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Field-theoretical approach to open quantum systems and the Lindblad equation
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We develop a systematic field-theoretical approach to open quantum systems based on condensed-matter
many-body methods. The time evolution of the reduced density matrix for the open quantum system is
determined by a transmission matrix. Developing diagrammatic perturbation theory, invoking Wick’s theorem
in connection with a Caldeira-Leggett quantum oscillator environment in thermal equilibrium, the transmission
matrix satisfies a Dyson equation characterized by an irreducible kernel. Unlike the Nakajima-Zwanzig and
standard approaches, the Dyson equation is equivalent to a general non-Markovian master equation for the
reduced density matrix, incorporating secular effects and independent of the initial preparation. The kernel is
determined by a systematic diagrammatic expansion in powers of the interaction. We consider the Born approx-
imation for the kernel. Applying a condensed-matter pole or, equivalently, a quasiparticle-type approximation,
equivalent to the usual assumption of a timescale separation, we derive a master equation of the Markov type.
Furthermore, imposing the rotating-wave approximation, we obtain a Markov master equation of the Lindblad
form. To illustrate the method, we consider the standard example of a single qubit coupled to a thermal heat bath.
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I. INTRODUCTION

There is a continuing strong interest in open quantum sys-
tems interacting with an environment both from a fundamental
and an experimental point of view. The issue is important in
many areas of science, spanning from chemistry over atomic,
molecular, and optical physics to condensed-matter physics,
quantum information, and quantum computers [1–8]. The the-
ory of open systems has in particular been developed in the
field of quantum optics [9–11], where atoms or cavity modes
are coupled to the radiation field. In recent years, there has
been a strong focus on decoherence, entanglement, and dissi-
pation in the context of nano quantum systems and quantum
computation [12–18].

There are a variety of theoretical approaches to open
quantum systems [9–11,19–31]. Unlike the situation in
condensed-matter physics where all degrees of freedom come
into play [32,33], open quantum systems have a finite num-
ber of degrees of freedom, typically one or several qubits,
atomic model systems, or cavity modes interacting with an
environment or bath composed of many degrees of freedom.
Like in classical statistical physics [34,35], the bath is usually
assumed to be unperturbed by the open quantum system; note,
however, recent work on system-bath correlations [36]. Defin-
ing the bath explicitly as a collection of independent quantum
oscillators [37,38], the properties of the bath are characterised
by a spectral density and a temperature; the vacuum state
corresponds to zero temperature.

The combined system, consisting of the open quantum
system and the bath, constitutes a closed quantum system
evolving in time according to a unitary transformation [9,39].
On the other hand, the open quantum system evolves accord-
ing to a nonunitary quantum map due to the interaction with
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the bath. This interaction gives rise to mixture, dissipation,
decoherence, and entanglement [9].

Since a mixture of states is generated by the system-bath
coupling, the starting point for an analysis is usually based on
the von Neumann equation dρ(t )/dt = −i[H, ρ(t )] [9,39] for
the density operator ρ(t ) for the combined closed system; here
H is the total Hamiltonian. Subsequently, the density operator
for the open quantum system (S), ρS (t ), is obtained by tracing
out the bath (B) degrees of freedom. Consequently, ρS (t ) =
TrB[ρ(t )] and formally dρS (t )/dt = −iTrB[H, ρ(t )]; note that
throughout the present paper, we set h̄ = 1.

In general, the time evolution of the reduced density opera-
tor ρS (t ) is governed by an inhomogeneous integral equation,
or, correspondingly, a master equation incorporating memory
effects. However, many studies of open quantum systems
are based on the Markov assumption in combination with
the Born approximation. Similar to the Langevin-Fokker-
Planck scheme in classical statistical mechanics [2,35,40],
the Markov approximation is based on an assumption of a
separation of timescales. The intrinsic timescale of the bath,
typically the fall-off time of bath correlations, is assumed to
be short in comparison with the timescale associated with the
small open quantum system, characteristically given by the
inverse level spacing. In this limit, we can ignore memory
effects and invoke the Markov approximation [9,41]; note,
however, recent work on non-Markovian issues [42–47]. Fi-
nally, in the second-order Born approximation it follows that
ρS (t ) is governed by the Lindblad equation [48,49],

d

dt
ρS (t ) = −i[HS, ρS (t )]

+
∑
αβ,k

γ
αβ

k

[
Sβ

k ρS (t )Sα†
k − 1

2

{
Sα†

k Sβ

k , ρS (t )
}]

.
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Here HS is the Hamiltonian for the open quantum system;
note that here we ignore a renormalization of HS due to a
Lamb shift. The coupling to the bath is characterized by the
jump operators Sα

k acting on the quantum system together
with the positive dissipation coefficients γ

αβ

k . The commutator
term characterizes the unitary time evolution in the absence
of coupling to the bath according to the von Neumann equa-
tion dρS (t )/dt = −i[HS, ρS (t )]. The last term involving the
jump operators Sα

k describes the coupling to the bath giving
rise to dissipation, incoherence, and entanglement. The stan-
dard derivation of the Lindblad equation within the quantum
optics approach is based on an iteration of the von Neu-
mann equation to the second-order Born approximation in
combination with a separation of timescales, the rotating-
wave approximation, and a time coarse graining. The basic
assumption is that bath correlations relax on a timescale much
faster than the timescale associated with the evolution of the
density operator; a standard source is the book by Breuer and
Petruccione [9].

In the present paper, we approach the issue of open
quantum systems and in particular the Lindblad equation
from the point of view of condensed-matter physics using
techniques from equilibrium and nonequilibrium many-body
theory [32,33,50–53]. We believe that the present many-body
approach to an open quantum system, the Markov approxima-
tion, and in particular the Lindblad equation sheds light on the
assumptions underlying the standard approach [9].

Below we briefly sketch our procedure. The time evo-
lution of the reduced density operator ρS (t ) describing the
open quantum system interacting with the bath can be ex-
pressed in the form ρS (t ) = T (t, ti )ρS (ti ), where T (t, ti ) is a
transmission (super)operator transporting the density operator
forward in time from an initial time ti to a final time t ; as
commonly assumed, the system is uncorrelated with the bath
at the initial time ti. Assuming that the bath is composed
of noninteracting quantum oscillators and invoking Wick’s
theorem, it follows that the transmission operator T (t, t ′)
satisfies a Dyson equation of the form T (t, t ′) = T 0(t, t ′) +∫

dt ′′dt ′′′T 0(t, t ′′)K (t ′′, t ′′′)T (t ′′′, t ′). Here T 0(t, t ′) is the un-
perturbed transmission operator in the absence of coupling to
the bath. The irreducible kernel or self-energy K (t, t ′) can be
determined perturbatively in terms of the coupling between
the open quantum system and the bath. It then follows from
the Dyson equation that the density operator satisfies the mas-
ter equation dρS (t )/dt = −i[HS, ρS (t )] + ∫

dt ′K (t, t ′)ρS (t ′).
Here HS is the system Hamiltonian; we note that T 0(t, t ′)
solves the von Neumann equation dρS (t )/dt = −i[HS, ρS (t )].
In general, the memory kernel K (t, t ′) depends on the free
evolution of the system, exp(−iHSt ), and correlations char-
acterizing the bath. In the Born approximation to second
order in the system-bath coupling, the kernel K (t, t ′) consists
of four terms including a single bath correlation function.
To implement the Markov approximation, we note that the
behavior of ρS (t ) is determined by the transmission opera-
tor T (t, t ′) or in Fourier space the pole structure of T̃ (ω).
From the Dyson equation for T̃ (ω) we obtain formally
T̃ (ω)−1 = [T̃ 0(ω)−1 − K̃ (ω)], and the resonance structure
is determined by det[T̃ 0(ω)−1 − K̃ (ω)] = 0. Implementing
from many-body theory the so-called quasiparticle approxi-
mation to leading order in the system-bath coupling by setting

det[T̃ 0(ω)−1] = 0, we obtain a set of frequencies ωn. In this
approximation, setting K̃ (ω) = K̃ (ωn), we obtain a Markov
equation. Imposing furthermore the rotating-wave approxima-
tion, we arrive at the Lindblad equation.

Aiming at a self-contained exposition, the paper is orga-
nized as follows. In Sec. II we set up the general scheme
deriving an expression for the reduced density matrix in terms
of a transmission matrix; details are deferred to Appendix 1.
In Sec. III we introduce the Caldeira-Leggett heat bath in
terms of independent quantum oscillators, and we derive the
bath correlation functions. Moreover, we introduce Wick’s
theorem with a derivation deferred to Appendix 2. Section IV
is devoted to a discussion of the transmission matrix and
a derivation of the Dyson equation. In Sec. V we present
the general master equation for the reduced density matrix
following from the Dyson equation. In Sec. VI we derive
the general non-Markovian master equation to second order
in the coupling between the system and the bath, i.e., the
Born approximation. In Sec. VII the Lindblad equation is re-
viewed. In Sec. VIII we summarize the standard microscopic
derivation of the Lindblad equation. In Sec. IX A we present
a heuristic derivation of the Lindblad equation, in Sec. IX B a
discussion of the pole structure of the transmission matrix, and
in Sec. IX C a detailed discussion of the quasiparticle approxi-
mation, resulting in a Markovian master equation. In Sec. X A
we present a discussion of the equivalence between the field-
theoretical approach and the standard derivation. Moreover,
we discuss aspects of the timescale separation: in Sec. X B we
discuss the approach by Diosi and Ferialdi [42,43] and its re-
lation to the present work, in Sec. X C the Nakajima-Zwanzig
approach to a nonMarkovian master equation, and finally in
Sec. X D a discussion of the quasiparticle approximation in
the simple case of a qubit coupled to a bath. In Sec. XI we
give a short summary of our results. In Appendix 1 we discuss
the interaction representation, and in Appendix 2 we present
a derivation of Wick’s theorem.

II. GENERAL ANALYSIS

Here we set up the field-theoretical approach to open
quantum systems. Details regarding the interaction represen-
tation are deferred to Appendix 1. The methods used are
well-known in condensed-matter theory both for equilibrium
[32,33,50] and nonequilibrium systems [51–53], but they
have not been used much in the context of open quantum
systems [9–11]; see, however, recent work in [54,55]. In
condensed-matter theory, the essential building block is the
Green’s function or propagator in the context of diagram-
matic or functional perturbative expansions. These schemes
have been developed both for equilibrium and nonequilibrium
systems.

For open quantum systems, the standard tool is the reduced
density operator ρS (t ) obtained by tracing out the degrees of
freedom of the environment. Expectation values of observ-
ables AS relating to the open quantum system are thus given
by 〈AS〉(t ) = TrS[ρS (t )AS], which together with the regression
theorem provide the standard tools in quantum optics [9,11]
and related fields. In discussing open quantum systems, the
starting point is a small system (S) with a finite number of
degrees of freedom, typically one or several qubits, an atomic
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system or a cavity mode characterized by a quantum oscilla-
tor, interacting with a large quantum system acting as a bath
(B) or an environment composed of many or infinitely many
degrees of freedom. The total system composed of the open
quantum system interacting with the quantum bath is thus
described by the Hamiltonian

H = HS + HB + HSB, (2.1)

HSB =
∑

α

SαBα = S · B. (2.2)

Here HS is the Hamiltonian for the quantum system, HB is
the Hamiltonian for the bath, and HSB is the interaction de-
scribing the coupling between the quantum system and the
bath. The system and the bath live in separate Hilbert spaces,
i.e., [HB, HS] = 0; however, due to the interaction we have
[HS, HSB] �= 0 and [HB, HSB] �= 0. Sα are operators acting on
the quantum system, and Bα are operators monitoring the
bath; S · B denotes the usual scalar product. Since H†

SB = HSB,
we have

∑
α SαBα = ∑

α Sα†Bα†; note that this relation does
not imply that Sα or Bα individually are Hermitian.

The coupling between the quantum system and the bath
gives rise to mixed states, relaxation, decoherence, and en-
tanglement between system and bath, and it is customary
to use the density operator formalism. The density operator
has the form ρ(t ) = ∑

n Pn|�n(t )〉〈�n(t )|, where the prob-
abilities Pn � 0 and

∑
n Pn = 1 [56]. The density operator

is Hermitian, positive, and has unit trace, i.e., ρ(t )† = ρ(t ),
〈�|ρ(t )|�〉 > 0, and Tr[ρ(t )] = 1. The purity of a quantum
state is defined as γ (t ) = Tr[ρ(t )2]; for a pure state, γ = 1;
for a mixed state, γ < 1.

It follows from the Schrödinger equation, id|�(t )〉/dt =
H |�(t )〉 [39], that the density operator satisfies the von Neu-
mann equation [56,57]

d

dt
ρ(t ) = −i[H, ρ(t )], (2.3)

with formal solution

ρ(t ) = U (t, ti )ρ(ti )U (t, ti )
†, (2.4)

U (t, t ′) = exp ( − iH (t − t ′)). (2.5)

Here ρ(ti ) is the density operator at an initial time ti, and
U (t, t ′) is the usual unitary evolution operator. From (2.4) we
infer the density operator for the system ρS (t ) by tracing over

the bath states, i.e.,

ρS (t ) = TrB[ρ(t )]. (2.6)

In recent work [36], the issue of correlations between sys-
tem and bath has been addressed. However, in the present
context we assume that the bath and system are uncor-
related at an initial time ti and that the bath composed
of many degrees of freedom is maintained in a stationary
thermodynamic state characterized by the density operator
ρB = exp(−βHB)/Tr[exp(−βHB)] [35]; here β is the inverse
temperature, and the vacuum state corresponds to β = ∞.
The initial condition is thus given by the factorized density
operator

ρ(ti ) = ρBρS (ti ). (2.7)

In terms of a superoperator or Liouville operator L,
the time evolution in (2.4) can be written in the form
ρ(t ) = L(t, ti )ρ(ti ), where in a complete basis |n〉 we
have ρ(t )pp′ = ∑

qq′ Lpp′,qq′ (t, ti )ρ(ti )qq′ and Lpp′,qq′ (t, ti ) =
U (t, ti )pqU (t, ti )

†
q′ p′ . Likewise, due to the linearity, the

time evolution of the reduced density operator ρS (t ) =
TrB[L(t, ti )ρBρS (ti )] for the system can be expressed in a
similar form,

ρS (t ) = T (t, ti )ρS (ti ), (2.8)

ρS (t )pp′ =
∑
qq′

T (t, ti )pp′,qq′ρS (ti )qq′ , (2.9)

where T (t, ti ) is a transmission (super) operator determining
the time evolution of ρS (t ).

To proceed systematically, we turn to an expansion of the
evolution operator U (t, ti ) in powers of the system-bath inter-
action HSB. Introducing the interaction representation [32,33]
with respect to the unperturbed system and bath, we set

H0 = HS + HB, (2.10)

and we obtain in the interaction picture

HSB(t ) = exp(iH0t )HSB exp(−iH0t ), (2.11)

B(t ) = exp(iHBt )B exp(−iHBt ), (2.12)

S(t ) = exp(iHSt )S exp(−iHSt ). (2.13)

Expanding U (t, t ′) and the Hermitian conjugate U (t, t ′)† in
powers of HSB(t ), we have

U (t, t ′) = +i
∑
n=0

∫
dtndtn−1 · · · dt1GR(t, tn)SnGR(tn, tn−1)Sn−1 · · · S2GR(t2, t1)S1GR(t1, t ′)

× e−iHBt Bn(tn)Bn−1(tn−1) · · · B2(t2)B1(t1)eiHBt ′
, (2.14)

U (t, t ′)† = −i
∑
n=0

∫
dundun−1 · · · du1GA(t ′, u1)S1GA(u1, u2)S2 · · · Sn−1GA(un−1, un)SnGA(un, t )

× e−iHBt ′
B1(u1)B2(u2) · · · Bn−1(un−1)Bn(un)eiHBt , (2.15)

022205-3



HANS C. FOGEDBY PHYSICAL REVIEW A 106, 022205 (2022)

where we have used S · B = (S · B)†, introduced HSB(tp) =
exp(iHStp)Sp exp(−iHStp)Bp(tp), and the retarded and ad-
vanced system Green’s functions

GR(t, t ′) = −iη(t − t ′) exp ( − iHS (t − t ′)), (2.16)

GA(t, t ′) = +iη(t ′ − t ) exp ( − iHS (t − t ′)); (2.17)

here the step function is given by η(t ) = 1 for t > 0 and
η(t ) = 0 for t < 0, η(0) = 1/2. We also note that the step
functions ensure that the integration range is from t ′ to t , thus
ensuring causality, i.e., choosing the solution progressing for-
ward in time. By insertion in (2.4) the global density operator
assumes the form

ρ(t ) =
∞∑

n=0,m=0

∫
dtn · · · dt1GR(t, tn)SnGR(tn, tn−1) · · · GR(t2, t1)S1GR(t1, ti )ρS (ti )

×
∫

du1 · · · dumGA(ti, u1)S1GA(u1, u2) · · · GA(um−1, um)SmGA(um, t )

×e−iHBt Bn(tn) · · · B1(t1)ρBB1(u1) · · · Bm(um)eiHBt ; (2.18)

note that this expression is completely equivalent to (2.4). For
the reduced density operator ρS (t ) tracing over the bath and
permuting the bath operators, we obtain

ρS (t ) =
∞∑

n=0,m=0

∫
dtn · · · dt1GR(t, tn)Sn · · · S1GR(t1, ti )ρS (ti )

×
∫

du1 · · · dumGA(ti, u1)S1 · · · SmGA(um, t )

×TrB[ρBB1(u1) · · · Bm(um)Bn(tn) · · · B1(t1)]. (2.19)

We note that the retarded and advanced Green’s functions
ensure that the operators Sp and Bp in (2.19) are chrono-
logically ordered along the so-called Keldysh contour from
time t to the initial time ti and back to time t [52,53,58]. We
also remark that the expansion (2.19) is completely equivalent
to ρS (t ) = TrB[U (t, ti )ρ(ti )U (ti, t )]. Finally, inserting in (2.9)
we obtain for the transmission matrix

T (t, t ′)pp′,qq′

=
∑

n=0,m=0

∫
dtn · · · dt1[GR(t, tn)Sn · · · S1GR(t1, t ′)]pq

×
∫

du1 · · · dum[GA(t ′, u1)S1 · · · SmGA(um, t )]q′ p′

×TrB[ρBB1(u1) · · · Bm(um)Bn(tn) · · · B1(t1)]. (2.20)

In the unperturbed case, we have in particular

T 0(t, t ′)pp′,qq′ = GR(t, t ′)pqGA(t ′, t )q′ p′ , (2.21)

describing the unperturbed propagation of ρS (t )pp′ . Note that
Bp(tp) forms a scalar product with Sp positioned between
GR(tp+1, tp) and GR(tp, tp−1); likewise, Bq(uq) is associated
with Sq positioned between GA(uq−1, uq ) and GA(uq, uq+1).

The expression (2.20) provides a direct expansion of the
transmission matrix T (t, t ′) in powers of the interaction HSB

in terms of the Green’s functions for the quantum system and
the multitime bath correlations TrB[ρBB1(t1)B2(t2)B3(t3) · · · ].
We already note here that since ρS (t ) = T (t, ti )ρS (ti ), we
have dρS (t )/dt = (dT (t, ti )/dt )ρS (ti ), and it follows that the
expansion of T does not yield a proper master equation, inde-
pendent of the initial condition ρS (ti ). As a matter of fact, the
expansion does not account for secular effects unless we make

further assumptions regarding the heat bath characterized by
the density operator ρB and the operators B monitoring the
bath.

III. BATH

At this stage, the expression (2.20) for the transmission
matrix applies to a general bath characterized by the multi-
bath correlations TrB[ρBB1(t1) · · · Bm(tm)]. To proceed and
account for secular effects and in this connection invoke
Wick’s theorem, we specify the structure of the bath according
to the Caldeira-Leggett prescription [37,38]. Details regarding
Wick’s theorem are deferred to Appendix 2.

A. Bath correlations

For simplicity, we consider a single bath with a bosonic
structure, i.e., a collection of independent quantum oscillators,
characterized by the bath Hamiltonian

HB =
∑

k


knk, (3.1)

where the occupation number nk = b†
kbk , and bk is a Bose

field with commutator [bk, b†
p] = δkp. The frequency associ-

ated with the wave number k is 
k . We assume that the bath
is maintained at a temperature 1/β and characterized by the
density operator [35]

ρB = exp(−βHB)

TrB[− exp(βHB)]
. (3.2)

From the Heisenberg equation of motion, idbk/dt = [bb, HB]
[32,33], we infer

bk (t ) = bk exp(−i
kt ), (3.3)

b†
k (t ) = b†

k exp(+i
kt ). (3.4)

Moreover, the mean occupation number or Planck distribution
[34,35] is given by

〈nk〉 = TrB[ρBnk] = 1

exp(β
k ) − 1
. (3.5)
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For the bath operators Bα entering in the coupling in (2.2) we
choose for a single reservoir B = (B1, B2), where

B1(t ) = B(t ) =
∑

k

λkbk (t ), (3.6)

B2(t ) = B†(t ) =
∑

k

λkb†
k (t ); (3.7)

note that the coupling constants λk can be chosen real by an
appropriate choice of the phases of bk . With this assignment,
we have for the relevant bath correlations

D12(t, t ′) = TrB[ρBB(t )B†(t ′)]

=
∑

k

λ2
k (1 + 〈nk〉) exp ( − i
k (t − t ′)), (3.8)

D21(t, t ′) = TrB[ρBB†(t )B(t ′)]

=
∑

k

λ2
k〈nk〉 exp ( + i
k (t − t ′)). (3.9)

Introducing the spectral density of states g(
) and the Planck
distribution n(
),

g(
) = 2π
∑

k

λ2
kδ(
 − 
k ), 
 > 0, (3.10)

n(
) = 1

exp(β
) − 1
, 
 > 0, (3.11)

we also have

D12(t, t ′) =
∫

0

d


2π
g(
)[1 + n(
)] exp ( − i
(t − t ′)),

(3.12)

D21(t, t ′) =
∫

0

d


2π
g(
)n(
) exp ( + i
(t − t ′)), (3.13)

and introducing the Fourier transform, Dαβ (t, t ′) =∫
(dω/2π ) exp ( − iω(t − t ′))D̃αβ (ω),

D̃12(ω) = g(ω)[1 + n(ω)], ω > 0, (3.14)

D̃21(ω) = g(−ω)n(−ω), ω < 0. (3.15)

Note that the system-bath coupling λk is incorporated in
the definition of the spectral density g(ω), which is of
second order in λk . We also observe that in the classical
limit for β → ∞ we have n(ω) → 1/β
, and the Ohmic

approximation requires g(
) ∝ 
 (with an appropriate high-
frequency cutoff).

B. Wick’s theorem

For a bath composed of independent quantum oscilla-
tors or bosons and assuming that the bath operator B is
a a linear combination of Bose creation and annihilation
operators and, moreover, assuming that the density opera-
tor ρB either corresponds to the Bose vacuum, i.e., ρB =
|0〉〈0| or a bath described by the density operator ρB =
exp(−βHB)/TrB[exp(−βHB)], Wick’s theorem holds for the
multi-bath correlations in (2.20).

Wick’s theorem [30,32,33,59,60] implies that the multibath
correlations TrB[ρBB1(t1) · · · Bm(tm)] can be broken up into all
possible pairings or contractions; we note that TrB[ρBB(t)] =
0. In the case of four bath operators we have for
example

TrB[ρBBα (t1)Bβ (t2)Bγ (t3)Bδ (t4)]

= Dαβ (t1, t2)Dγ δ (t3, t4) + Dαγ (t1, t3)Dβδ (t2, t4)

+ Dαδ (t1, t4)Dβγ (t2, t3), (3.16)

where we note that the time ordering is preserved; we have
introduced the bath correlation function

Dαβ (t, t ′) = TrB[ρBBα (t )Bβ (t ′)]. (3.17)

Wick’s theorem is basically a generalisation of the contraction
of Gaussian multi-correlation functions in terms of a single
correlation function [60] to noncommuting operators. Usually
the derivation of Wick’s theorem is applied to the vacuum
expectation value of time ordered products or in the finite
temperature case imaginary time ordered products [32,33]. In
the present context we summarize in Appendix 2 an elegant
proof by Gaudin [59] directly applied to a thermal average
of operator products relevant to the present analysis. We also
state Wick’s theorem in generator form [60].

IV. TRANSMISSION MATRIX

The transmission operator T (t, t ′) is of central importance
in our analysis; With an explicit bath prescription and Wick’s
theorem, we are in a position to discuss the transmission
matrix (2.20) in more detail. Inserting the identity η(t ) +
η(−t ) = 1, we can express (2.20) in the form

T (t, t ′)pp′,qq′ =
∑

n=0,m=0,ll ′,nn′

∫
dtn · · · dt1GR(t, tn)pl (Sn · · · S1)ll ′GR(t1, t ′)l ′q

×
∫

du1 · · · dumGA(t ′, u1)q′n(S1 · · · Sm)nn′GA(um, t )n′ p′[η(tn − um) + η(um − tn)][η(t1 − u1) + η(u1 − t1)]

× TrB[ρBB1(u1) · · · Bm(um)Bn(tn) · · · B1(t1)], (4.1)

yielding the sum of four individual contributions. Considering, for example, the term containing the product η(tn − um)η(t1 − u1)
and using the identities

GR(t, t ′)pq = +i
∑

l

GR(t, t ′′)plGR(t ′′, t ′)lq, (4.2)

GA(t, t ′)pq = −i
∑

l

GA(t, t ′′)plGA(t ′′, t ′)lq, (4.3)
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following from the definitions (2.16) and (2.17), we make the replacements

GR(t1, t ′) = iGR(t1, u1)GR(u1, t ′), (4.4)

GA(um, t ) = −iGA(um, tn)GA(tn, t ), (4.5)

and we include the dummy arguments u1 and tn in the integrations over u1 and tn. Applying this procedure to all contributions,
we can express the transmission matrix in the form

T (t, t ′)pp′,qq′ =
∑

ss′,kk′

∫
dt ′′dt ′′′T 0(t, t ′′)pp′,ss′M(t ′′, t ′′′)ss′,kk′T 0(t ′′′, t ′)kk′,qq′ , (4.6)

where T 0(t, t ′)pp′,qq′ is given by (2.21), and the reducible kernel M(t, t ′)pp′,qq′ takes the form

M(t, t ′)pp′,qq′ = −
∑

n=0,m=0

∫
dtn−1 · · · dt2[SnGR(t, tn−1) · · · GR(t2, t ′)S1]pq

∫
du1 · · · dum[GA(t ′, u1)S1 · · · SmGA(um, t )]q′ p′

× TrB[ρBB1(u1) · · · Bm(um)Bn(t ) · · · B1(t ′)]

−
∑

n=0,m=0

∫
dtn · · · dt1[GR(t, tn)Sn · · · S1GR(t1, t ′)]pq

∫
du2 · · · dum−1[S1GA(t ′, u2) · · · GA(um−1, t )Sm]q′ p′

× TrB[ρBB1(t ′) · · · Bm(t )Bn(tn) · · · B1(t1)] +
∑

n=0,m=0

∫
dtn−1 · · · dt1[SnGR(t, tn−1) · · · S1GR(t1, t ′)]pq

×
∫

du2 · · · dum[S1GA(t ′, u2) · · · SmGA(um, t )]q′ p′TrB[ρBB1(t ′) · · · Bm(um)Bn(t ) · · · B1(t1)]

+
∑

n=0,m=0

∫
dtn · · · dt2[GR(t, tn)Sn · · · GR(t2, t ′)S1]pq

∫
du1 · · · dum−1[GA(t ′, u1)S1 · · · GA(um−1, t )Sm]q′ p′

× TrB[ρBB1(u1) · · · Bm(t )Bn(tn) · · · B1(t ′)]; (4.7)

the example above applies to the third term in (4.7). In-
specting Fig. 1 shows that the construction of the kernel
M(t, t ′) corresponds to removing the external legs GR(t, tn),
GR(t1, t ′), GA(t ′, u1), and GA(um, t ) from the transmission
matrix T (t, t ′).

The next essential step accounting for secular effects is
to identify a Dyson equation for the transmission matrix in
(2.20). According to Wick’s theorem, the vertices Sp in the
reducible kernel M(t, t ′) in (4.7) are connected pairwise to the
bath operators Bp in the bath correlation function Dαβ (t, t ′).
As a result, M(t, t ′) can be broken up in irreducible parts
K (t, t ′) connected by a pair of Green’s functions GR and
GA constituting the unperturbed transmission matrix T 0(t, t ′)
(2.21). Proceeding schematically term by term, we have

FIG. 1. Here we depict the transmission matrix T (t, ti ) shown as
a shaded box describing the evolution of the reduced density operator
ρS (t ) from the initial time ti to the final time t . The legs on the
reducible kernel M, and the retarded and advanced Green’s functions
GR and GA, are denoted by directed arrows.

M = I + K + KT 0K + · · · and by insertion in T = T 0MT 0

in (4.6) the expansion T = T 0 + T 0KT 0 + · · · , yielding the
Dyson equation

T (t, t ′)pp′,qq′ = T 0(t, t ′)pp′,qq′ +
∑
ll ′,ss′

∫
dt ′′dt ′′′T 0(t, t ′′)pp′,ll ′

× K (t ′′, t ′′′)ll ′,ss′T (t ′′′, t ′)ss′,qq′ . (4.8)

In the diagrammatic representation, the kernel K (t, t ′)pp′,qq′

is irreducible in the sense that is cannot be disconnected by
the insertion of T 0(t, t ′)pp′,qq′ . In Fig. 2 we have depicted the
structure of the Dyson equation for T (t, t ′)pp′,qq′ .

V. MASTER EQUATION

The Dyson equation (4.8) for T (t, t ′) is a crucial re-
sult ensuring that secular effects are properly included. In
a condensed-matter context, the irreducible kernel K (t, t ′)
serves as a self-energy or mass operator [32,33,50]. Schemat-
ically (4.8) has the form T = T 0 + T 0KT . Inserted in (2.9),
ρS = T ρS (ti ), we have ρS = T 0ρS (ti ) + T 0KT ρS (ti ) or ρS =
T 0ρS (ti) + T 0KρS . We thus obtain the following general
inhomogeneous integral equation for the reduced density op-
erator ρS (t ):

ρS (t )pp′ =
∑
qq′

T 0(t, ti )pp′,qq′ρS (ti )qq′ +
∑

ss′,qq′

∫
dt ′dt ′′T 0

× (t, t ′)pp′,ss′K (t ′, t ′′)ss′,qq′ρS (t ′′)qq′ . (5.1)
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FIG. 2. Here we depict the Dyson equation for the transmission matrix. T (t, t ′) and the irreducible kernel K (t ′, t ′′) characterized by shaded
boxes. T 0(t, t ′) denotes the unperturbed transmission matrix, and the retarded and advanced Green’s functions GR(t, t ′) and GA(t ′, t ) are
denoted by directed arrows.

The integral equation (5.1) represents an integrated form of
the master equation and depends on the initial condition ρS (ti).

Choosing for simplicity an energy basis, HS|n〉 = En|n〉,
and using the identity

d

dt
T 0(t, t ′)pp′,qq′ = −i(Ep − Ep′ )T 0(t, t ′)pp′,qq′

+ δ(t − t ′)δpqδq′ p′ , (5.2)

following from (2.21) we infer the general master equation for
ρS (t ),

d

dt
ρS (t )pp′ = −i[HS, ρS (t )]pp′

+
∑
qq′

∫
dt ′K (t, t ′)pp′,qq′ρS (t ′)qq′ . (5.3)

This is a fundamental result showing that the Dyson
equation for the transmission matrix implies a general non-
Markovian master equation independent of the the initial
condition. Moreover, we note that the only assumptions

underlying the structure of the master equation (5.3) are
the Caldeira-Leggett heat bath in combination with Wick’s
theorem. In the absence of coupling to the heat bath, the
kernel K (t, t ′) vanishes and the system evolves in time accord-
ing to the von Neumann equation dρS (t )/dt = −i[HS, ρS (t )].
Since TrS[ρS (t )] = 1, consistency requires that the trace of K
vanishes, i.e.,

∑
p K (t, t ′)pp,qq′ = 0, in the ensuing approxi-

mations.

VI. BORN APPROXIMATION

The master equation in (5.3) has a general non-Markovian
form. To provide a concrete realization we can, in principle,
expand the kernel K (t, t ′) to any desired order in the inter-
action HSB by identifying the relevant diagrams and applying
Wick’s theorem. However, in many applications it is custom-
ary to assume that the coupling to the bath is weak and that it
is sufficient only to consider the Born approximation, i.e., an
expansion to second order in HSB. In the Born approximation,
only a single bath correlation function enters. By inspection of
(4.7) and inserting (3.17) we obtain the following expression
for the irreducible kernel K (t, t ′):

K (t, t ′)pp′,qq′ = −
∑
αβ

[SαGR(t, t ′)Sβ]pqGA(t ′, t )q′ p′Dαβ (t, t ′) −
∑
αβ

GR(t, t ′)pq[SαGA(t ′, t )Sβ ]q′ p′Dαβ (t ′, t )

+
∑
αβ

[SαGR(t, t ′)]pq[SβGA(t ′, t )]q′ p′Dβα (t ′, t ) +
∑
αβ

[GR(t, t ′)Sα]pq[GA(t ′, t )Sβ ]q′ p′Dβα (t, t ′). (6.1)

The four irreducible contributions to the kernel (6.1) in the Born approximation are depicted in Fig. 3; here diagrams (a) and (b)
correspond to level populations, whereas diagrams (c) and (d) are associated with coherences.

It is straightforward to proceed to higher order in HSB by identifying the corresponding irreducible contributions to the kernel
K . Thus to fourth order in HSB one identifies 20 individual contributions to the kernel K . The issue of a stronger system-bath
coupling is important but will not be pursued in the present context.

(a) (b) (c) (d)

FIG. 3. Here we depict the irreducible kernel K (t, t ′) in the Born approximation. The retarded and advanced Green’s functions GR(t, t ′)
and GA(t ′, t ) are denoted by directed lines. The bath correlation function D(t, t ′) is denoted by a dotted line. The vertices S are denoted by
dots. Diagrams (a) and (b) correspond to populations, diagrams (c) and (d) to coherences.
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Inserting (6.1) in (5.3), we obtain the master equation

d

dt
ρS (t )pp′ = −i[HS, ρS (t )]pp′ −

∫
dt ′ ∑

αβ,qq′
[SαGR(t, t ′)Sβ]pqGA(t ′, t )q′ p′ρS (t ′)qq′Dαβ (t, t ′)

−
∫

dt ′ ∑
αβ,qq′

GR(t, t ′)pq[SαGA(t ′, t )Sβ ]q′ p′ρS (t ′)qq′Dαβ (t ′, t )

+
∫

dt ′ ∑
αβ,qq′

[SαGR(t, t ′)]pq[SβGA(t ′, t )]q′ p′ρS (t ′)qq′Dβα (t ′, t )

+
∫

dt ′ ∑
αβ,qq′

[GR(t, t ′)Sα]pq[GA(t ′, t )Sβ ]q′ p′ρS (t ′)qq′Dβα (t, t ′), (6.2)

or in operator form

d

dt
ρS (t ) = −i[HS, ρS (t )] −

∫
dt ′ ∑

αβ

SαGR(t, t ′)SβρS (t ′)GA(t ′, t )Dαβ (t, t ′)

−
∫

dt ′ ∑
αβ

GR(t, t ′)ρS (t ′)SαGA(t ′, t )SβDαβ (t ′, t ) +
∫

dt ′ ∑
αβ

SαGR(t, t ′)ρS (t ′)SβGA(t ′, t )Dβα (t ′, t )

+
∫

dt ′ ∑
αβ

GR(t, t ′)SαρS (t ′)GA(t ′, t )SβDβα (t, t ′). (6.3)

We already discern here the structure of the Lindblad equation in (1.1). Applying the trace operation to (6.3) and cyclically
permuting the operators under the trace, we readily infer dTrS[ρS (t )]/dt = 0 and, consequently, TrS[ρS (t )] = TrS[ρS (ti )] = 1,
thus providing a consistency check of the Born approximation. The trace condition applied to the kernel K reads

∑
p Kpp,qq′ = 0,

which by inspection of (6.1) is easily verified. In terms of the diagrams in Fig. 3, the trace condition is obtained by setting p = p′
and noting that diagram (a) cancels with diagram (c) and diagram (b) with diagram (d).

Introducing the Fourier transform ρ̃S (ω) = ∫
dt exp(iωt )ρs(t ), noting that the bath is in a stationary state, Dαβ (t, t ′) =

Dαβ (t − t ′), and from (2.16) and (2.17) the Green’s function resolvents G̃R(ω) = 1/(ω − HS + iε) and G̃A(ω) = 1/(ω − HS −
iε), we obtain the master equation in Fourier space,

−iωρ̃S (ω)pp′ = −iEpp′ ρ̃S (ω)pp′ +
∑
qq′

K̃ (ω)pp′,qq′ ρ̃S (ω)qq′ , (6.4)

with kernel

K̃ (ω)pp′,qq′ = −iδp′q′
∑
αβ,l

∫
dω′

2π

Sα
pl S

β

lqδ(Epl + Elq)D̃αβ (ω′)

ω − ω′ + Ep′l + iε
− iδpq

∑
αβ,l

∫
dω′

2π

Sα
q′l S

β

l p′δ(Eq′l + El p′ )D̃αβ (−ω′)

ω − ω′ + El p + iε

+i
∑
αβ

∫
dω′

2π

Sα
pqSβ

q′ p′δ(Epq + Eq′ p′ )D̃βα (−ω′)

ω − ω′ + Ep′q + iε
+ i

∑
αβ

∫
dω′

2π

Sα
pqSβ

q′ p′δ(Epq + Eq′ p′ )D̃βα (ω′)

ω − ω′ + Eq′ p + iε
. (6.5)

Here the matrix element of the system operator is given by Sα
pq = 〈p|Sα|q〉 and the associated energy level splitting is given

by Epq = Ep − Eq. We have, moreover, in order to implement the rotating-wave approximation introduced in a somewhat ad
hoc manner, the δ-function constraints δ(Epq + Eq′ p′ ) in order to ensure energy conservation in connection with the combined
transitions Sα

pqSβ

q′ p′ . We note that this implementation of selection rules does not follow automatically from the diagrammatic
expansion; this is an issue that remains to be examined.

Applying the Plemejl formula 1/(ω + iε) = P(1/ω) − iπδ(ω) [60], where P denotes the principal value, to the kernel (6.5),
we obtain, setting K̃ (ω)pp′,qq′ = L̃(ω)pp′,qq′ + i�̃(ω)pp′,qq′ , the shift

�̃(ω)pp′,qq′ = −δp′q′
∑
αβ,l

P
∫

dω′

2π

Sα
plS

β

lqδ(Epl + Elq )D̃αβ (ω′)

ω − ω′ + Ep′l
− δpq

∑
αβ,l

P
∫

dω′

2π

Sα
q′l S

β

l p′δ(Eq′l + El p′ )D̃αβ (−ω′)

ω − ω′ + El p

+
∑
αβ

P
∫

dω′

2π

Sα
pqSβ

q′ p′δ(Epq + Eq′ p′ )D̃βα (−ω′)

ω − ω′ + Ep′q
+

∑
αβ

P
∫

dω′

2π

Sα
pqSβ

q′ p′δ(Epq + Eq′ p′ )D̃βα (ω′)

ω − ω′ + Eq′ p
, (6.6)

022205-8



FIELD-THEORETICAL APPROACH TO OPEN QUANTUM … PHYSICAL REVIEW A 106, 022205 (2022)

and the dissipative kernel

L̃(ω)pp′,qq′ = −δp′q′
1

2

∑
αβ,l

Sα
pl S

β

lqδ(Epl + Elq)D̃αβ (ω + Ep′l ) − δpq
1

2

∑
αβ,l

Sα
q′l S

β

l p′δ(Eq′l + El p′ )D̃αβ (−ω − El p)

+1

2

∑
αβ

Sβ
pqSα

q′ p′δ(Epq + Eq′ p′ )D̃αβ (−ω − Ep′q) + 1

2

∑
αβ

Sβ
pqSα

q′ p′δ(Epq + Eq′ p′ )D̃αβ (ω + Eq′ p), (6.7)

and by insertion in (6.4) the final Fourier form of the master equation,

−iωρ̃S (ω)pp′ = −i
∑
qq′

[Epp′δpqδp′q′ − �̃(ω)pp′,qq′ ]ρ̃S (ω)qq′ +
∑
qq′

L̃(ω)pp′,qq′ ρ̃S (ω)qq′ . (6.8)

By inspection we note that
∑

p �̃(ω)pp,qq′ = 0 and∑
p L̃(ω)pp,qq′ = 0, implying unity trace. Moreover, we

observe the general symmetry inferred from the Dyson
equation (4.8) together with (2.21) or in the Born case from
(6.5),

K (t − t ′)∗pp′,qq′ = K (t − t ′)p′ p,q′q, (6.9)

K̃ (ω)∗pp′,qq′ = K̃ (−ω)p′ p,q′q. (6.10)

The master equation (6.8) is local in Fourier space and non-
Markovian. The coupling of an energy level to a continuum
of states, be it the vacuum or a heat reservoir, typically gives
rise to both a damping given by L̃ and a shift given by �̃.
In the general case, both shift and damping are frequency-
dependent characteristics of memory effects. In the case of
a Markovian behavior, the shift is constant and appears as a
Lamb shift that can be absorbed in a renormalization of the
energy levels, corresponding to a counter term in the system
Hamiltonian HS [9].

VII. LINDBLAD EQUATION

The time evolution of the density operator ρ(t ) for the
closed system composed of the open quantum system under
investigation and the bath is unitary and governed by the
von Neumann master equation (2.3) with solution ρ(t ) =
U (t, ti )ρ(ti )U (t, ti )†. By construction, the density operator
is Hermitian, positive, and has unit trace. However, due to
entanglement with the bath, the reduced density operator
ρS (t ) = TrB[ρ(t )] for the open quantum system does not
develop in time according to a unitary transformation, and
consequently it does not conserve probability or entropy.
On the other hand, a proper physical interpretation requires
that ρS (t ) is Hermitian, positive, and has unit trace. These
requirements imply that ρS (t ) conforms to the Kraus repre-
sentation ρS (t ) = �(t, ti )ρS (ti ) = ∑

α Kα (t, ti )ρS (ti )K†
α (t, ti ),

where
∑

α K†
αKα = I , defining a so-called quantum channel

[9,49,61].
In the Markov approximation, assuming a separation of the

fast timescale of the bath and the slower time scale of the open
system, yielding a memoryless kernel, we have dρS (t )/dt =
GρS (t ), with solution ρS (t ) = exp (G(t − ti ))ρS (ti ); here G is
the generator of a quantum dynamical semigroup. The issue of
the most general form of the generator G has been addressed
by Gorini, Kossakowski, Sudarshan, and Lindblad (GKSL)
[48,49,62,63]; for a review, see also [64]. The GKSL or

Lindblad master equation has the form given in (1.1),
where we note that the trace of the right-hand side of the
equation vanishes, yielding a constant trace Tr[ρS (t )] = 1.
Hermiticity, moreover, implies γ

αβ

k = (γ βα

k )∗, i.e., the dissi-
pation coefficients form a Hermitian matrix.

VIII. STANDARD DERIVATION OF THE
LINDBLAD EQUATION

Referring for details to the standard text by Breuer and
Petruccione [9] (see also [49]), the customary microscopic
derivation of the Lindblad equation takes as its starting point
the the von Neumann equation in the interaction representa-
tion and its integrated form,

d

dt
ρI (t ) = −i[HSB(t ), ρI (t )], (8.1)

ρI (t ) = ρ(0) − i
∫ t

0
dt ′[HSB(t ′), ρI (t ′)], (8.2)

with initial value ρ(0); here ρI (t ) = exp(iH0t )ρ(t )
exp(−iH0t ). Inserting (8.2) in (8.1), tracing over the
bath, and assuming TrB[HSB(t ), ρ(ti )] = 0, we obtain to
second-order Born for the reduced density operator ρI

S (t ) =
exp(iHSt )ρS (t ) exp(−iHSt )

d

dt
ρI

S (t ) = −
∫ t

0
dt ′TrB[HSB(t ), [HSB(t ′), ρI (t ′)]]. (8.3)

Assuming a weak coupling to the reservoir and introducing
the physical approximation

ρI (t ) ≈ ρI
S (t )ρB, (8.4)

we obtain closure with respect to ρI
S (t ) yielding

d

dt
ρI

S (t ) = −
∫ t

0
dt ′TrB[HSB(t ), [HSB(t ′), ρI

S (t ′)ρB]]. (8.5)

We note that (8.5) is not a proper master equation since it de-
pends on the initial value at t = 0; this issue will be addressed
in more detail in Sec. X.

Next implementing the Markov approximation by locking
ρI

S (t ′) onto ρI
S (t ), we obtain at this stage the Redfield equation

[21]

d

dt
ρI

S (t ) = −
∫ t

0
dt ′TrB[HSB(t ), [HSB(t ′), ρI

S (t )ρB]]. (8.6)

The Redfield equation, although local in time and often used
in quantum optics, is [for the same reason as (8.5)] not a full
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Markov equation since it depends on the initial preparation.
However, assuming a timescale separation between the fast
bath relaxation time τB and the slower system timescale τS ,
i.e., τS � τB, one obtains a Markovian master equation. For
the resulting master equation to correspond to the generator
of a dynamical semigroup, one finally makes a further secular
approximation averaging over oscillating terms, the so-called
rotating-wave approximation (RWA),

To implement the RWA, one projects the system operator
Sα onto the energy eigenspace of the system Hamiltonian HS

and defines (note that Ek′k = Ek′ − Ek)

Sα (ω) =
∑
kk′

|k〉〈k|Sα|k′〉〈k′|δ(ω − Ek′k ). (8.7)

Upon further manipulations, see [9] for details, averaging over
oscillating terms (the RWA), and returning to the Schrödinger
picture, we obtain the Lindblad equation (1.1) in the form

d

dt
ρS (t ) = −i[HLS, ρS (t )] + LSTρS (t ),

LSTρS (t ) =
∑
αβ,ω

γαβ (ω)

(
Sβ (ω)ρS (t )Sα†(ω)

− 1

2
{Sα†(ω)Sβ (ω), ρS (t )}

)
. (8.8)

Here LST denotes the dissipator in the standard derivation, HLS

is the system Hamiltonian including a Lamb shift, and bath
correlations γαβ (ω) = TrB[ρBBα†Bβ](ω).

Summarizing, the customary approach in the microscopic
derivation of the Lindblad equation found in the literature
on open quantum systems is based on a series of physical
approximations: (i) weak coupling to the bath, i.e., the Born
approximation, (ii) timescale separation, (iii) the Markov ap-
proximation, and (iv) the RWA.

IX. QUASIPARTICLE APPROXIMATION

In the master equation in the Born approximation (6.3) or
in the general form (5.3), the time-dependent kernel K (t, t ′)
describes the coupling to the bath. However, the presence
of memory effects makes an analysis difficult, and it is cus-
tomary to apply the Markov approximation [35,40]. This
approximation is based on the assumption of a timescale sepa-
ration between the fast timescale or decay time of correlations
in the bath and the slower timescale associated with the time
evolution of the reduced density operator. This approach cor-
responds to the Langevin or equivalent Fokker-Planck scheme
in classical statistical mechanics [35,40].

A. Heuristic derivation of the Lindblad equation

By inspection of (6.3) we note that assuming that the
bath correlations Dαβ (t, t ′) fall off on a short timescale, τB,
compared to the timescale of the evolution of the system, τS ,
i.e., τB � τS , and setting Dαβ (t, t ′) → δ(t − t ′)Dαβ together
with the limits GR(t, t ) = −i(1/2) and GA(t, t ) = +i(1/2),
we recover the Lindblad equation in (1.1). Note, however, that
this heuristic argument does not provide the actual form of
Dαβ and its dependence on the bath parameters.

B. Pole structure of the transmission matrix

From (2.9) we have in Fourier space

ρ̃S (ω)pp′ =
∑
qq′

T̃ (ω)pp′,qq′ exp(iωti)ρS (ti)qq′ , (9.1)

and the time behavior of ρS (t )pp′ is determined by the pole
structure of the transmission matrix T̃ (ω)pp′,qq′ . From the
Dyson equation (4.8) in Fourier space,

T̃ (ω)pp′,qq′ = T̃ 0(ω)pp′,qq′

+
∑
ss′,ll ′

T̃ 0(ω)pp′,ss′ K̃ (ω)ss′,ll ′ T̃ (ω)ll ′,qq′ , (9.2)

and defining the inverse transmission matrix according to∑
ll ′ T̃ −1

pp′,ll ′ T̃ll ′,qq′ = δpqδp′q′ we infer

T̃ (ω)−1
pp′,qq′ = T̃ 0(ω)−1

pp′,qq′ − K̃ (ω)pp′,qq′ , (9.3)

yielding the resonance condition. From (2.16) and (2.17) in-
serted in (2.21) we have in the energy basis T̃ 0(ω)−1

pp′,qq′ =
−iδpqδp′q′ (ω − Epp′ ) and we obtain, splitting off the diagonal
part of K̃ (ω)pp′,qq′ , the resonance condition given by

det[Dpp′,qq′ − K̃OD(ω)pp′,qq′ ] = 0, (9.4)

Dpp′,qq′ = [−i(ω − Epp′ ) − K̃ (ω)pp′,pp′ ]δpqδp′q′ , (9.5)

where K̃OD(ω)pp′,qq′ = (1 − δpqδp′q′ )K̃ (ω)pp′,qq′ is the off-
diagonal part (OD).

C. Quasiparticle approximation

To proceed in deriving a Markov master equation, we in-
voke the so-called quasiparticle approximation employed in
condensed-matter many-body theory [32,33,50,51]. Here the
basic building block is the single-particle Green’s function
G̃(ω, k) describing the propagation of a quantum particle
with energy ω and momentum k in a many-body environ-
ment. Suppressing the k dependence, the Green’s function
for a noninteracting system has the form G̃0(ω) = 1/(ω − E ),
where E is an energy level. In the simplest case, diagrammatic
perturbation theory gives rise to a Dyson equation of the
form G̃(ω) = G̃0(ω) + G̃0(ω)�̃(ω)G̃(ω), whose solution is
the generic form G̃(ω) = 1/[ω − E − �̃(ω)]; here the self-
energy or mass operator �̃(ω) is determined perturbatively.
The time dependence of the propagation of the quasiparti-
cle is thus given by the resonance condition G̃(ω)−1 = ω −
E − �̃(ω) = 0. To leading order, the quasiparticle approxi-
mation corresponds to �̃(ω) → �̃(E ). Separating �̃(E ) in
a real and imaginary part, i.e., �̃(E ) = �̃ + i�̃, we have
G(t ) ∝ e−i(E+�̃)t e−�̃t ; the real part �̃ gives rise to a quasi-
particle energy shift, while the imaginary part �̃ yields a
damping of the quasiparticle. Both energy shift and damping
are caused by interaction with the many-body environment.
For the quasiparticle to preserve its identity, we must assume
that the damping is small. It is important to note that the
Dyson equation automatically incorporates secular effects in
producing an energy shift and a damping.

Here we apply a corresponding “quasiparticle approxi-
mation” to the transmission operator T̃ (ω)pp′,qq′ for open
quantum systems in order to incorporate secular effects. In a
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slightly compressed form, expressing det[D(ω) − K̃OD(ω)] in
the form det[D(ω)]det[I − D(ω)−1K̃ (ω)OD], using the expan-
sion det[I − D−1K̃OD] = 1 − Tr[D−1K̃OD], and noting that
Tr[D−1K̃OD] = 0 (by construction), we obtain to leading order
the resonance condition det[D] = 0, i.e.,

det[[−i(ω − Epp′ ) − K̃ (ω)pp′,pp′ ]δpqδp′q′] = 0. (9.6)

For vanishing coupling for K̃ (ω)pp′,qq′ = 0 the resonance con-
dition is given by

det[(ω − Epp′ )δpqδp′q′] = 0, (9.7)

yielding the roots ω = Epp′ or equivalently ω = Eqq′ . Con-
sequently, the quasiparticle approximation corresponds to
replacing the frequency ω in diagonal kernel K̃ (ω)pp′,pp′ by
the unperturbed value ω = Epp′ , Eqq′ . As a result, inserting in
(6.6) and (6.7) we obtain for the shift and dissipative kernel in
the quasiparticle approximation the constant shift

�̃pp′,qq′ = −δp′q′
∑
αβ,l

P
∫

dω

2π

Sα
plS

β

lqδ(Epl + Elq)D̃αβ (ω)

Epl − ω

−δpq

∑
αβ,l

P
∫

dω

2π

Sα
q′l S

β

l p′δ(Eq′l + El p′ )D̃αβ (−ω)

El p′ − ω

+
∑
αβ

P
∫

dω

2π

Sβ
pqSα

q′ p′δ(Epq + Eq′ p′ )D̃αβ (ω)

Eq′ p′ − ω

+
∑
αβ

P
∫

dω

2π

Sβ
pqSα

q′ p′δ(Epq + Eq′ p′ )D̃αβ (−ω)

Epq − ω
,

(9.8)

and the constant dissipative kernel

L̃pp′,qq′ = −δp′q′
1

2

∑
αβ,l

Sα
plS

β

lqδ(Epl + Elq)D̃αβ (Epl )

−δpq
1

2

∑
αβ,l

(Sα )q′l (S
β )l p′δ(Eq′l + El p′ )D̃αβ (Ep′l )

+1

2

∑
αβ

Sβ
pqSα

q′ p′δ(Epq + Eq′ p′ )D̃αβ (Eq′ p′ )

+1

2

∑
αβ

Sβ
pqSα

q′ p′δ(Epq + Eq′ p′ )D̃αβ (Eqp). (9.9)

Finally, inserting (9.8) and (9.9) in (6.4), we obtain the Fourier
form of the master equation in the quasiparticle approximation

−iωρ̃S (ω)pp′ = −i
∑
qq′

(Epp′δpqδp′q′ − �̃pp′,qq′ )ρ̃S (ω)qq′

+
∑
qq′

L̃pp′,qq′ ρ̃S (ω)qq′ . (9.10)

Correspondingly, the master equation takes the form

d

dt
ρS (t )pp′ = −i

∑
qq′

(Epp′δpqδp′q′ − �̃pp′,qq′ )ρS (t )qq′

+
∑
qq′

L̃pp′,qq′ρS (t )qq′ . (9.11)

This is our main result, which comes from a standard
field-theoretical analysis in combination with a quasiparticle
approximation and an imposed rotating-wave approximation.
The master equation is memoryless, i.e., Markovian. By in-
spection we note that

∑
p K̃pp,qq′ = 0,

∑
p �̃pp,qq′ = 0, and∑

p Epp = 0 yielding a constant trace of ρS .
There is an important issue that we have not addressed,

namely the positivity of the reduced density matrix ρS re-
quired from general principles; see, e.g., [9]. We have shown
that TrρS = 1 both in the non-Markovian case and in the
Lindblad case. The present diagrammatic approach, however,
does not ensure positivity of ρS . This issue has been discussed
in [65].

X. DISCUSSION

Here we discuss the Markovian Lindblad equation and
non-Markovian approaches by Diosi-Feriadi and Nakajima-
Zwanzig.

A. Lindblad equation

To establish the equivalence between the present field-
theoretical approach and the standard derivation of the
Lindblad equation, we express (8.8) in matrix form. Using

〈k|Sα (ω)|k′〉 = Sα
kk′δ(ω − Ek′k ), (10.1)

〈k|Sα (ω)†|k′〉 = Sα†
kk′δ(ω + Ek′k ), (10.2)

summing over ω, and symmetrizing the first term, we obtain
for the dissipative kernel

LST
pp′,qq′ = +1

2

∑
αβ

γ αβ (Eqp)Sβ
pqρS (t )qq′Sα†

q′ p′δ(Epq + Eq′ p′ )

+1

2

∑
αβ

γ αβ (Eq′ p′ )Sβ
pqρS (t )qq′Sα†

q′ p′δ(Epq + Eq′ p′ )

−1

2
δp′q′

∑
αβ,l

γ αβ (Epl )S
α†
pl Sβ

lqρS (t )qq′δ(Epl + Elq)

−1

2
δpq

∑
αβ,l

γ αβ (Ep′l )ρS (t )qq′Sα†
q′l S

β

l p′δ(Eq′l + El p′ ).

(10.3)

Using
∑

α SαBα = ∑
α Sα†Bα† we obtain complete agreement

with the field-theoretical expression in (9.9). This equivalence
demonstrates that the field-theoretical approach in combina-
tion with a RWA approximation yields the same expression
for the Lindblad equation as the standard approach. With the
exception of the added RWA, the quasiparticle approximation
replaces the physical approximation in the standard approach.

The assumption of separation of timescales is essential in
obtaining a Markov master equation and is used throughout
in the standard derivation of the Lindblad equation. In the
present field-theoretical approach, the timescale separation is
implicit in the quasiparticle approximation locking the fre-
quency in the kernel K̃ (ω) onto the level energy separation
�E . For this approximation to be valid, we must assume
that the kernel varies slowly over a frequency range of order
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τS ≈ 1/�E . To illustrate this point, we assume that K (t ) due
to the fast decay of the bath correlation behaves approximately
like K (t ) ≈ exp(−t/τB), where τB is the bath correlation time.
In Fourier space we then have K̃ (ω) ≈ 1/[ω2 + (1/τB)2], and
the slow variation of K̃ implies the timescale separation τB �
τS . We note that a simple version of the many-body quasi-
particle approximation is also encountered in the standard
Wigner-Weisskopf analysis of spontaneous emission [66],
where the timescale 1/ω0 associated with the level splitting ω0

is assumed to be slow compared to the fast timescale associ-
ated with the radiation field. The resulting pole approximation
corresponds to the Markov approximation.

B. Diosi-Ferialdi approach

There is currently a strong interest in non-Markovian fea-
tures of open quantum systems [43–47]. In this subsection
we address recent work by Diosi and Ferialdi [42,43], who
present an exact analytical expression for the transmission
operator.

Choosing the initial time ti = 0 and inserting from Ap-
pendix 1 Eqs. (A16) and (A17), the transmission operator is
given by a formal expression in terms of time-ordered and
anti-time-ordered products according to

T (t, 0) = exp(−iHSt )TrB

{[
exp

(
−i

∫ t

0
dt ′S(t ′)B(t ′)

)]
+
ρB

[
exp

(
+i

∫ t

0
dt ′S(t ′)B(t ′)

)]
−

}
exp(+iHSt ). (10.4)

Here the time-ordered term [· · · ]+ refers to the upper branch of the so-called Keldysh contour from t = 0 to t , and the anti-time-
ordered term [· · · ]− refers to the lower branch of the Keldysh contour from t to t = 0 [52,53]. In the context of nonequilibrium
many-body theory, the two branches are adjacent and Wick’s theorem in its generator form from Appendix 2 (A28) can be
applied to the path-ordered operators along the complete Keldysh contour from t = 0 to t and back to t = 0. This is the basis for
diagrammatic nonequilibrium many-body theory [52,53].

In the case of an open quantum system, as exemplified in (10.4), the density operator ρB entering in the bath average separates
the two Keldysh branches, and Wick’s theorem cannot be directly applied. In a series of intriguing papers, Diosi and Ferialdi
[42,43], see also [67,68], have remedied this feature by introducing “left” and “right” operators according to the prescription
SLBLρBρS (0) = SBρBρS (0) and SRBRρBρS (0) = ρBρS (0)SB. In this case, the equation of motion for the density operator in
the interaction representation, ρI (t ) = exp(iH0t )ρ(t ) exp(−iH0t ), idρI (t )/dt = [S(t )B(t ), ρI (t )], takes the form idρI (t )/dt =
[SL(t )BL(t ) − SR(t )BR(t )]ρI (t ) with time-ordered solution ρI (t ) = [exp ( − i

∫ t
0 dt ′[SL(t )BL(t ) − SR(t )BR(t )])]+ρ(0), corre-

sponding to the transmission operator

T (t, 0) = exp(−iH0t )TrB

([
exp

(
−i

∫ t

0
dt ′(SL(t ′)BL(t ′) − SR(t ′)BR(t ′))

]
+
ρB

)
exp(+iH0t ). (10.5)

By means of this procedure the two Keldysh branches become adjacent, and Wick’s theorem can be applied to the complete
Keldysh contour in order to explicitly average over the bath, yielding a closed formal expression for the transmission matrix.
Referring to [42,43] for details one arrives at

T (t, 0) = exp(−iH0t )

[
exp

(∫ t

0
dt ′

∫ t

0
dt ′′Dαβ (t ′, t ′′)Qαβ

RL (t ′, t ′′)
)]

+
exp(+iH0t )

Qαβ
RL (t ′, t ′′) = Sβ

L (t ′′)Sα
R (t ′) − θ (t ′ − t ′′)Sα

L (t ′)Sβ
L (t ′′) − θ (t ′′ − t ′)Sβ

R (t ′′)Sα
R (t ′), (10.6)

where the time-ordering [· · · ]+ still applies to the system
operators Sα,β

R,L (t ) in Qαβ
RL (t ′, t ′′). The result (10.6) provides

an exact formal non-Markovian expression for the transmis-
sion operator. In further developments in [43] Ferialdi also
discusses the Hu-Paz-Zhang model for quantum Brownian
motion [69].

There is here a parallel to the Feynman path integral
representation in quantum field theory or condensed-matter
many-body theory [60]. In both cases, the closed form permits
a concise way of checking symmetries, etc. However, for
practical purposes one must often resort to actual expansions
in terms of the interaction, typically diagrammatic expansion
organized according to appropriate Feynman rules.

In the present context of open quantum systems, the ex-
pansion of T (t, 0) in (10.6) in powers of the interaction
HSB, applying the time-order prescription and rearranging the
system operators Sα,β

R,L , should reproduce the diagrammatic
expansion discussed here. However, we should like to em-

phasize that the present approach based on diagrammatic
perturbations theory allows for a derivation of the master
equation, an identification of the irreducible kernel, and di-
agrammatic rules for the determination of K to any desired
order in the interaction; we note that the use of Wick’s theo-
rem in expanding time-ordered products is a standard tool in
condensed matter and field theory going back to the develop-
ment of quantum electrodynamics.

C. Nakajima-Zwanzig approach

An approach to open quantum systems has also been
formulated using the method by Nakajima and Zwanzig
(NZ) [2,9,19,70–74]. This approach relies on a projec-
tion techniques yielding a formal expression for the master
equation with a memory kernel. In the case of a memo-
ryless kernel, the time-convolutionless projection operator
formalism, yielding a perturbative expansion, has also been
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developed [75–78]. For details, we refer to [9]; see also
[74,79–88].

Below we briefly summarize the NZ approach. Referring
to the exposition in [9], the starting point is the von Neumann
equation in the interaction representation in the form

dρI (t )

dt
= L(t )ρI (t ), (10.7)

where L(t ) is the Liouville superoperator acting
according to L(t )• = −i[HSB(t ), •]; note that ρI (t ) =
exp(iH0t )ρ(t ) exp(−iH0t ). The formal solution of (10.7)
is thus given by

ρI (t ) =
[

exp

(∫ t

0
dt ′L(t ′)

)]
+
ρ(0). (10.8)

By expanding, it is easily verified that this expression is com-
pletely equivalent to the expression

ρI (t ) =
[

exp

(
−i

∫ t

0
dtHSB(t ′)

)]
+
ρ(0)

×
[

exp

(
+i

∫ t

0
dt ′HSB(t ′)

)]
−
, (10.9)

forming the basis for diagrammatic perturbation theory; here
[· · · ]± denotes the time-ordered and anti-time-ordered prod-
ucts, respectively.

In the NZ approach, one introduces a projection operator P
according to the definition

PρI (t ) = ρI
S (t )ρB, (10.10)

where ρI
S (t ) is the reduced density operator for the system, and

ρB is the density operator for the bath. Correspondingly, defin-
ing Q = 1 − P, we have the relations P + Q = 1, P2 = P,
Q2 = Q, and PQ = QP = 0. Applying this scheme to (10.7),
we obtain coupled equations of motion for PρI and QρI .
Solving the equation for QρI with initial condition Qρ(0) and
inserting in the equation for PρI , we obtain the Nakajima-
Zwanzig equation

dPρI (t )

dt
= PL(t )G(t, 0)Qρ(0) + PL(t )PρI (t )

+
∫ t

0
dt ′K (t, t ′)PρI (t ′), (10.11)

G(t, t ′) =
[

exp

(∫ t

t ′
dt ′QL(t ′)

)]
+
, (10.12)

K (t, t ′) = PL(t )G(t, t ′)QL(t ′)P. (10.13)

Assuming that odd moments of HSB vanish, and choosing
a factorized initial condition ρ(0) = ρS (0)ρB, we obtain for
Pρ(t )

dPρ(t )

dt
=

∫ t

0
dt ′K (t, t ′)Pρ(t ′). (10.14)

To leading order in HSB we have G = I , and we obtain
K (t, t ′) = PL(t )QL(t ′)P, yielding the second-order NZ mas-
ter equation

dPρ(t )

dt
=

∫ t

0
dt ′PL(t )L(t ′)Pρ(t ′), (10.15)

which, implementing the definitions of L, P, and Q, agrees
with the expression (8.5) in Sec. VIII.

Since the projection PρI (t ) = ρI
S (t )ρB treats ρB as an inert

background (bath) and to leading order yields the expression
(8.5), it appears that the projection basically corresponds to
the physical assumption ρI (t ) ≈ ρI

S (t )ρB in the derivation of
(8.5) in Sec. VIII.

Another issue regarding the NZ approach and the standard
derivation in Sec. VIII is the dependence of the master equa-
tions (10.14), (10.15), and (8.5) on the initial preparation at
t = 0, i.e., the lower integration limit. In the NZ approach, this
feature is associated with inserting the solution of the equa-
tion for QρI with initial condition Qρ(0) in the equation of
motion for PρI . Clearly, a proper evolution equation like the
Schrödinger equation or the von Neumann equation cannot
depend on the initial preparation. Likewise, this must hold for
a proper non-Markovian evolution equation for the reduced
density operator.

It seems that this dependence on the initial condition in-
dicates that secular effects are not properly included in the
NZ approach. In the standard derivation of the Lindblad equa-
tion in Sec. VIII, secular effects are included by applying the
rotating-wave approximation.

In condensed-matter many-body theory, the issue of sec-
ular effects was discussed briefly in Sec. IX. Secular effects
are properly included by the construction of the Dyson equa-
tion for the single-particle Green’s function. Likewise, in the
present diagrammatic approach to open quantum systems, a
Dyson equation is constructed for the transmission matrix in
Sec. IV. Schematically, the Dyson equation for T has the form
T = T 0 + T 0KT given by (4.8), yielding in Sec. V the gen-
eral non-Markovian master equation ρ̇S = −i[HS, ρS] + KρS

in (5.3); note that if we incorrectly make a direct expansion of
the Dyson equation to leading order, i.e., T ≈ T 0 + T 0KT 0,
the definition ρS = T ρS (0) = (T 0 + T 0KT 0)ρS (0) yields a
master equation ρ̇S = (Ṫ 0 + Ṫ 0KT 0)ρS (0), depending on the
initial condition at t = 0.

The fact that the NZ approach does not include secular
effects implies that we cannot compare the NZ approach
to the systematic diagrammatic method presented here. As
discussed above, even to leading order we encounter a dis-
crepancy. Also regarding the time-convolutionless projection
operator formalism yielding a time-local or memoryless mas-
ter equation, we are prevented from a direct comparison
since the diagrammatic approach by construction accounts for
memory effects.

D. Qubit coupled to a heat bath

To illustrate the field-theoretical scheme developed in the
previous sections to a particular open quantum system inter-
acting with a bath, we must specify the system Hamiltonian
HS , the system operators Sα , the bath Hamiltonian HB, the
bath operators Bα , and the corresponding bath correlations
Dαβ . Here we consider the well-known and much studied
case of a two-level system or qubit coupled to a single heat
bath [9]. The isolated qubit is characterized by the two-state
Hamiltonian

HS = ω0

2
σ z, (10.16)
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where the two energy levels are denoted |−〉 and |+〉 with
splitting ω0. In the Pauli matrix basis [60] σ z, σ± we
have σ+|−〉 = |+〉, σ−|+〉 = |−〉, and σ z|±〉 = ±|±〉. For
the coupling to the bath we choose HSB = σ+ ∑

k λkbk +
σ− ∑

k λkb†
k . With the assignment S1 = σ+, S2 = σ−, B1 =

B, and B2 = B†, the coupling is

HSB = S1B1 + S2B2. (10.17)

By inspection of the shift (9.8) and the kernel (9.9), using
(S1)+− = 1, (S2)−+ = 1, and E+− = ω0, and inserting D̃12

and D̃21 from (3.14) and (3.15), noting that D̃11 = D̃22 = 0,
we obtain the nonvanishing shift elements

�̃+−,+− = −�̃−+,−+ = −P
∫

0

dω

2π

g(ω)[1 + 2n(ω)]

ω0 − ω

(10.18)

and the nonvanishing kernel elements

K̃++,++ = −g(ω0)[1 + n(ω0)], (10.19)

K̃−−,++ = +g(ω0)[1 + n(ω0)], (10.20)

K̃++,−− = +g(ω0)n(ω0), (10.21)

K̃−−,−− = −g(ω0)n(ω0), (10.22)

K̃+−,+− = − 1
2 g(ω0)[1 + 2n(ω0)], (10.23)

K̃−+,−+ = − 1
2 g(ω0)[1 + 2n(ω0)]. (10.24)

We note that the δ-function conditions originating from the
RWA are automatically satisfied in the present case. With
the notation g(ω0) = g0, n(ω0) = n0, and �̃+−,+− = �, we

subsequently obtain the master equation
d

dt
ρS (t )++ = −g0(1 + n0)ρS (t )++ + g0n0ρS (t )−−,

(10.25)

d

dt
ρS (t )−− = +g0(1 + n0)ρS (t )++ − g0n0ρS (t )−−,

(10.26)

d

dt
ρS (t )−− = −i(ω0 − �)ρS (t )+−− 1

2
g0(1 + 2n0)ρS (t )+−,

(10.27)

d

dt
ρS (t )−+=+i(ω0 − �)ρS (t )−+ − 1

2
g0(1 + 2n0)ρS (t )−+,

(10.28)

where we note that the shift � can be absorbed in a renor-
malization of the level shift ω0, i.e., a Lamb shift. Finally,
introducing the operators σ+, σ−, and σ z, the corresponding
Lindblad master equation has the form

d

dt
ρS = −i[(ω0 − �)σ z/2, ρS]

+D−+
[
σ−ρSσ

+ − 1

2
{σ+σ−, ρS}

]

+ D+−
[
σ+ρSσ

− − 1

2
{σ−σ+, ρS}

]
, (10.29)

where we have set D+− = g0n0 and D−+ = g0(1 + n0) in
compliance with (1.1).

Here we discuss the quasiparticle approximation for the
qubit-bath case in more detail. According to (9.3), the inverse
transmission matrix has the form

T̃ (ω)−1 =

⎛
⎜⎜⎜⎜⎝

−iω++ − K̃++,++(ω) −K̃++,−−(ω) 0 0

−K̃−−,++(ω) −iω−− − K̃−−,−−(ω) 0 0

0 0 −iω+− − K̃+−,+−(ω) 0

0 0 0 −iω−+ − K̃−+,−+(ω)

⎞
⎟⎟⎟⎟⎠, (10.30)

with the notation ωpp′ = ω − Epp′ . The resonance condition is
given by det[T̃ (ω)−1] = 0 and we obtain

ω − ω0 + iK̃+−,+−(ω) = 0, (10.31)

ω + ω0 + iK̃−+,−+(ω) = 0, (10.32)

[ω − iK̃++,++(ω)][ω − iK̃−−,−−(ω)] + K̃++,−−
×(ω)K̃−−,++(ω) = 0. (10.33)

Applying the quasiparticle approximation, we note that
to leading order ω = ω0 in (10.31), ω = −ω0 in (10.32),
and ω = 0 in (10.33), yielding K̃+−,+−(ω0), K̃−+,−+(−ω0),
K̃++,++(0), K̃−−,−−(0), K̃++,−−(0), and K̃−−,++(0). Note that
K−−,++ and K−−,−− also follows from the trace condition
K++,++ + K−−,++ = 0 and K++,−− + K−−,−− = 0.

XI. SUMMARY

In the present paper, we have applied condensed-matter
many-body methods to open quantum systems. We have
derived a general non-Markovian master equation for the re-
duced density operator characterized by an irreducible kernel
allowing for a systematic diagrammatic expansion. We have in
particular considered the Born approximation. We have shown
that the quasiparticle approximation, common in condensed-
matter many-body theory, in the context of open quantum
systems is equivalent to the standard Markov approxima-
tion implying a separation of timescales. Implementing the
rotating-wave approximation, we have demonstrated that the
Lindblad equation follows from the Markov approximation.
We have, moreover, discussed the Nakajima-Zwanzig method
and its relation to the present diagrammatic approach. As an
application of the many-body approach, we have discussed the
coupling of a qubit to a thermal heat bath. Technical aspects
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of the analysis are supported by an Appendix. We believe that
the present approach correctly including secular effects allows
for a more systematic microscopic analysis of open quantum
systems. Finally, we list here further references relevant to the
present approach [88–93].

APPENDIX

1. Interaction representation

The interaction representation in the context of perturba-
tion theory is textbook material [32,33]. However, in order to
render our presentation self-contained, we present the proce-
dure below applied to open quantum systems.

The open quantum system (S) coupled to the bath (B) is
described by the Hamiltonian

H = HS + HB + HSB, (A1)

HSB =
∑

α

SαBα = S · B, (A2)

where HS is the system Hamiltonian, HB is the bath Hamil-
tonian, and HSB is the system-bath interaction. Here S and B

are the system and bath operators, respectively. The time evo-
lution of the total system is governed by the unitary operator
U (t, t ′) satisfying an evolution equation, i.e.,

U (t, t ′) = exp ( − iH (t − t ′)), (A3)

d

dt
U (t, t ′) = −iHU (t, t ′). (A4)

To treat the system-bath coupling HSB perturbatively, we apply
the interaction representation. Introducing the Hamiltonian H0

for the uncoupled bath and system,

H0 = HS + HB, (A5)

we have in the interaction representation

HSB(t ) = exp(iH0t )HSB exp(−iH0t ), (A6)

B(t ) = exp(iHBt )B exp(−iHBt ), (A7)

S(t ) = exp(iHSt )S exp(−iHSt ), (A8)

Ũ (t, t ′) = exp(iH0t )U (t, t ′) exp(−iH0t ′), (A9)

where Ũ (t, t ′) satisfies the evolution equation together with
its integrated form,

d

dt
Ũ (t, t ′) = −iHSB(t )Ũ (t, t ′), (A10)

Ũ (t, t ′) = I − i
∫ t

t ′
dt ′′HSB(t ′′)Ũ (t ′′, t ′). (A11)

Iterating (A11), we obtain expansions for Ũ (t, t ′) and its conjugate Ũ (t, t ′)† according to

Ũ (t, t ′) =
∑
n=0

(−i)n
∫ t

t ′
dtn

∫ tn

t ′
dtn−1 · · ·

∫ t2

t ′
dt1HSB(tn) · · · HSB(t1), (A12)

Ũ (t, t ′)† =
∑
n=0

(+i)n
∫ t

t ′
dtn

∫ tn

t ′
dtn−1 · · ·

∫ t2

t ′
dt1HSB(t1) · · · HSB(tn). (A13)

Introducing the time-order and anti-time-order according to the prescriptions

[HSB(t )HSB(t ′)]+ = HSB(t )HSB(t ′)η(t − t ′) + HSB(t ′)HSB(t )η(t ′ − t ), (A14)

[HSB(t )HSB(t ′)]− = HSB(t )HSB(t ′)η(t ′ − t ) + HSB(t ′)HSB(t )η(t − t ′), (A15)

and using (A9), we have compactly for the evolution operators U (t, t ′) and U (t, t ′)† the time-ordered products [50,52]

U (t, t ′) = exp(−iH0t )

[
exp(−i

∫ t

t ′
dt ′′HSB(t ′′))

]
+

exp(+iH0t ′), (A16)

U (t, t ′)† = exp(−iH0t ′)
[

exp(+i
∫ t

t ′
dt ′′HSB(t ′′))

]
−

exp(+iH0t ). (A17)

Expanding Eqs. (A14) and (A15) or Eqs. (A16) and (A17), inserting Eqs. (A6)–(A8), and the retarded and advanced Green’s
functions

GR(t, t ′) = −iη(t − t ′) exp ( − iHS (t − t ′)), (A18)

GA(t, t ′) = +iη(t ′ − t ) exp ( − iHS (t − t ′)), (A19)

we obtain the expansions

U (t, t ′) = +i
∑
n=0

∫
dtndtn−1 · · · dt1GR(t, tn)SnGR(tn, tn−1)Sn−1 · · · S2GR(t2, t1)S1GR(t1, t ′)

×e−iHBt Bn(tn)Bn−1(tn−1) · · · B2(t2)B1(t1)eiHBt ′
, (A20)
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U (t, t ′)† = −i
∑
n=0

∫
dundun−1 · · · du1GA(t ′, u1)S1GA(u1, u2)S2 · · · Sn−1GA(un−1, un)SnGA(un, t )

×e−iHBt ′
B1(u1)B2(u2) · · · Bn−1(un−1)Bn(un)eiHBt , (A21)

required for the analysis in Sec. II.

2. Wick’s theorem
Within the Caldeira-Leggett prescription of the bath in

terms of independent bosons (quantum oscillators) and as-
suming that the bath operators Bα (t ) are linear combinations
of creation and annihilation Bose operators, Wick’s theorem
implies that the average of a product of ordered bath opera-
tors TrρBB1(t1) · · · Bn(tn) can be broken up into all possible
pairings or contractions with the time-order preserved.

a. Proof by Gaudin

Here we summarize a proof by Gaudin [59] directly ap-
plied to a thermal average of operator products relevant to
the present analysis. Since the bath operators Bα (t ) are linear
combinations of the creation and annihilation operators per-
taining to a specific wave number, and the Hamiltonian HB is
a sum of contributions from each node, it is sufficient to con-
sider the thermal average of the ordered product d1d2 · · · dn,

〈d1d2 · · · dn〉 = Tr[ρd1d2 · · · dn], (A22)

with the abbreviation d1 ≡ d1(t1). Here dn is either an
annihilation operator bk (t ) or a creation operator b†

k (t )
with time evolution given by (3.3) and (3.4); from
(3.2) the density operator for the kth mode is ρ =
exp(−β
knk )/Tr[exp(−β
knk )].

First cyclically moving ρ to the end of the trace and sub-
sequently permuting d1 to the end of the operator product, we
obtain, moving the c-number commutator outside the trace,
the intermediate expansion

Tr[d1d2 · · · dnρ] = [d1, d2]Tr[d3d4 · · · dnρ]

+ · · · [d1, dn]Tr[d2 · · · dn−1ρ]

+ Tr[d2 · · · dnd1ρ], (A23)

Next using the identity d1ρ = ρd1z, where z = exp(β
k ) for
d1 = b†

k and z = exp(−β
k ) for d1 = bk , we can exchange

ρ and d1, and by permuting the operators under the trace we
obtain the expansion with the commutators [d1, dp] replaced
by [d1, dp]/(1 − z). Applying the scheme to the case n = 2,
we infer

[d1, d2]/(1 − z) = Tr[ρd1d2] = 〈d1d2〉. (A24)

Finally, we have

〈d1d2 · · · dn〉 = 〈d1d2〉〈d3d4 · · · dn〉 + · · · 〈d1dn〉〈d2 · · · dn−1〉,
(A25)

and by induction Wick’s theorem, i.e., the ordered average, is
reduced to all possible pairings of two operators, where we
note that the order is preserved as shown in (3.16).

b. Wick’s theorem in generator form

In the expression (A22) we have assumed a specific order
of the operators {dn(t )}; however, introducing the time-order
and anti-time-order prescriptions

[d (tn)d (tm)]+ = d (tn)d (tm)θ (tn − tm) + dmdnθ (tm − tn),

(A26)

[d (tn)d (tm)]− = d (tn)d (tm)θ (tm − tn) + d (tm)d (tn)θ (tn − tm),

(A27)

and noting that the operators commute under time-ordering
or anti-time-ordering, we infer the functional Wick theorem
[60,94]〈[

exp

(
−i

∫
dt
(t )d (t )

)]
±

〉

= exp

(
−1

2

∫
dtdt ′
(t )〈[d (t )d (t ′)]±〉
(t ′)

)
, (A28)

where 
(t ) is a generator field.
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