floquet Hamiltonian, having exponentially localized eigen-
states in the localized phase. Thus it came to be accepted
that the localization-delocalization transition in a more-than-
one-dimensional Anderson problem can manifest in the rotor
dynamics if the “temporal” dimension is increased, i.e., when
driven with multiple incommensurate frequencies.
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In this paper, we show that a quasilocalization-to-
delocalization transition can also manifest in the QKR driven
with a single frequency but where the kick amplitudes at
subsequent stroboscopic instants follow a binary Fibonacci
sequence. We dub this variant of the QKR the Fibonacci
quantum kicked rotor (FQKR). As our main result, we show
the emergence of a “preergodic” regime in the limit of
high drive frequencies during which the wave function of
the FQKR remains “dynamically quasilocalized” in the an-
gular momentum space. Although the dynamics eventually
becomes ergodic, the preergodic regime has a long experi-
mentally relevant lifetime, which further increases with the
kicking frequency. However, at lower drive frequencies, the
dynamics is always found to be ergodic. We note that the
Fibonacci drive [28,29] has been extensively used to explore
the consequences of temporal quasiperiodicity in various out-
of-equilibrium systems [30–40].

An important distinction in the approach of our work
from previously studied rotors driven at incommensurate fre-
quencies [27,41] is that the quasiperiodicity in our model is
externally enforced through a binary sequence of kick ampli-
tudes. This is manifestly different from previous works where,
for example, quasiperiodicity is indirectly enforced through
quasiperiodic phase shifts of the position operator, keeping the
kick amplitude constant [27]. Secondly, the quasilocalization
observed in the preergodic regime is not discernible from a
standard Floquet analysis of the evolution operator. Rather, it
follows from the existence of self-similar eigenstates and is
thus different from hitherto observed dynamical localization
in the conventional QKR. Crucially, we note that the existence
of a preergodic regime is unique to the FQKR. Furthermore,
we have verified that the quasilocalization is not found for
aperiodic binary sequences (see Appendix B for details).

The rest of this paper is organized as follows: The FQKR
model is introduced in Sec. II. In Sec. III, we present re-
sults from the numerical simulation of the dynamics of the
FQKR. The quasilocalization behavior observed is explained
through a perturbative analysis of the time-evolution operator

2469-9926/2022/106(2)/022206(10) 022206-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3798-6400
https://orcid.org/0000-0002-4669-5536
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.022206&domain=pdf&date_stamp=2022-08-08
https://doi.org/10.1103/PhysRevA.106.022206


BHATTACHARJEE, BANDYOPADHYAY, AND DUTTA PHYSICAL REVIEW A 106, 022206 (2022)

in Sec. IV. Finally, we summarize our results in Sec. V. In
addition, Appendixes A–E recapitulate known results, espe-
cially those of the regular QKR, and also outline the detailed
calculations needed to arrive at some of the results presented
in this paper.

II. MODEL

The QKR is represented by the Hamiltonian

H (t ) = l̂2

2I
+ cos θ̂

∞∑
N=0

KNδ(t − NT ), (1)

where θ̂ and l̂ are the angular displacement and angular mo-
mentum operators, respectively, while I is the moment of
inertia of the rotor. The rotor evolves freely with time period
T between subsequent kicks of strength KN , which act on
the rotor at the stroboscopic instants NT , where N ∈ Z+.
However, in our case, we consider KN ∈ {K1,K2}, and thus
{KN }∞N=1 ≡ K1, K2, . . . constitutes a binary sequence.

If the rotor is initially in a state |ψ (t = 0)〉 = |ψ0〉, the state
of the system at the N th stroboscopic instant (just before the
N th kick) is thus given by

|ψN 〉 ≡ |ψ (NT )〉 = U (NT, 0) |ψ0〉 = UNUN−1 · · ·U1 |ψ0〉 ,

(2)
UN being the the unitary operator propagating the system from
the (N − 1)th to the N th time interval given by

UN = T exp

(
−i

∫ NT

(N−1)T
H (t )dt

)
= e−i l̂2

2 τ e−iKN cos θ̂ , (3)

where T is the time-ordering operator. Note that we have
set h̄ = 1 and rescaled the time period T to a dimensionless
parameter τ = T/I [42]. In the conventional QKR, KN = K
for all N ; the dynamics is then equivalent to an evolution

under the Floquet propagator UF = e−i l̂2

2 τ e−iK cos θ̂ = e−iHF τ ,
such that Eq. (2) can be written as |ψN 〉 = e−iHF N |ψ0〉 . For
a finite K, the eigenstates of the Floquet Hamiltonian HF are
exponentially localized in the angular momentum space. This
leads to a localization of the wave function in the angular mo-
mentum space, and the dynamics is consequently nonergodic
(see Appendix A for details).

Referring to Eq. (1), let us now introduce the FQKR as a
quantum rotor where the sequence of kicks driving the rotor
follows the Fibonacci sequence

KN = K1 + (2 − γ (N ))
�K

2
, (4)

where �K = K2 − K1. The generating function is given by
γ (N ) = �(N + 1)G� − �NG�, where �x� denotes the greatest
integer less than or equal to x and G is the golden mean
G = (

√
5 + 1)/2. γ (N) can thus assume a value of 0 or 2.

To see that Eq. (4) generates a Fibonacci sequence, let us look
at the sequences generated at the Fibonacci instants N ∈ Z+.
The stroboscopic instant corresponding to the N th Fibonacci
instant is given by the function F (N ) which satisfies F (N ) =
F (N − 1) + F (N − 2). Thus we have F (1) = 1, F (2) = 2,
F (3) = 3, F (4) = 5, F (5) = 8, F (6) = 13, and so on. As-

suming that K1 = K1, we therefore find

{KN }F (1)
N=1 ≡ S1 =K1,

{KN }F (2)
N=1 ≡ S2 =K1K2,

{KN }F (3)
N=1 ≡ S3 =K1K2K1,

{KN }F (4)
N=1 ≡ S4 =K1K2K1K1K2,

{KN }F (5)
N=1 ≡ S5 =K1K2K1K1K2K1K2K1, (5)

where Sn denotes the nth Fibonacci sequence, satisfying Sn =
Sn−1Sn−2.

III. NUMERICAL RESULTS

For numerical simulations, the initial state is chosen to be
a normalized Gaussian quantum state centered around the an-
gular momentum l0, ψ0(l ) = ( 2

π
)

1
4 e−(l−l0 )2

, unless otherwise
stated. Furthermore, we employ a truncated basis of angu-
lar momentum states for the numerics so that (l0 − R/2) �
l � (l0 + R/2 − 1), where R is chosen to be large enough
to ensure normalization of the wave function at all times.
For dynamical localized wave functions, this is ensured by
choosing R 	 ξ , where ξ is the localization length. The tem-
poral evolution of the kinetic energy 〈l2〉 for the FQKR with
l0 = 0 is shown in Fig. 1(a). We find that the kinetic energy
grows diffusively at low frequencies (high τ ) and localizes
at high, but finite frequency τ � 0.01. However, as shown in
Fig. 1(b), the localization does not persist indefinitely, and
a diffusive behavior emerges eventually. Nevertheless, the
time after which this happens rapidly increases as the drive
frequency increases. We have numerically verified that the
results remain qualitatively the same for different choices of
K1 and K2. Furthermore, as shown in Appendix C, the above
results remain qualitatively the same for different choices of
l0.

IV. PERTURBATIVE ANALYSIS

The quasilocalized behavior observed in the limit of high
frequencies suggests that there might possibly exist an effec-
tive Hamiltonian, similar to the Floquet Hamiltonian, which
governs the dynamics of the FQKR in this limit. Importantly,
the eigenstates of this effective Hamiltonian should also be
exponentially localized in the angular momentum space. To
verify whether this is indeed the case, we resort to a pertur-
bative analysis of the unitary evolution operator, with τ as the
small parameter.

A. Perturbative expansion of the unitary operator

For τ � 1, the unitary operator UN driving the evolu-
tion between the (N − 1)th and N th kicks can be written as

UN = e−i l̂2

2 τ e−iKN cos θ̂ ≈ e−iL1,2 , where L1,2 is calculated from
a Baker-Campbell-Hausdorff (BCH) expansion of UN ,

L1,2 =K1,2 cos θ̂ + τ

2

[
l̂2 + K1,2

2
(l̂ sin(θ̂ ) + sin(θ̂ )l̂ )

+ K2
1,2

12
sin2(θ̂ )

]
+ O(τ 2), (6)
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(a) (b)

FIG. 1. (a) The kinetic energy of a FQKR grows diffusively at lower drive frequencies and dynamically quasilocalizes at high frequency
(τ < 0.1). The inset shows that the fluctuations in the quasilocalized (preergodic) regime are evenly spread about the mean kinetic energy
calculated from the perturbation analysis (black dashed line) using Eq. (8). (b) The quasilocalization is destroyed, and an ergodic behavior
is found to emerge at very long times. This can be seen from the linear growth of the kinetic energy with unit slope for N > 105. The black
dashed line with unit slope is provided for visual reference. Furthermore, the time after which localization is destroyed progressively increases
as the frequency (τ−1) is increased. The kick amplitudes chosen for the plot are K1 = 10, K2 = 12, and the initial state is chosen to be the
angular momentum eigenstate |ψ0〉 = |l = 0〉.

having retained terms only up to linear order in τ . It can
be shown (see Appendix D) that the propagator driving the
evolution up to the N th stroboscopic instant assumes the form
U (N, 0) = e−iHN N , where the Hamiltonian HN takes the form

HN = α(N )

N
L1 + β(N )

N
L2 + δ(N )

N
[L2, L1]

+ η1(N )

N
[L1, [L1, L2]] + η2(N )

N
[L2, [L2, L1]] + O(τ 2).

(7)

The coefficients α(N )/N , β(N )/N , δ(N )/N , η1(N )/N , and
η2(N )/N , henceforth referred to as the normalized expansion
coefficients (NECs), depend on the exact form of the binary
sequence. The NECs for the Fibonacci sequence are evaluated
in detail in Appendix D.

From Fig. 2(a), we see that while β(N )/N [also α(N )/N =
1 − β(N )/N , as shown in Appendix D] saturates to a constant
value, δ(N )/N exhibits small amplitude fluctuations about a
mean value. On the other hand, the growth of the coefficients
η1(N )/N and η2(N )/N with N is unbounded. The Hamiltonian

HN , as defined in Eq. (7), is therefore N dependent and is not a
conserved quantity, unlike the Floquet Hamiltonian. However,
a different picture emerges if we observe the behavior of
the NECs at Fibonacci instants N . In this case, as shown in
Fig. 2(b), the coefficients β(F (N ))/F (N ), α(F (N ))/F (N ),
and δ(F (N ))/F (N ) are found to saturate to steady val-
ues for N > 10 while the coefficients η1(F (N ))/F (N ) and
η2(F (N ))/F (N ) oscillate between a pair of constant values.
Thus, for N > 10, one can substitute HN=F (N ) = HFi (see
Appendix E for details), where HFi is an effective Fibonacci
Hamiltonian which governs the dynamics of the rotor at
Fibonacci instants. Furthermore, as shown in Fig. 3, the eigen-
states of HFi are also localized in the angular momentum basis.
It therefore follows that the dynamics of FQKR should mimic
that of the regular QKR when observed at Fibonacci instants
N = F (N ) and when terms of order O(τ 2) can be neglected
in the perturbative analysis. Nevertheless, the existence of an
effective Fibonacci Hamiltonian at Fibonacci instants does
not guarantee the persistent localization seen throughout the
evolution. In fact, the localization in between two subse-
quent Fibonacci instants is particularly surprising, given that

FIG. 2. The normalized expansion coefficients defined in Eq. (7) at (a) stroboscopic instants N and (b) Fibonacci instants N .
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FIG. 3. Typical eigenstates of the effective Fibonacci Hamilto-
nian HFi, peaked around different values of l , for K1 = 10, K2 = 12,
and τ = 0.01. The eigenstates are found to be localized in the angular
momentum space.

the growth of the coefficients η1(N )/N and η2(N )/N is un-
bounded when observed at stroboscopic instants, as already
seen in Fig. 2(a).

This apparent contradiction can be explained if one in-
spects the self-similar or fractal nature of the Fibonacci
sequence. To elaborate, let us consider the evolution between
two subsequent Fibonacci instants N ∗ and N ∗ + 1, where
we assume F (N ∗) 	 1 so as to ensure that the NECs have
saturated to their mean values. From Eq. (5), we note that
the sequence of kicks up to N∗ = F (N ∗) and N∗∗ = F (N ∗ +
1) is given by SN ∗ and SN ∗+1, respectively. However, by
construction, SN ∗+1 = SN ∗SN ∗−1, which immediately implies
that the sequence of kicks between N∗ and N∗∗ is nothing but
the sequence SN ∗−1.

The dynamics of the rotor in between two Fibonacci in-
stants can now be analyzed as follows. Given a localized wave
function |ψN∗ 〉, the evolution of this wave function in between
the Fibonacci instants N ∗ and N ∗ + 1 is generated by the
sequence of kicks SN ∗−1. Let us now denote the Fibonacci
instants nested within the sequence SN ∗−1 as M, where
M = 0, 1, 2, . . . ,N ∗ − 1. The wave function of the rotor
at these instants thus satisfies |ψN∗+F (M)〉 ≈ U F (M)

Fi |ψN∗ 〉.
Hence it straightaway follows that the wave function also
remains localized at the instants N∗ + F (M), as the evolution
is driven by the same effective Fibonacci Hamiltonian UFi.
Proceeding similarly, one can argue that the sequence of kicks
acting between N = N∗ + F (M∗) and N∗ + F (M∗ + 1) is
precisely the sequence SM∗−1 and hence the wave function

remains localized at the Fibonacci instants nested between
N = N∗ + F (M∗) and N∗ + F (M∗ + 1). Thus the quasilo-
calization is enforced in a self-similar way between two
subsequent Fibonacci instants. In other words, the localized
eigenstates of UFi act as self-similar eigenstates of U (N, 0)
and ultimately lead to the quasilocalized dynamics observed
stroboscopically.

To further support the arguments presented above, we esti-
mate the localization length 〈l̂2〉loc, with the initial state of the
rotor being an angular momentum eigenstate, |ψ0〉 = |l0〉, for
simplicity in calculation. Assuming that |ψF (N )〉 ≈ U F (N )

Fi |l0〉
and UFi = V DV †, where D is a diagonal matrix, it can be
shown that (see Appendix A)

〈l̂2〉loc =
∑
l,m

l2|Vl0m|2|Vlm|2. (8)

The localization length calculated using the above equation in-
deed turns out to be similar to that obtained from exact
numerics. This is illustrated in the inset of Fig. 1(a), where
the fluctuations in the kinetic energy for N < 104 are found
to be evenly distributed about the mean value calculated using
Eq. (8).

It is important to realize that higher-order terms in the
BCH expansion, which we have ignored so far, can become
significant under two conditions: (i) if the drive frequency
is lowered, so that terms of order O(τ 2) become significant,
and (ii) if the NECs of the higher-order commutator terms
grow boundlessly so that such terms, although initially in-
significant, start to dominate after a certain time has elapsed.
As we shall see below, the second condition is particularly
important as it explains both the ergodic behavior observed at
low frequencies and the breakdown of the localization after
sufficiently long time at high frequencies.

B. Emergence of diffusive behavior at low frequencies

Let us recall that the saturation of the NECs to steady
values for N 	 1 is crucial for the existence of an effective
Fibonacci Hamiltonian. Without explicitly determining all the
commutator terms that may contribute when terms of order
∼O(τ 2) are included, let us analyze the expansion coefficients
of the commutators [L1, [L1, [L1, L2]]], [L2, [L2, [L1, L2]]],
and [L1, [L2, [L1, L2]]]. We denote the corresponding expan-
sion coefficients as μ1(N ), μ2(N ), and μ3(N ), respectively.
These NECs at N = F (N ) with N 	 1 are found to
be [34]

μ1(F (N ))
F (N )

= (−1)N

120

[
GN−1 + 1

G
[(−1)N (3G − 4) − 1 − 3G]

]
, (9a)

μ2(F (N ))
F (N )

= (−1)N

120

[
GN−1(2 − G) + 1

G
[(−1)N (4G − 7) − 2 − G]

]
, (9b)

μ3(F (N ))
F (N )

= (−1)N

120

[
2GN−1(1 − G) + 1

G
[(−1)N (3 − G) + 3 + 4G]

]
, (9c)

where we have ignored terms of order G−(N+1), G−(2N+1),
G−(3N+1), etc. It is immediately clear that the NECs defined
above do not saturate to steady values even in the asymptotic

limit; rather, their growth with N is unbounded. Indeed, it can
be shown that this is true for all the NECs of higher-order
nested commutators [34]. Thus we conclude that when the
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frequency of the drive is low enough such that the contribution
of higher-order terms become significant, the dynamics at
Fibonacci instants is no longer governed by an effective Fi-
bonacci Hamiltonian. The evolution of the rotor then mimics
that of random driving, thereby leading to the emergence of
ergodic behavior after sufficiently long times.

C. Crossover from the preergodic regime to the ergodic regime
at high frequencies

The unbounded growth of the NECs in Eqs. (9a)–(9c) has
a more important consequence. For τ � 1, the higher-order
terms containing the commutators corresponding to these
NECs are insignificant when N is not too large. However, it
is easy to see that there will exist a long but finite time after
which such terms will become significant and, consequently,
the ergodic behavior will set in. This leads to the breakdown
of the localization observed in the limit of high frequency.
Indeed, one can perform an order-of-magnitude estimation of
the time Ndeloc, after which the diffusive growth is expected
to manifest as follows. From Eqs. (9a)–(9c), we note that
the leading-order term unbounded in N grows as GN /120.
The O(τ 2) terms in the expansion of Eq. (7) thus become
significant when τ 2GNdeloc/120 ∼ 1. For τ ≈ 0.01, this trans-
lates to Ndeloc ≈ 29 or Ndeloc ≈ 1.3 × 106. Thus, within the
experimentally realizable time scale, one should observe the
quasilocalization. This agrees remarkably well with the results
found from exact numerical calculations [see Fig. 1(b)].

Finally, we note that the delocalization time Ndeloc can be
interpreted as the time required by the system to “resolve
the randomness” of the quasiperiodic drive. The existence of
the time-independent effective Hamiltonian for small τ , com-
bined with the self-similarity of the drive, leads to an effective
periodic evolution from the system’s point of view. Only at
later times, when higher-order terms start to dominate and the
effective time-independent Hamiltonian picture breaks down,
does the system realize that the drive is not periodic and does
diffusive dynamics set in.

V. SUMMARY

In conclusion, we have demonstrated that a quantum rotor
driven with a binary Fibonacci sequence can exhibit both

diffusive and quasilocalized behavior. The latter manifests in
the limit of high frequency of the drive, although diffusive be-
havior eventually sets in after sufficiently long times. It is in-
teresting to note that the preergodic regime, within which the
quasilocalization persists at high frequencies, is reminiscent
of the prethermal regimes observed in out-of-equilibrium
many-body quantum systems. In such systems, the presence
of approximately conserved quantities prevents the system
from thermalizing for a long period of time. An important
question that arises is whether the dynamics of the FQKR
can be mapped to a real-space lattice model describing spa-
tial localization, just as the dynamics of the regular QKR
is mappable to the one-dimensional Anderson problem. If a
mapping does exist, it would be interesting to see how the
quasilocalization observed in the FQKR manifests in the dual
model. This is, however, beyond the scope of this paper.
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APPENDIX A: REGULAR QUANTUM KICKED ROTOR

The regular QKR is represented by the Hamiltonian

H (t ) = l̂2

2I
+ K cos θ̂

∞∑
N=0

δ(t − NT ). (A1)

As discussed in Sec. II, the above Hamiltonian always exhibits
dynamical localization, irrespective of the drive frequency
[see Fig. 4(a)]. The Floquet propagator governing the evolu-
tion of the rotor at stroboscopic instants is given by

UF = e−i l̂2

2 τ e−iK cos θ̂ , (A2)

where τ = T/I is a dimensionless parameter and we have
set h̄ = 1. Let us consider the eigenspectrum of the Floquet

(a) (b) (c)

FIG. 4. (a) Evolution of the kinetic energy observed at stroboscopic instants N for a regular rotor, K2 = 15. The energy dynamically
localizes for all driving frequencies, barring resonance conditions, which are not considered in this paper. (b) and (c) Typical eigenstates of the
Floquet propagator UF localized around different values of l , defined in Eq. (A2), with K = 15 and kick frequency τ = 1 (b) and τ = 0.001 (c).
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(a) (b)

FIG. 5. (a) Evolution of the kinetic energy observed at stroboscopic instants N when the rotor is driven with (a) biperiodic and (b) aperiodic
binary sequences and the kick amplitudes are chosen as K1 = 10 and K2 = 12. The energy saturates for all driving frequencies in the case of
the biperiodic sequence, while it grows diffusively in the other case.

propagator: UF = ∑
m eiφm |φm〉 〈φm|. As the Hilbert space

dimension is infinite and the quasienergies φm are defined
modulo 2π , the Floquet propagator has a dense eigenspectrum
with ill-defined mean level spacing. However, as shown in
Fig. 4(b), all the eigenstates |φm〉 turn out to be exponen-
tially localized in the angular momentum space, unless τ � 1,
which we shall consider shortly. To see how these proper-
ties lead to a dynamical localization in the dynamics, let us
explicitly calculate the kinetic energy in terms of the matrix
elements of the Floquet propagator. Without loss of generality,
we assume that the rotor is initialized in a definite angular
momentum state |l0〉. The kinetic energy after N stroboscopic
instants can then be evaluated as

〈l̂2〉 = 〈l0|U N†
F l̂2U N

F |l0〉 =
∑

l,m,m′
l2eiN (φm−φm′ )Vl0m′V ∗

lm′VlmV ∗
l0m,

where Vl0m = 〈l0|φm〉 and so on. As the eigenstates are expo-
nentially localized in the angular momentum basis, we have
Vll ′ ≈ 0 for |l − l ′| > ls, where ls is the localization length and
is a measure of the number of Floquet eigenstates which over-
laps with each angular momentum state. It is thus clear that
in the equation above, only a finite number of eigenstates can
contribute to the sum, resulting in the effective quasienergy
spectrum being discrete with a mean level spacing of 2π/ls.

The onset of dynamical localization can now be explained
as follows. If 2πN/ls 	 1, all the oscillating terms in Eq. (A3)
vanish; the average kinetic energy evaluates to

〈l̂2〉 =
∑
l,m

l2|Vl0m|2|Vlm|2 ∼ l2
s + l2

0 , (A3)

which is independent of N . Furthermore, the Heisenberg
time, defined as the initial time for which the kinetic energy
grows diffusively, can also be roughly approximated from
2πN∗/ls ≈ 1 or N∗ ∼ ls. As the kinetic energy is known to
follow the classical dynamics till N∗ with a diffusion constant
∼K2

cl = K2τ 2, we have

〈l̂2〉 ∼ K2τ 2N∗ + l2
0 (A4)

or

l2
s ∼ K2τ 2ls, (A5)

which determines both the localization length and the Heisen-
berg time as

ls ∼ K2τ 2. (A6)

APPENDIX B: DYNAMICS OF THE ROTOR UNDER
BIPERIODIC AND APERIODIC BINARY SEQUENCES

The dynamical quasilocalization observed in the case of the
FQKR at high-frequency drives is not guaranteed for arbitrary
binary sequences. To illustrate this, we consider a QKR driven
with a biperiodic sequence with KN = K1(K2) for even (odd)
N and an aperiodic binary sequence where the amplitude of
the kick can either be K1 or K2 with equal probability at every
stroboscopic instant. This is illustrated in Fig. 5, which shows
that energy saturates for all driving frequencies in the case
of the biperiodic sequence [see Fig. 5(a)] while it evolves
diffusively in the case of the aperiodic sequence, 〈l̂2〉 ∝ N ,
irrespective of the driving frequency [see Fig. 5(b)].

APPENDIX C: QUASILOCALIZATION DYNAMICS FOR
DIFFERENT l0

As discussed in Sec. III, the initial state of the rotor is
chosen to be a coherent Gaussian state centered around the
angular momentum l0, i.e., ψ0(l ) = ( 2

π
)

1
4 e−(l−l0 )2

. The numer-
ical results presented in this paper correspond to l0 = 0. To
verify that the quasilocalization behavior observed is insensi-
tive to the choice of l0, we plot the evolution of the kinetic
energy for different values of l0 in Fig. 6. We find that the
choice of l0 only alters the mean value of the kinetic energy in
the preergodic phase.

APPENDIX D: HIGH-FREQUENCY EXPANSION OF THE
UNITARY OPERATOR

In this Appendix, we shall derive the high-frequency ex-
pansion of the time-evolution unitary operator for a QKR
when driven with a binary sequence of kicks. As discussed
in Eq. (3) of Sec. II, the unitary operator driving the evolution
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FIG. 6. Evolution of the kinetic energy for the FQKR with dif-
ferent choices of l0. The kick amplitudes are chosen to be K1 = 10
and K2 = 12.

between the (N − 1)th and N th kicks is given by

Un = e−i l̂2

2 τ e−iKN cos θ̂ . (D1)

We recall that given a pair of noncommuting operators A and
B, one can write eAeB = eC , where C is given by the Baker-
Campbell-Hausdorff formula,

C=A + B + 1

2
[A, B] + 1

12
([A, [A, B]] + [B, [B, A]]) + · · · .

(D2)
Substituting A = −il̂2τ/2 and B = −iKN cos θ̂ , it is straight-
forward to check that the only commutators in the above
expression which contribute up to linear order in τ are

[A, B] = − iKNτ

2

(
l̂ sin θ̂ + sin θ̂ l̂

) + O(τ 2), (D3a)

[B, [B, A]] = −iK2
Nτ

2
sin2 θ̂ + O(τ 2). (D3b)

At high frequencies or τ � 1, we can therefore neglect all
other commutators in Eq. (D2). Recalling KN ∈ {K1,K2} for
a binary sequence, we obtain

UN ≈ e−iL1,2 , (D4a)

L1,2 = K1,2 cos θ̂ + τ

2

[
l̂2 + K1,2

2
(l̂ sin θ̂ + sin θ̂ l̂ )

+ K2
1,2

6
sin2 θ̂

]
+ O(τ 2). (D4b)

Let us now consider the evolution of the QKR when driven
with a Fibonacci sequence of kicks. For τ � 1 such that
Eqs. (D4a) and (D4b) are satisfied, the evolution operator
assumes the form

U (N, 0) = · · · e−iL2 e−iL1 e−iL2 e−iL1 e−iL1 e−iL2 e−iL1 . (D5)

Our purpose is to derive an approximate expression for the
evolution operator by progressively approximating the unitary
operator for adjacent time intervals. Let us denote the evolu-
tion over the first two time intervals: U (2, 0) ≈ e−iL2 e−iL1 =

e−i�12 , where �12 is to be computed using the BCH formula.
As before, we calculate the commutators

[−iL2,−iL1] = i(K2 − K1)
τ

2
(l̂ sin θ̂ + sin θ̂ l̂ )

+ O(τ 2), (D6a)

[ − iL1, [−iL1,−iL2]] = iK1(K2 − K1)τ sin2 θ̂ + O(τ 2),

(D6b)

[ − iL2, [−iL2,−iL1]] = −iK2(K2 − K1)τ sin2 θ̂ + O(τ 2).

(D6c)

It can be straightforwardly verified from the above ex-
pressions that all other higher-order commutators, such as
[L1, [L1, [L1, L2]]], will contribute terms which are at least
quadratic in order τ . Retaining terms up to linear order in τ ,
we find

−i�12 = −iβ(2)L2 − iα(2)L1 + δ(2)[−iL2,−iL1]

× η1(2)[ − iL1, [−iL1,−iL2]]

+ η2(2)[ − iL2, [−iL2,−iL1]],

where α(2) = β(2) = 1, δ(2) = 1/2, and η1(2) = η2(2) =
1/12.

We can now build the unitary operator as follows. After
three kicks, the evolution operator can be approximated as
U (3, 0) = e−iL1 e−i�12 = e−i�13 , where �13 is found to be

−i�13 = − 2iL1 − iL2 − 1

6
[−iL1, [−iL1,−iL2]]

+ 1

6
[ − iL2, [−iL2,−iL1]]. (D7)

A careful inspection reveals that when the N th kick is K1, the
expansion coefficients obey the following recursion relations:

δ(N ) = δ(N − 1) − 1

2
β(N − 1), (D8a)

η1(N ) = η1(N − 1) − 1

2
δ(N − 1)

+ 1

12
β(N − 1)(1 − α(N − 1)), (D8b)

η2(N ) = η2(N − 1) + 1

12
β2(N − 1). (D8c)

Conversely, when the N th kick is K2, the recursion relations
are given by

δ(N ) = δ(N − 1) + 1

2
α(N − 1), (D9a)

η1(N ) = η1(N − 1) + 1

12
α2(N − 1), (D9b)

η2(N ) = η2(N − 1) + 1

2
δ(N − 1)

+ 1

12
α(N − 1)(1 − β(N − 1)). (D9c)

To verify the above recursion relations, we explicitly calculate
�14 and �15 as in Eq. (D7),

−i�14 = −3iL1 − iL2 − 1

2
[−iL2,−iL1]
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− 1

4
[ − iL1, [−iL1,−iL2]]

+ 1

4
[ − iL2, [−iL2,−iL1]], (D10)

−i�15 = −3iL1 − 2iL2 + [−iL2,−iL1]

+ 1

2
[ − iL1, [−iL1,−iL2]]. (D11)

We recall from Eq. (D5) that the fourth and fifth kicks in
the Fibonacci sequence are K1 and K2, respectively. Thus the
expansion coefficients in �14 and �15 satisfy the recursion
relations given in Eqs. (D8a)–(D8c) and (D9a)–(D9c), respec-
tively.

The recursion relations in Eqs. (D8a)–(D8c) and (D9a)–
(D9c) can be unified using the generating function of the
binary Fibonacci sequence, defined as

γ (N ) = �(N + 1)G� − �NG�, (D12)

where G = (
√

5 + 1)/2 is the golden ratio and �x� denotes
the greatest integer less than or equal to x. For any positive
integer N , γ (N ) ∈ {1, 2}. The function γ (N ) − 1 is therefore
a Boolean function, and it generates the required Fibonacci
sequence. We show this below by explicitly evaluating it for
N = 1, 2, 3, . . . , 13: Substituting K1 and K2 in place of 1
and 0 in the second row of the table above, we recover the
Fibonacci sequence defined in Eq. (5) of Sec. II.

N 1 2 3 4 5 6 7 8 9 10 11 12 13

γ (N ) − 1 1 0 1 1 0 1 0 1 1 0 1 1 0

Using the generating function γ (N ) defined above, the
coefficients β(N ) and α(N ) are immediately evaluated as

β(N ) =
N∑

n=1

(2 − γ (n)), (D13a)

α(N ) =
N∑

n=1

(γ (n) − 1) = N − β(N ). (D13b)

Having evaluated α(N ) and β(N ), the recursion relation for
δ(N ) can be simplified to

δ(N ) =
N∑

n=1

[
(2 − γ (n))

α(n − 1)

2
− (γ (n) − 1)

β(n − 1)

2

]
,

(D14)
where α(0) = β(0) = 0. Furthermore, it can be verified that if
γ (n) = 2, then β(n − 1) = �n/(1 + G)�. Similarly, if γ (n) =
1, then α(n − 1) = �nG/(1 + G)�. Substituting in the above
expression, we therefore find

δ(N ) = −1

2

N∑
n=1

[
(γ (n) − 1)(n − 1) −

⌊ nG

1 + G

⌋]
, (D15)

where we have used the relation �nG/(1 + G)� + �n/(1 +
G)� = n − 1. Finally, the coefficients η1(N ) and η2(N ) can
be evaluated as

η1(N ) = 1

12

N∑
m=1

[
(2 − γ (n))

⌊ nG

1 + G

⌋2
(1 − γ (n))

(
6δ(n − 1) − (2 − n)

⌊ n

1 + G

⌋
−

⌊ n

1 + G

⌋2)]
,

η2(N ) = 1

12

N∑
m=1

[
(γ (n) − 1)

⌊ n

1 + G

⌋2
(2 − γ (n))

(
6δ(n − 1) + (2 − n)

⌊ nG

1 + G

⌋
+

⌊ nG

1 + G

⌋2)]
.

APPENDIX E: EMERGENCE OF EFFECTIVE FIBONACCI
HAMILTONIAN

As discussed in Sec. IV, the NECs for terms up to order
O(τ ) either saturate to steady values or oscillate when ob-
served at Fibonacci instants. Indeed, using the so-called “local
deflation rule” for the Fibonacci sequence, one can show that
the asymptotic values of the NECs for N 	 1 are given by
[34]

α(F (N ))
F (N )

= 1

G
, (E1a)

β(F (N ))
F (N )

= 1

G2
, (E1b)

δ(F (N ))
F (N )

= − 1

G3
, (E1c)

η1(F (N ))
F (N )

= 1

12

[
1

G4
+ (−1)N

(
2

G
+ 1

G2

)]
, (E1d)

η2(F (N ))
F (N )

= 1

12

[
1

G5
− (−1)N

(
2

G2
+ 1

G3

)
+ 1

G2

]
. (E1e)

We shall henceforth denote the saturation values of the
NECs at Fibonacci instants as ᾱ, β̄, δ̄, η̄1, η̄2, where η̄1 and η̄2

correspond to the mean of the oscillating values of η1(N )/N
and η2(N )/N , respectively. Substituting the saturation values
derived above, the propagator at Fibonacci instants UF (N ) can
be expressed in terms of an effective Fibonacci propagator
UFi, such that

UN=F (N ) ≈ U F (N )
Fi = e−iHFiF (N ), (E2a)

where

HFi = ᾱL1 + β̄L2 + δ̄[L2, L1]

+η̄1[L1, [L1, L2]] + η̄2[L2, [L2, L1]] (E2b)

is defined as the effective Fibonacci Hamiltonian.
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[42] An alternate common way of representing the evolution oper-
ator is UN = exp[−i p̂2

2h̄s
] exp[−i K̃N

h̄s
cos θ̂ ], where h̄s = h̄T/I is

the effective Planck’s constant, p̂ = h̄s l̂ , and K̃N = KN h̄s. We

work with natural units h̄ = 1 and set T/I = τ , which implies
that τ can equivalently be considered as the effective Planck’s
constant.
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