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Angle and angular momentum: Uncertainty relations, simultaneous measurement, and phase-space
representation
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Reaching ultimate performance of quantum technologies requires the use of detection at quantum limits and
access to all resources of the underlying physical system. We establish a full quantum analogy between the
pair of angular momentum and exponential angular variable, and the structure of canonically conjugate position
and momentum. This includes the notion of optimal simultaneous measurement of the angular momentum and
angular variable, the identification of Einstein-Podolsky-Rosen-like variables and states, and, finally, a phase-
space representation of quantum states. Our construction is based on close interconnection of the three concepts
and may serve as a template for the treatment of other observables. This theory also provides a test bed for
implementation of quantum technologies combining discrete and continuous quantum variables.
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I. INTRODUCTION

Quantum limitations establish challenging problems for
contemporary science, and rapid progress in metrology and
communications—two important pillars of our technological
world—bring us closer to this largely unexplored ultimate
regime. Though quantum effects are fundamentally distinct
from our classical intuition, they are manifested in variables
which have a classical interpretation. Conservation laws and
the concept of complementary variables offer the opportunity
to be safely guided through this unfamiliar world of inter-
twined quantum effects. Thus we see quantum limits more as
a sophisticated network of the interconnected rules and subtle
conditions rather than strict and impenetrable barriers.

Canonical pairs of variables like energy and time, position
and momentum, and angular momentum and angle provide
the textbook examples. For instance, the Schrödinger equa-
tion connecting the Hamiltonian with time evolution is a
starting point of quantum mechanics, whereas detection of
energy of an electromagnetic field at the level of single pho-
tons opened the era of quantum optics. Though these concepts
are well understood, time is not an operator but a parameter
controlling the interaction, so care must be employed in under-
standing the energy-time uncertainty relation. The celebrated
pair of position and momentum is the most famous example
of noncommuting variables and the starting point of quantum
information science. The Heisenberg uncertainty principle,
Einstein-Podolsky-Rosen (EPR) states [1] and their detection,
coherent states and phase space representation formulated by
Roy Glauber [2], the Arthurs-Kelly concept of approximate si-
multaneous detection [3] (see also [4]), as well as teleportation
with continuous variables [5] are the important milestones on
the long way toward harnessing quantum effects.

The angular momentum and angular variable have been
treated similarly to energy and time rather than fully quantum
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(quadraturelike) variables forming a phase space providing a
complete description. The purpose of this paper is to formu-
late full quantum description for this conjugated pair. Unlike
approaches based on the angle operator [6,7], our formalism is
built on periodic functions of angle operator [8,9] and shows
the prominent role of the corresponding minimum uncertainty
states (MUSs) in four tasks: the formulation of saturable
uncertainty relations, the simultaneous detection of noncom-
muting variables, the construction of EPR-like variables and
states, and, finally, the phase-space representation of quantum
states.

Our paper is motivated by possible applications to metrol-
ogy but more generally by overarching questions about
optimal measurements limited by the uncertainty relations.
The group E(2), the natural structure for angle and angular
momentum, is an interesting test bed for the extension of
techniques developed in the context of Heisenberg algebra.
We mention for completeness some expressions valid for
the general case of quasiperiodic representations [9,10] but
leave the consequences of quasiperiodicity and its potential
applications (as discussed, for instance, in Ref. [11]) for later
work. As there is an extensive body of work related to op-
tical angular momentum as a tool for quantum information
processing [12–14], the theory developed here provides the-
oretical framework for a full quantum description based on
the concept of complementary variables as a possible new
platform fully implemented on the E(2) symmetry. Astonish-
ing experimental progress with sources based on structured
light with imprinted optical angular momentum [15,16] is a
promise for the realization of such protocols and may trigger
new experimental techniques oriented to state engineering and
detection at quantum limits.

II. UNIVERSAL UNCERTAINTY RELATIONS

Noncommutativity is an essential differentiating con-
cept between quantum and classical physics. We analyze
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in detail the concept for the paradigmatic pair of angular
momentum L = −i∂φ and unitary exponential operator E =
e−iφ , satisfying the commutation rule of Euclidean algebra
e(2): [E , L] = E . Rephrased in terms of Hermitian operators
as [Sα, L] = iCα , where Cα = (e−iαE† + eiαE )/2 and Sα =
(e−iαE† − eiαE )/2i, the rule implies the uncertainty relations:

〈(�L)2〉〈(�Sα )2〉 � 1
4 |〈Cα〉|2. (1)

The corresponding MUSs (in the L representation) [9,17,18]

|n + δ, α〉 = 1√
I0(2κ )

∑
l∈Z

ei(n−l )αIn−l (κ )|l + δ〉, (2)

with L|l + δ〉 = (l + δ)|l + δ〉, yield the von Mises
distribution for the angle φ: |〈φ|n + δ, α〉|2 =
exp [2κ cos(φ − α)]/2π I0(2κ ). As a result the states
|n + δ, α〉 will be referred to as von Mises states.

Here n + δ, where n ∈ Z and δ ∈ [0, 1), is the angular
momentum mean, α is an angle, κ � 0 represents the spread
of angular variable, and In(z) is the modified Bessel function
[19] (see Appendix A for its definition and other proper-
ties). Note that we allow for angular momenta with generally
fractional eigenvalues l + δ, whence the angular momentum
eigenstates {|l + δ〉}l∈Z possess quasiperiodic wave functions
〈φ|l + δ〉 = exp [i(l + δ)φ]/

√
2π [9].

For fixed α, the von Mises states |n + δ, β〉 with β �=
α + kπ , k ∈ Z, do not saturate the uncertainty relations (1).
However, by setting α = −arg〈E〉 and �S = Sα=−arg〈E〉, we
get the parameter-free uncertainty relations

〈(�L)2〉ω2 � 1

4
, ω2 = 〈(�S)2〉

|〈E〉|2 , (3)

which is saturated by all von Mises states. Importantly, the
measure of the angular uncertainty ω2 is complementary to
angular momentum in the sense that

〈(�L)2〉 = κ

2

I1(2κ )

I0(2κ )
, ω2 = 1

2κ

I0(2κ )

I1(2κ )
, (4)

where 〈El〉 = exp(−ilα)Il (2κ )/I0(2κ ) derived in Appendix B
has been used. Though the uncertainty relations (3) appear su-
perficially related to some previously published variants, there
is a substantial difference in definition of the angular measure:
contrary to the previous results [8,17], our state-dependent
choice α = −arg〈E〉 guarantees the saturability for all von
Mises states. The uncertainty relations (3) thus represent the
first important result of this paper.

The spread parameter κ has a similar meaning to squeezing
but here for the angular momentum and the angular variable.
Since the phase space of the pair angle and angular momen-
tum has cylindrical topology [9], one can represent von Mises
states by ellipses on the cylinder (see Fig. 1) similarly to the
representation of squeezed states of a harmonic oscillator by
ellipses in the plane. Moreover, the MUS of Eq. (2) form an
overcomplete basis resolving the identity as [9]

∑
n∈Z

∫ π

−π

dα

2π
|n + δ, α〉〈n + δ, α| = 1, (5)

FIG. 1. Phase-space-representation of von Mises states |n, α〉,
n ∈ Z, Eq. (2). The phase space consists of parallel equidistant rings
(black rings), which are orthogonal to z axis and their centers possess
the zth coordinate n. The von Mises state |n, α〉 is represented by
a noise ellipsis (red ellipsis) centered around a point on the circle
with zth coordinate n and polar angle α (positive angle between blue
line segment and positive x axis). The shape of the ellipsis depends
on the value of the spread parameter κ , which is chosen to grow
from the bottom to the top. Accordingly, the uncertainties 〈(�L)2〉
(ω2), Eq. (4), grow (decrease) from the bottom to the top. The red
ring represents von Mises state with n = −2 and κ = 0, which is
an angular momentum eigenstate, so the other phase-space rings are
images of the respective angular momentum eigenstates. The red
vertical line represents the von Mises state with n = 2 in the limit
of κ → ∞. The red circle represents the von Mises state with n = 0
and symmetrical uncertainties 〈(�L)2〉 = ω2 = 1/2 for κ

.= 1.292.

and can be used as a generalized measurement for the discrete
spectrum n + δ of angular momentum and the continuous
values α of the angle. In the following, we set δ = 0.

III. OPTIMAL SIMULTANEOUS MEASUREMENT

The deep analogy with x and p is obvious from the operator
formalism behind the measurement on a signal (s) and ancilla
(a) fields. Let us define the total sum angular momentum
operator and the exponential angular difference operator:

L = Ls + La, E = EsE
†
a . (6)

Since [L, E] = 0, the operator L and any function of E and
E† can be measured simultaneously and may serve as meter
variables, in analogy with the pair of the EPR operators. We
observe interestingly that if one assumes the unitary operator
E is the exponential of some Hermitian angle operator, one
would seemingly recover the same structure as the EPR pair
for quadrature operators. However, such a conclusion cannot
be justified here due to the issues of periodicity.
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We now move to finding optimal simultaneous mea-
surement of the noncommuting canonical pair Ls and
Ss. The derivation is done in several steps implement-
ing the measurement via joint measurement of the com-
muting bipartite observables L and S = (E† − E )/2i. We
seek the measurement minimizing the uncertainty product
〈(�L)2〉〈(�S )2〉 with �S = Sβ=arg〈Ea〉−arg〈Es〉, where Sβ =
(e−iβE† − eiβE )/2i, with respect to the product state |ϕ〉s|χ〉a.
To minimize the unwanted influence of the ancilla on the
measured signal quantities, we set up the following unbi-
ased conditions 〈La〉 = 0, arg〈Ea〉 = 0, arg〈E2

a 〉 = 0, where
the last two conditions guarantee preservation of the angular
dependence of moments 〈S l〉, l = 1, 2, on the signal state.
Under those conditions, the separate measurable uncertainties
are simply given as

〈(�L)2〉 = 〈(�Ls)2〉 + 〈(�La)2〉,
〈(�S )2〉 = |〈E2

a 〉|〈(�Ss)2〉 + 〈(�Sa)2〉. (7)

The uncertainty for the total angular momentum includes ad-
ditional noise from the ancillary field, as expected. Similarly,
an analogous additive term is also present in the perfor-
mance measure for the angular variable. There is also an
additional multiplicative factor |〈E2

a 〉| related to the fact that
the reference phase of ancillary field itself is uncertain. Cross-
multiplying further the uncertainties in (7) and using the
inequality of arithmetic and geometric means together with
the uncertainty relations 〈(�Ls,a)2〉〈(�Ss,a)2〉 � |〈Es,a〉|2/4,
we finally get the following inequality:

〈(�L)2〉〈(�S )2〉 � 1
4

(|〈Ea〉| + |〈Es〉|
√∣∣〈E2

a

〉∣∣)2
. (8)

This inequality is the second main result of this paper. It
imposes a nontrivial fundamental constraint on accuracy with
which the noncommuting observables Ls and Ss can be mea-
sured jointly. The right-hand side of the inequality represents
the achievable lower bound for the simultaneous measure-
ment. Indeed, the inequality is saturated by the MUS for
both the system and ancilla fields satisfying, in addition, the
condition 〈(�Ls)2〉〈(�Sa)2〉 = |〈E2

a 〉|〈(�La)2〉〈(�Ss)2〉. Con-
sequently, the lower bound is saturated by von Mises states
|ϕ〉s = |n, α, κs〉s and |χ〉a = |0, 0, κa〉a, with different spread
parameters κs and κa connected by the condition

κs =
√∣∣〈E2

a

〉∣∣κa =
√

I2(2κa)

I0(2κa)
κa. (9)

Further details can be found in Appendix C.
In Fig. 2, we plot the optimally measurable uncertainty

product (8) in comparison with the uncertainty relations (3)
which give the constant lower bound of 1/4. Note that the
bound for (8) is approximately four times larger as expected
on the basis of the Arthurs-Kelly uncertainty relations [3],
but only in the regime where the measurement resolves
the angular variable well. This result is compared with the
variance product mean 〈(�L)2(�S )2〉 derived based on the
She-Heffner formalism [20] in Appendix E. The analysis of
the latter moment normalized with respect to |〈Es〉|2|〈Ea〉|2 is
surprising: it is even below the minimum value of uncorrelated
product due to anticorrelations (see dashed blue line in Fig. 2).
In other words, quantum mechanics allows us to specify the

0
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1.6
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FIG. 2. Uncertainties and uncertainty products for angular mo-
mentum and angular variable for optimal states and measurements
versus the signal-state spread parameter κs. Uncertainties 〈(�L)2〉
(green crosses) and 
2 = 〈(�S )2〉/|〈Es〉|2|〈Ea〉|2 (black stars), and
uncertainty product 〈(�L)2〉
2 (solid red line) for optimal simul-
taneous measurement with von Mises signal and ancilla states with
different spread parameters satisfying the optimal matching condition
(9) whose inverse is depicted in the inset. The same uncertainty prod-
uct for suboptimal simultaneous measurement with von Mises signal
and ancilla states with the same spread parameters κs = κa (dot-
ted magenta line). The product mean 〈(�L)2(�S )2〉/|〈Es〉|2|〈Ea〉|2
for von Mises signal and ancilla states satisfying optimal matching
condition (9) (dashed blue line). The uncertainty product for opti-
mal simultaneous measurement approaches, asymptotically its lower
bound of 1, which is four times larger than the lower bound of 1/4
for uncertainty relations (3). The product mean always lies below
the uncertainty product for optimal measurement and it may even lie
below 1. Equality 〈(�L)2〉 = 
2 .= 1.099 is achieved for κs

.= 1.146
and κa

.= 1.632.

states (and the measurement), where each canonically conju-
gated variable reaches its minimum in the uncertainty product,
but the correlated product is even below that. This indicates
stronger correlations linked to the fourth-order moments. Note
that such an effect, though mild in our system, is not possible
in the case of x and p operators.

The joint measurement is realized by a projection onto
orthogonal common eigenvectors of operators L and E cor-
responding to eigenvalues N,�, respectively. The common
eigenstates are given as

|N,�〉sa = 1√
2π

∑
l∈Z

e−il�|l + N〉s| − l〉a, (10)

resembling the EPR states for the position and momentum
operators [1]: when the ancilla of the state is projected onto
the von Mises ancilla state |0, 0〉a with the spread parameter
κ , the signal collapses into the von Mises system state |N,�〉s

with the same κ as the ancilla. Below we further develop
the analogy with EPR states by showing that the projective
measurement onto the EPR-like states (10) plays the role
analogous to a Bell measurement for position and momentum
[5]. Generalization of the states of Eq. (10) to signal and
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ancilla with generally different fractional angular momenta
is discussed in Appendix D. The full analogy between the
structure of the EPR pair and states for quadrature operators
and the angular momentum and angular variable represents
the third main result of this paper.

IV. PHASE-SPACE REPRESENTATION

Existing attempts to construct a phase-space representation
of angular momentum and angular variable focused exclu-
sively on the Wigner function [21] using group-theoretical
methods [22,23] or employing analogies with the harmonic
oscillator [24,25]. Building on the latter ideas and our
previous results, we develop a complete family of phase-
space distributions exhibiting behaviors and connections very
much like the quasiprobability distributions of the standard
harmonic oscillator. Here, we only sketch the derivations,
whereas the details can be found in Appendix F.

Our approach is based on identities linking the Fourier
transformation of the projectors onto the EPR-like states (10)
and von Mises states (2) with the ordering of the operators E
and L:

2π (F |n, α〉sa〈n, α|)(l, φ) = Ds(l, φ)Da(−l, φ), (11)

(F |n, α〉s〈n, α|)(l, φ) = o(l, φ)Ds(l, φ), (12)

where

(FA)(l, φ) =
∑
n∈Z

∫ π

−π

dα

2π
ei(lα−φn)A(n, α)

is the Fourier transformation,

D(l, φ) = e−il φ

2 E−l e−iLφ (13)

is the displacement operator [25], and

o(l, φ) = eil φ

2 〈l, φ|0, 0〉 = Il
[
2κ cos

(
φ

2

)]
I0(2κ )

. (14)

The relation (11) follows immediately from the orthogonal
expansion of the operator E−l e−iLφ in terms of the states (10),
whereas the relation (12) is obtained by averaging Eq. (11)
over the ancilla von Mises state |0, 0〉a with spread parameter
κ . Based on the equality (12), we can now construct the
phase-space distributions for the angular momentum and an-
gular variable, in a manner analogous to the quasiprobability
Q function [26], Wigner function [21], and P function [2,27]
of the harmonic oscillator. In particular, the averaging of the
formula (12) over the rescaled density operator ρ/(2π ) imme-
diately yields the relation between the characteristic function
CQ(l, φ) = (FQ)(l, φ) of the Q function,

Q(n, α) = 〈n, α|ρ|n, α〉
2π

, (15)

and the Wigner characteristic function defined as CW (l, φ) =
Tr[ρD(l, φ)]/2π :

CQ(l, φ) = o(l, φ)CW (l, φ). (16)

The analogies with the phase-space distributions of the har-
monic oscillator can be taken further by defining the diagonal

representation of a density matrix ρ as a P distribution, anal-
ogous to the Glauber-Sudarshan quasiprobability distribution
[2,27]. Recall first that the displacement operator (13) satisfies
the following completeness property [25]:

Tr[D†(l, φ)D(l ′, φ′)] = 2πδll ′δ2π (φ − φ′), (17)

where δ2π (φ) is the 2π -periodic delta function. Thus, one can
express any density matrix as

ρ =
∑
l∈Z

∫ π

−π

dφCW (l, φ)D†(l, φ). (18)

Insertion of [o(l, φ)]−1o(l, φ) = 1 into the integrand and ap-
plication of the unitarity of the Fourier transformation brings
us straightforwardly to the P representation of any density
matrix,

ρ =
∑
n∈Z

∫ π

−π

dαP(n, α)|n, α〉〈n, α|, (19)

where we introduced the analogy of the P function as the
Fourier transformation P(n, α) = (FCP )(n, α) of the corre-
sponding characteristic function CP(l, φ) defined by

CW (l, φ) = o(l, φ)CP(l, φ). (20)

From Eqs. (16) and (20), it is apparent that the Bessel overlap
(14) plays for the pair of angular momentum and angular
variable exactly the same role of a universal smoothing factor
as the Gaussian overlap 〈α|0〉 = exp(−|α|2/2) of the vacuum
state |0〉 and the coherent state |α〉 of a harmonic oscillator.
The connection between the respective phase-space distribu-
tions is given by the convolution with the kernel comprised
by the Fourier transformation of the overlap (14). This phase-
space structure and associated quasiprobability distributions
related to operator ordering constitute the final major result of
our paper.

V. APPLICATIONS AND IMPLEMENTATIONS

There are several theoretical and experimental attempts to
use angular momentum and angle in a manner analogous to
quadrature operators for the purpose of quantum informa-
tion processing [28,29]. The role of the angular variable in
quantum information processing adopting a modular variable
approach was recognized in Ref. [30], and Bell inequalities
for entangled angular variables were formulated in Ref. [31].
All those findings are indications of close analogies between
quadrature operators and the pair of angular momentum and
angle variable. The theory developed here may shed light on
this topic by revealing the full potential of the phase-space de-
scription of complementary variables, periodic performance
measures for description of angular variable, and complete
analog for Bell variables and detection. All these are bene-
fits of simultaneous measurements of L and S with optimal
ancillary states, which is fully analogous to quadrature hetero-
dyne detection. This allows us to translate protocols based on
optical quadratures and heterodyne detection into the realm
of the L and S variables. For instance, the coherent state
cryptography protocol with heterodyne detection [32], which
does not require switching of measurement bases, becomes
the analogous no-switching protocol with von Mises states.

022204-4



ANGLE AND ANGULAR MOMENTUM: UNCERTAINTY … PHYSICAL REVIEW A 106, 022204 (2022)

A. Quantum communication with von Mises states

The developed theory finds another application in quantum
teleportation [5,33]. Specifically, the proposed generalized
measurement plays the role of the Bell measurement for L
and S, which can be used for quantum teleportation of von
Mises states. Assume a sender Alice and a receiver Bob share
an entangled state |0, 0〉AB of the form given in Eq. (10) with
N = 0,� = 0, of two subsystems A and B. In addition, Alice
has at her disposal an unknown von Mises state |n, α〉in of an
input system “in” and she wants to teleport this state to Bob.
At the outset, Alice carries out measurement of the basis vec-
tors given in (10) on her part of the joint state |n, α〉in|0, 0〉AB.
If she obtains the measurement outcome (M, �), Bob’s sub-
system collapses (up to an unimportant phase factor) into the
state D−1

B (M, �)|n, α〉B. Alice then sends the outcomes via
classical channel to Bob, who applies correcting displacement
DB(M, �) on his subsystem, thereby recreating the original
state |n, α〉B. A generalization of such a protocol allowing
teleportation of von Mises states between systems with dif-
ferent fractional angular momenta is provided in Appendix D.
Realization of the proposed protocol would extend teleporta-
tion of finite superpositions of angular momentum eigenstates
[34] to the genuine continuous-variable regime when states
spanning entire unbounded state space are teleported.

B. Optical beams

It is a challenging task to implement von Mises states as
optical beams by advanced techniques adopting twisted pho-
tons similar to Refs. [29,35]—either as nondiffracting Bessel
or Laguerre-Gauss modes. Such states would truly play the
role of squeezedlike states carrying information about both
complementary observables of angular momentum and angu-
lar variable. The fascinating progress in compact generation
of optical angular momentum states [16] together with op-
timal usage of information distributed into continuous and
discrete variables represent a step toward unique communi-
cation schemes on a robust platform of optical beams.

C. Phase and intensity as conjugated variables

Although the quantum phase problem has a long history
with many pitfalls [6], the canonical commutation relation
for e(2) can be modified to the case of phase and intensity
of the signal field. Considerations inspired by the analysis
of the phase of complex amplitudes allow us to formulate
the following two-mode representation: L = a†

s as − a†
aaa and

E =
√

(as + a†
a)/(a†

s + aa). The phase of the signal field en-
ters through the phase of the complex amplitude Y = as +
a†

a, [Y,Y †] = 0. However, L and E are represented here by
noncommuting operators and simultaneous detection would
require the strategies discussed above.

VI. CONCLUSION

We developed a fully quantum description of the canoni-
cal pair of angular momentum and angular variable obeying
commutation rules associated with group E(2). A central
role is played by the von Mises MUSs, allowing the perfor-
mance of optimal measurement as well as the provision of

a phase-space representation of states. Since the optimality
is linked to saturable uncertainty relations, our theory has
important metrological consequences and may trigger experi-
mental techniques oriented to state engineering and detection
at quantum limits, fully employing the E(2) symmetry.
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APPENDIX A: MODIFIED BESSEL FUNCTION

Here we review useful formulas to help with some explicit
calculations involving Bessel functions. The modified Bessel
function of integer order n is defined by the integral formula
[19]:

In(z) = 1

2π

∫ π

−π

dφez cos φ+inφ. (A1)

From the definition, one can easily see that In(z) is real for real
z and satisfies

In(z) = I−n(z), In(−z) = (−1)nIn(z), In(0) = δn0. (A2)

In addition, the modified Bessel functions fulfill the recur-
rence relations [19]

In−1(z) − In+1(z) = 2n

z
In(z) (A3)

and

In−1(z) + In+1(z) = 2
d

dz
In(z). (A4)

Our calculations with modified Bessel functions are greatly
simplified by the addition theorem [19]∑

m∈Z
(−1)mIr+m(Z )Im(z)eimφ = eirψ Ir (ω), (A5)

where r ∈ Z and

ω =
√

Z2 + z2 − 2Zz cos φ,

Z − z cos φ = ω cos ψ, z sin φ = ω sin ψ. (A6)

In particular, the addition formula yields∑
m∈Z

Im(κ )Im+r (κ )eimφ = e−ir φ

2 Ir

[
2κ cos

(
φ

2

)]
, (A7)

with the special case∑
m∈Z

I2
m(κ ) = I0(2κ ). (A8)

The modified Bessel functions can also be obtained from the
following generating function [36]:∑

m∈Z
Im(z)eimφ = ez cos φ. (A9)
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APPENDIX B: PROPERTIES OF VON MISES STATES

In this Appendix, we summarize some useful properties of
the von Mises states, Eq. (2) of the main text,

|n + δ, α〉 = 1√
I0(2κ )

∑
l∈Z

ei(n−l )αIn−l (κ )|l + δ〉, (B1)

where δ ∈ [0, 1) and κ � 0.
Recall first that von Mises states (B1) are defined as the

states saturating the uncertainty relations (1) of the main text:

〈(�L)2〉〈(�Sα )2〉 � 1
4 |〈Cα〉|2. (B2)

In the φ representation, von Mises states read

ψn+δ,α (φ) = 1√
2π I0(2κ )

ei(n+δ)φ+κ cos(φ−α), (B3)

where the generating function (A9) has been used. The states
can be seen as a special type of states introduced previously
in Ref. [9], given in φ representation by

ψ̃σ
n+δ,α (φ) = 1√

2π I0(2s)
ei[(n+δ)(φ−α)+σ sin(φ−α)], (B4)

where σ = γ − is. The states of (B4) can be shown to saturate
the uncertainty relations

〈(�L)2〉〈(�Cα )2〉 � 1
4 (|〈Sα〉|2 + |〈{�L,�Cα}〉|2), (B5)

and their relationship to our states (B3) is given by

ψ̃−iκ
n+δ,α− π

2
(φ) = e−i(n+δ)(α− π

2 )ψn+δ,α (φ). (B6)

In what follows, it is advantageous to use the states (B3) as
they represent the standard form of von Mises states in the
φ representation with γ = 0 guaranteeing vanishing of the
anticommutator mean: 〈{�L,�Sα}〉 = 0. This form is simpler
for calculations yet it captures all essential features of MUSs
for angular momentum and angular variable.

We start with the overlap 〈n′ + δ, α′|n + δ, α〉 of two von
Mises states with the same fractional parts δ. By inserting the
resolution of identity

∫ π

−π
dφ|φ〉〈φ| = 1 into the overlap, we

obtain

〈n′ + δ, α′|n + δ, α〉 =
∫ π

−π

dφψ∗
n′+δ,α′ (φ)ψn+δ,α (φ)

1= 1

I0(2κ )

∫ π

−π

dφ

2π
ei(n−n′ )φ+2κ cos ( α−α′

2 ) cos [φ−( α+α′
2 )]

2= ei(n−n′ )( α+α′
2 ) In−n′

[
2κ cos

(
α−α′

2

)]
I0(2κ )

, (B7)

where to get equality 1, Eq. (B3) and the identity cos(φ −
α) + cos(φ − α′) = 2 cos[φ − ( α+α′

2 )] cos( α−α′
2 ) were used,

whereas in equality 2 we used the definition (A1). Alterna-
tively, the overlap formula can be derived using the definition
(B1) and the addition theorem (A7) as

〈n′ + δ, α′|n + δ, α〉 = ei(nα−n′α′ )

I0(2κ )

∑
l∈Z

eil (α′−α)In−l (κ )In′−l (κ )

= ei(n−n′ )( α+α′
2 ) In−n′

[
2κ cos

(
α−α′

2

)]
I0(2κ )

.

(B8)

Interestingly, since In(0) = δn0 according to the last of
Eq. (A2), von Mises states with α′ = α + (2k + 1)π , k ∈ Z,
and n �= n′ are orthogonal. Thus, contrary to the usual in-
tuition, the overcomplete von Mises-state basis contains not
only nonorthogonal but also orthogonal states. A more generic
overlap formula for states (B4) with generally different frac-
tional parts can be found in Ref. [9].

The overlap formula (B7) together with the addition the-
orem (A7) allow us to calculate arbitrary moments of von
Mises states. To show this, let us first note how the operators
exp(−iLφ) and E−l act on von Mises states (B1),

e−iLφ|n + δ, α〉 = e−i(n+δ)φ |n + δ, α + φ〉,
E−l |n + δ, α〉 = |n + l + δ, α〉, (B9)

where in derivation of the second equality the relation E†|n +
δ〉 = |n + 1 + δ〉 has been used. Let us now adopt a con-
ventional definition of the moment-generating function of a

quantum state ρ as a mean G(l, φ) = Tr[ρD̃(l, φ)] of the
operator:

D̃(l, φ) = E−l e−iLφ. (B10)

Making use of Eqs. (B9) and the overlap formula (B7), one
can show easily that the moment-generating function for the
von Mises state |n + δ, α〉 is given by

G(l, φ) = eilαe−i(n+δ− l
2 )φ Il

[
2κ cos

(
φ

2

)]
I0(2κ )

. (B11)

From here, one can then get straightforwardly all moments as
derivatives:

〈E−l LN 〉 = iN dN

dφN
G(l, φ)

∣∣∣∣
φ=0

. (B12)

For N = 0, we can combine Eqs. (B11) and (B12) to get

〈E−l〉 = G(l, φ)|φ=0 = eilα Il (2κ )

I0(2κ )
. (B13)

Moving to N > 0, let us now express the N-th
derivative on the right-hand side of equation (B12) as
iN−1(dN−1/dφN−1)i(d/dφ)G(l, φ), calculate the first
derivative i(d/dφ)G(l, φ) with the help of generating
function (B11), and use the recurrence relation (A4) to
express the resulting formula for the first derivative in
terms of G(l, φ) and G(l ± 1, φ). This yields the N-th
derivative of the generating function as a linear combination
of (N − 1)st derivatives of the generating functions G(l, φ)
and G(l ± 1, φ), which in turn leads, when combined with
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the formula (B12), to the following recurrence relation for the
von Mises states:〈

E−l LN
〉 = κ

4
{eiα〈E−(l−1)[LN−1 − (L − 1)N−1]〉

− e−iα〈E−(l+1)[LN−1 − (L + 1)N−1]〉}

+
(

n + δ − l

2

)
〈E−l LN−1〉. (B14)

Hence, we can rederive moments of the angular momentum
[9]

〈L〉 = n + δ, 〈L2〉 = (n + δ)2 + κ

2

I1(2κ )

I0(2κ )
(B15)

and

〈(�L)2〉 = κ

2

I1(2κ )

I0(2κ )
, (B16)

or derive new moments, e.g.,

〈(E )±2�L〉 = ±e∓i2α I2(2κ )

I0(2κ )
(B17)

and

〈(E )±2(�L)2〉 = e∓i2α

2I0(2κ )
[I2(2κ ) + κI1(2κ )], (B18)

where (E )±2 stands for the (±2)nd power of E . Later, we
use the latter joint moments to calculate the joint moment
appearing in an alternative approach to simultaneous detec-
tion of incompatible observables put forward by She and
Heffner [20].

Before doing this, let us briefly comment on another in-
teresting property of von Mises states, which stems from the
recurrence relation (B14), namely, as 〈L〉 = n + δ for von
Mises states, the joint moment 〈E−lLN 〉 can be expressed via
the mean 〈L〉 and joint moments involving at most (N − 1)st
power of the angular momentum operator. Repeated applica-
tion of the recurrence relation (B14) on the moments on the
right-hand side thus allows us to express any joint moment

〈E−l LN 〉 only in terms of powers of the mean value 〈L〉 and
the moments of powers of the operator E . This can be viewed
as an analogy of a similar property of Gaussian quantum states
[37]. These states are fully determined by the first-order and
second-order moments of the quadrature operators and thus
any higher-order moment can be expressed only in terms of
the first two moments.

APPENDIX C: SIMULTANEOUS DETECTION OF
ANGULAR MOMENTUM AND ANGULAR VARIABLE

In this Appendix, we derive a fundamental lower bound
for a product of variances of the outcomes of simultaneous
measurements of the noncommuting observables Ls and Ss.
This can be done most easily using a joint measurement of
commuting observables L = Ls + La and S = (E† − E )/2i of
the signal s and ancilla a, where E = EsE†

a . We seek the
measurement which would reach the minimum of the uncer-
tainty product 〈(�L)2〉〈(�S )2〉 over the product state |ϕ〉s|χ〉a

with �S = Sβ=arg〈Ea〉−arg〈Es〉 and Sβ = (e−iβE† − eiβE )/2i,
acting on both the ancilla and system spaces. We require the
measurement to preserve the signal angular momentum mean,
i.e., 〈L〉 = 〈Ls〉, as well as the angular dependence of relevant
moments of angular variable, 〈S l〉, l = 1, 2, on the signal
state. This restricts the ancilla state as

〈La〉 = 0, arg〈Ea〉 = 0, arg〈E2
a 〉 = 0. (C1)

Making use of the latter two conditions, one can cast the
uncertainties of angular variables in the form

〈(�S )2〉 = 1
2 (1 − esea cos ψs), 〈(�Sa)2〉 = 1

2 (1 − ea),

〈(�Ss)2〉 = 1
2 (1 − es cos ψs), (C2)

where es,a = |〈E2
s,a〉| and ψs = 2 arg〈Es〉 − arg〈E2

s 〉. Conse-
quently, the measurable uncertainties are simply given as

〈(�L)2〉 = 〈(�Ls)2〉 + 〈(�La)2〉,
〈(�S )2〉 = 〈(�Sa)2〉 + ea〈(�Ss)2〉. (C3)

Hence, the uncertainty product is lower bounded as

〈(�L)2〉〈(�S )2〉 = [〈(�Ls)2〉 + 〈(�La)2〉][〈(�Sa)2〉 + ea〈(�Ss)2〉]
= 〈(�La)2〉〈(�Sa)2〉 + ea〈(�Ls)2〉〈(�Ss)2〉 + 〈(�Ls)2〉〈(�Sa)2〉 + ea〈(�La)2〉〈(�Ss)2〉
1
� [

√
〈(�La)2〉〈(�Sa)2〉 +

√
ea〈(�Ls)2〉〈(�Ss)2〉]2

2
� 1

4 (|〈Ea〉| + |〈Es〉|
√

|〈E2
a 〉|)2. (C4)

Here, inequality 1 follows from

[
√

〈(�Ls)2〉〈(�Sa)2〉 −
√

ea〈(�La)2〉〈(�Ss)2〉]2 � 0 (C5)

and it is saturated if

〈(�Ls)2〉〈(�Sa)2〉 = ea〈(�La)2〉〈(�Ss)2〉. (C6)

The inequality 2 is a consequence of the uncertainty relations

〈(�Ls,a)2〉〈(�Ss,a)2〉 � 1
4 |〈Es,a〉|2, (C7)

and it is saturated by the von Mises MUS of both the signal
and the ancilla. For the condition of Eq. (C6) to hold, we will
see that the parameters κa and κs for these states must be
related. Recall that for a general von Mises state |n + δ, α〉,
one has 〈L〉 = n + δ and 〈El〉 = exp(−ilα)Il (2κ )/I0(2κ ),
Eqs. (B15) and (B13), and the unbiasedness conditions (C1)
imply the optimal ancilla state to be the von Mises vacuum
state |0, 0〉a. If the condition 〈La〉 = 0 is relaxed, the optimal
ancilla state reads |δa, 0〉a, where δa ∈ [0, 1). Similarly, the
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optimal signal state is also a von Mises state |n + δs, α〉s. What
is more, substituting the variances for signal and ancilla von
Mises states,

〈(�Lj )
2〉 = κ j

2

I1(2κ j )

I0(2κ j )
, 〈(�S j )

2〉 = 1

2κ j

I1(2κ j )

I0(2κ j )
, (C8)

j = s, a, into the condition of Eq. (C6) one finds that the
signal and ancilla spread parameters κs and κa of optimal
states must fulfill the nontrivial condition:

κs =
√

I2(2κa)

I0(2κa)
κa. (C9)

Thus, in accordance with our intuition, it is optimal to carry
out a von Mises measurement on von Mises states, but con-
trary to our intuition, the spread parameter of the ancilla κa

and of the measured state κs differ.

APPENDIX D: QUANTUM TELEPORTATION OF VON
MISES STATES

This section deals with the unconditional teleportation of
von Mises states. Let us consider two quantum systems A and
B with angular momenta LA and LB, and angular variables
EA and EB, respectively. The simultaneous measurement of
the total orbital angular momentum L = LA + LB and of the
sine of the angular difference S = (E† − E )/2i = (E†

AEB −
EAE†

B )/2i plays in the optimal simultaneous measurement of
LA and SA the same role as the EPR operators xA − xB and
pA + pB in the optimal simultaneous measurement of xA and
pA. Since the latter measurement is nothing but the Bell mea-
surement for continuous-variable systems [5], one expects that
the former measurement will realize the Bell measurement
for orbital angular momentum and angular variable. In the
following, we confirm this by showing that the measurement
can be used for perfect quantum teleportation [33] of unknown
von Mises states.

Assume the two systems A and B under consideration
carry generally different angular momenta characterized by
fractional parts δA and δB, respectively. Consider further the
vectors

|N + �AB,�〉AB

= 1√
2π

∑
l∈Z

e−il�|l + δA + N − IAB〉A| − l + δB〉B,

(D1)

where I jk = [δ j + δk] ∈ {0, 1} and � jk = (δ j + δk ) mod 1,
� jk ∈ [0, 1), j, k = A, B are the integer part and the fractional
part of δ j + δk , respectively. The normalization factor 1/

√
2π

ensures that the states are normalized as

〈M + �AB, �|N + �AB,�〉 = δMNδ2π (� − �), (D2)

where

δ2π (φ) = 1

2π

∑
n∈Z

einφ =
∑
n∈Z

δ(φ − 2nπ ) (D3)

is the 2π -periodic delta function (or Dirac comb). From rela-
tions E |n + δ〉 = |n − 1 + δ〉 and E†|n + δ〉 = |n + 1 + δ〉, it

further follows straightforwardly that

L|N + �AB,�〉AB = (N + �AB)|N + �AB,�〉AB,

E |N + �AB,�〉AB = e−i�|N + �AB,�〉AB,

E†|N + �AB,�〉AB = ei�|N + �AB,�〉AB, (D4)

where E = EAE†
B , and thus the vectors of Eq. (D1) are com-

mon eigenvectors of L and S corresponding to eigenvalues
(N + �AB) and sin �, respectively.

Adopting the line of argument of Ref. [38] we can now
design the following teleportation protocol. The goal of the
protocol is to transmit faithfully an unknown von Mises state
|n + δin, α〉in of an input system “in” characterized by the
fractional part of angular momentum δin, from a sender Al-
ice to a receiver Bob. For this purpose, the participants can
use the shared EPR-like state of Eq. (D1),

|�AB, 0〉AB = 1√
2π

∑
l∈Z

|l + δA − IAB〉A| − l + δB〉B, (D5)

corresponding to eigenvalue �AB of L and zero eigenvalue of
S . First, Alice performs measurement of EPR-like states (D1)
on subsystem “in” and her part A of the shared state. Provided
that the outcomes of her measurement are (M, �), the global
state |n + δin, α〉in|�AB, 0〉AB collapses to the (unnormalized)
state,

inA〈M + �inA, �|n + δin, α〉in|�AB, 0〉AB

= ei(IAB−δB )�

2π
e−i(M+IAB−IinA )�EM+IAB−IinA

B eiLB� |n + δB, α〉B

= ei(IAB+IinA−M−2δB ) �
2

2π
D−1

B (M+IAB−IinA, �)|n + δB, α〉B,

(D6)

where

D(l, φ) = e−il φ

2 E−l e−iLφ (D7)

is the displacement operator [25] and where in the second
equality we used the relation

EleiLφ = eilφeiLφEl = eil φ

2 D−1(l, φ). (D8)

Alice subsequently sends the outcomes of her measurement
to Bob via a classical channel and he applies to his part of the
shared state the correcting operation DB(M + IAB − IinA, �).
Up to an irrelevant phase factor and generally different frac-
tional part δB from δin, Bob recreates a perfect replica |n +
δB, α〉B of the original von Mises state on his system and thus
he completes the teleportation.

The result above strengthens the attractiveness of a labora-
tory implementation of the von Mises measurement. First, the
measurement would allow teleportation of von Mises states
thereby extending teleportation of finite superpositions of an-
gular momentum eigenstates [34] to the continuous-variable
regime in which infinite superpositions of angular momentum
eigenstates, which span entire infinite-dimensional Hilbert
state space, are teleported. In addition, the presented protocol
allows us, at least in principle, to teleport quantum states
between systems with generally different fractional angular
momenta. It can be expected that the utility of von Mises mea-
surement will also further carry over to all other translations
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of quantum information protocols to angular momentum and
angle, which utilize Bell measurement, such as entanglement
swapping [39] or quantum cryptography without measure-
ment switching [32].

Note, finally, that here we demonstrated perfect teleporta-
tion of von Mises states using the non-normalizable EPR-like
state of Eq. (D1). Analysis of the realistic protocol with phys-
ical approximation of the state (D5), such as, for instance, the
entangled state

∑
l∈Z cl,−l |l〉A| − l〉B generated in the process

of spontaneous parametric down-conversion [40], is outside
the immediate scope of the present paper.

APPENDIX E: SHE-HEFFNER APPROACH TO
SIMULTANEOUS MEASUREMENT

This Appendix contains analysis of the simultaneous de-
tection of the angular momentum and angular variable based

on the statistical perspective introduced in the seminal paper
of She and Heffner [20]. Following their argumentation, si-
multaneous detection can be cast as a two-stage process: state
preparation specified by the moments and repeated detection
conditioned by the same constraints as in the state preparation
step.

The EPR-like states of Eq. (D1) allow us to bridge the
Arthurs-Kelly and She-Heffner approaches. Note first that the
states (D1) satisfy the completeness condition

∑
N∈Z

∫ π

−π

d�|N + �sa,�〉sa〈N + �sa,�| = 1sa, (E1)

where we have done the following identification: s ≡ A and
a ≡ B. With the help of the resolution of identity and the
eigenvalue equations (D4), we can express the product of
squares of operators �L and �S as

(�L)2(�S )2 =
∑
N∈Z

∫ π

−π

d�(N + �sa − 〈L〉)2 sin2 (� − β )|N + �sa,�〉sa〈N + �sa,�|, (E2)

where once again β = arg〈Ea〉 − arg〈Es〉. Let us now calculate the partial average of the latter operator over the optimal
ancilla state |δa, 0〉a. Taking into account that for this ancilla 〈La〉 = δa, arg〈Ea〉 = 0 and a〈δa, 0|N + �sa,�〉sa = |N − Isa +
δs,�〉s/

√
2π , we get after some algebra the following signal operator, diagonal in the von Mises states |N + δs,�〉s:

〈(�L)2(�S )2〉a =
∑
N∈Z

∫ π

−π

d�

2π
(N + δs − 〈Ls〉)2 sin2 (� + arg〈Es〉)|N + δs,�〉s〈N + δs,�|, (E3)

where 〈Xsa〉a = a〈δa, 0|Xsa|δa, 0〉a. Further, by averaging the latter operator over the signal state ρs, we get the analog of the
She-Heffner integral [20] for the angular momentum and angular variable:

〈(�L)2(�S )2〉 =
∑
N∈Z

∫ π

−π

d�

2π
(N + δs − 〈Ls〉)2 sin2 (� + arg〈Es〉)s〈N + δs,�|ρs|N + δs,�〉s. (E4)

Making use of the expressions for the moments given in Eq. (B13) and Eqs. (B16)–(B18), we can finally calculate the
She-Heffner moment for von Mises states with spread parameters κs and κa in the form

〈(�L)2(�S )2〉 = 1

4I0(2κs)I0(2κa)

[( κs

κa
+ κa

κs

)
I1(2κs)I1(2κa) + 2I2(2κs)I2(2κa)

]
. (E5)

In Fig. 2 of the main text, we plot the properly normalized moment 〈(�L)2(�S )2〉/|〈Es〉|2|〈Ea〉|2 versus the spread parameter κs

and κa satisfying condition (C9). The figure reveals that the correlated uncertainties represented by the latter moment lie below
the uncorrelated ones (C4) for the same von Mises states:

〈(�L)2〉〈(�S )2〉 = 1

4

(|〈Ea〉| + |〈Es〉|
√∣∣〈E2

a

〉∣∣)2 = 1

4

[
I1(2κa)

I0(2κa)
+

√
I2(2κa)

I0(2κa)

I1(2κs)

I0(2κs)

]2

. (E6)

APPENDIX F: PHASE-SPACE REPRESENTATION

In this Appendix, we show that von Mises states allow
the development of a phase-space representation for angular
momentum and angular variable, which closely resembles the
phase-space representation for quadrature operators based on
standard coherent states. For the sake of simplicity, we restrict
our attention to integer angular momentum, the generalization
to the fractional angular momenta being deferred for further
research. The key mathematical tool used for the development
of the phase-space methods is the Fourier transformation [24],

(FA)(l, φ) =
∑
n∈Z

∫ π

−π

dα

2π
ei(lα−φn)A(n, α), (F1)

of an operator (or function) A(n, α). Making use of the fil-
tration property of the 2π -periodic delta function (D3) on the
interval of the length 2π , one can show easily that the Fourier
transformation (F1) fulfils the following analog of the Parseval
formula,

∑
l∈Z

∫ π

−π

dφ(FA)(l, φ)(FB)†(l, φ)

=
∑
n∈Z

∫ π

−π

dαA(n, α)B†(n, α), (F2)

where the symbol † stands for the Hermitian conjugate. Anal-
ogously, one can show that the Fourier transformation of a
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product is a convolution of the Fourier transformations of the
factors

[F (AB)](n, α) =
∑
l∈Z

∫ π

−π

dφ

2π
(FA)(n − l, α − φ)(FB)(l, φ)

= (FA) ∗ (FB)(n, α). (F3)

Finally, for 2π -periodic A(n, α), the Fourier transformation
(F1) is also its own inverse.

The phase-space representation relies on the identity link-
ing the ordering of operators L and E with the Fourier
transformation of the projectors onto common eigenstates of
the operators, Eq. (D1), with �sa = 0,

2π (F |n, α〉sa〈n, α|)(l, φ) = E−l e−iLφ

= Ds(l, φ)Da(−l, φ), (F4)

where Dj (l, φ) is the displacement operator of the subsystem
j = s, a. The latter relation follows directly from the applica-
tion of the operator E−l e−iLφ to the resolution of identity for
states (D1), Eq. (E1) with �sa = 0. Further, by averaging both
sides of Eq. (F4) over the von Mises vacuum state |0, 0〉a of
the ancillary system a with spread parameter κ , we obtain

(F |n, α〉s〈n, α|)(l, φ) = o(l, φ)Ds(l, φ), (F5)

where

o(l, φ) = eil φ

2 〈l, φ|0, 0〉 = Il
[
2κ cos

(
φ

2

)]
I0(2κ )

. (F6)

Here, to get the left-hand side we used
a〈0, 0|n, α〉sa = |n, α〉s/

√
2π , and to calculate the mean

a〈0, 0|Da(−l, φ)|0, 0〉a on the right-hand side we used
Eq. (B11). The Fourier transformation of the projector onto
von Mises state (F5) plays a central role in our approach
to development of the phase-space methods for the angular
momentum and angular variable. An interesting feature of
formula (F5) is the c-number function o(l, φ), Eq. (F6), in
front of the displacement operator Ds(l, φ). Below we show,
among other things, that for the angular momentum and
angular variable, the overlap (F6) plays exactly the same role
as plays overlap 〈α|0〉 = exp(−|α|2/2) of the vacuum state
|0〉 and the coherent state |α〉 of a harmonic oscillator.

The relation (F5) allows us to arrive in an elegant way to
analogies of the (Husimi) Q function [26], Wigner function
[21], and Glauber-Sudarshan P function [2,27] of the standard
harmonic oscillator, namely, let us average the relation (with
the index s dropped for simplicity) over the rescaled density
operator ρ/(2π ), i.e.,

Tr

[
ρ

2π
(F |n, α〉〈n, α|)(l, φ)

]
=

[
F 〈n, α|ρ|n, α〉

2π

]
(l, φ)

= o(l, φ)
1

2π
Tr[ρD(l, φ)]. (F7)

In analogy with the phase-space distributions of a harmonic
oscillator, we now introduce the Q function of a density matrix
ρ by a prescription

Q(n, α) = 〈n, α|ρ|n, α〉
2π

, (F8)

which is normalized as
∑

n∈Z
∫ π

−π
dαQ(n, α) = 1. Likewise,

we define the Wigner characteristic function as the average of
the displacement operator:

CW (l, φ) = 1

2π
Tr[ρD(l, φ)]. (F9)

As the Fourier transformation of the Q function is just its
characteristic function, (FQ)(l, φ) = CQ(l, φ), we get from
the formula (F7) the relationship

CQ(l, φ) = o(l, φ)CW (l, φ). (F10)

Surprisingly, the analogy with the quadrature phase space can
be developed even further. Recall first that the displacement
operator (D7) exhibits the following completeness property
[25]:

Tr[D†(l, φ)D(l ′, φ′)] = 2πδll ′δ2π (φ − φ′). (F11)

The property (F11) enables us to decompose any density ma-
trix ρ as

ρ =
∑
l∈Z

∫ π

−π

dφCW (l, φ)D†(l, φ). (F12)

Consider now the Hermitian conjugate of the equality (F5)
(with the index s again dropped)

(F |n, α〉〈n, α|)†(l, φ) = o(l, φ)D†(l, φ). (F13)

By multiplying both sides with CP(l, φ) =
[o(l, φ)]−1CW (l, φ) and performing summation over l and
integration over φ, we get∑

l∈Z

∫ π

−π

dφCP(l, φ)(F |n, α〉〈n, α|)†(l, φ)

=
∑
l∈Z

∫ π

−π

dφCW (l, φ)D†(l, φ) = ρ, (F14)

where the rightmost equality is a consequence of Eq. (F12). If
we now apply to the left-hand side the formula (F2), we obtain

ρ =
∑
n∈Z

∫ π

−π

dαP(n, α)|n, α〉〈n, α|, (F15)

where we defined the P function by the formula

P(n, α) = (FCP )(n, α). (F16)

Equation (F15) reveals that any density matrix can be ex-
pressed in diagonal form in von Mises states. This is a direct
analogy of the celebrated Glauber-Sudarshan representation
[2,27] for the harmonic oscillator.

Summarizing the results, the characteristic functions of
different phase-space distributions are related as

CQ(l, φ) = o(l, φ)CW (l, φ) = o2(l, φ)CP(l, φ). (F17)

The overlap o(l, φ), Eq. (F6), plays for the pair of angular
momentum and angular variable the same role of a universal
smoothing factor as plays the overlap 〈α|0〉 = exp(−|α|2/2)
for the canonically conjugate quadrature operators, where [41]

CQ(α) = e− |α|2
2 CW (α) = e−|α|2CP(α). (F18)
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Application of the Fourier transformation to Eq. (F17)
and utilization of the formula (F3) finally yield the following
relationship between the adjacent phase-space distributions:

Q(n, α) = [(Fo) ∗ W ](n, α),

W (n, α) = [(Fo) ∗ P](n, α). (F19)

We see that the Fourier transformation of the overlap (F6)
plays the role of a kernel of the convolution relating different
phase-space distributions. As the P function of the von Mises
state |n, α〉 takes the form

P|n,α〉(m, β ) = δnmδ2π (α − β ), (F20)

one finds from the second equality of (F19) the kernel to be

(Fo)(n, α) = 2πW |0,0〉(n, α), (F21)

where W |0,0〉(n, α) is the Wigner function of the von Mises
state |0, 0〉. The Wigner function is given by a sum of two
terms both involving the third Jacobi theta function [25]
and we can combine it with formulas (F19) and (F21) to
calculate phase-space distributions for other basic states of
the investigated system. This program as well as further de-
velopment of the phase-space methods introduced here are
beyond the scope of the present paper and will be addressed
elsewhere.
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