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Collisional-model quantum trajectories for entangled-qubit environments
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We study the dynamics of quantum systems interacting with a stream of entangled-qubit pairs in the weak
coupling limit. For a large class of two-qubit bath states, we present a detailed framework describing conditional
dynamical maps for the system, known as quantum trajectories, that arise when the qubits are measured.
Depending on the measurement basis, these quantum trajectories can be jump-type or diffusive-type, and can
successively transfer entanglement from the bath qubits other quantum systems. They also exhibit features not
present in standard quantum optical trajectories due to the fact that collisional models are not confined by the
standard white-noise limit for optical-mode baths. As an example of this formalism, we consider the case of two
remote two-level systems, where jump-type quantum trajectories herald the birth and death of entanglement.
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I. INTRODUCTION

The study of open quantum systems is important, because
no quantum system is fully isolated from its environment. Mit-
igating environmental decoherence is crucial for advancement
of technologies that exploit intrinsic quantum properties—
coherent superposition and entanglement—including quan-
tum computing, communication, and metrology [1]. Although
leakage from a system into its environment is inevitable, mea-
surement of the environment itself restores lost information.
The recovered information, in the form of random measure-
ment outcomes, can be used to provide an update of the
system’s state given by a series of stochastic maps generically
called a quantum trajectory [2–8].

Much effort has gone into the treatment of bosonic-field
environments in the quantum optics community [9–13] due to
the fact that electromagnetic modes are ubiquitous in nature.
Recent attention has focused on an alternative [14]: repeated
interaction models, also known as collisional models, where
the environment (referred to henceforth as a bath) is a se-
ries of discrete quantum systems—typically qubits—each of
which is initially uncorrelated with the system, interacts with
the system for a short time, and then propagates away [15].
Unconditional dynamics for the system are found by tracing
out the bath qubits, and measuring each qubit after the in-
teraction generates quantum trajectories [16–18]. Collisional
models have gained prominence for their relative simplicity,
for applications to quantum thermodynamics [19,20], and
for investigating future technologies such quantum-limited
thermometry [21] and rapid charging of quantum batteries
[22]. Further, collisional models can simulate bosonic [23]
and other environments [24,25]. This correspondence gives a
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recipe for (qubit-based) quantum computers to perform simu-
lations of these dynamical maps.

Collisional models typically employ single-qubit baths,
where a single, uncorrelated qubit interacts with the system
at each time. Recent investigations have pushed beyond this
in various ways. Temporally correlated single-qubit baths can
be used to model nonclassical environments such as n-photon
states [26–28], which drive non-Markovian evolution due to
the temporal entanglement in the input bath [29].

Qubit bath

FIG. 1. Conceptual diagram of the physical model. A stream of
entangled two-level quantum systems (proceeding from top to bot-
tom here) interact, one after another, with two separate subsystems.
After each interaction, the qubits are projectively measured, and the
outcomes are used to update the joint state of the two subsystems.
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Another extension to single-qubit baths is to increase the
number of qubits per interaction time. Using more than one
qubit allows the bath to transfer entanglement to the sys-
tem, which itself can comprise multiple subsystems. For
two qubits, the master equation was derived and studied in
Ref. [30]. Two-qubit collisional models were found to have
the power to entangle separated quantum systems, which,
even in the weak coupling limit, can generate high levels
of two-mode squeezing between remote cavities. That work
focused on the average dynamics described by a master equa-
tion and did not consider measurements of the bath qubits.

In this work, we extend the analysis of Ref. [30] and
develop a general framework for quantum trajectories arising
from measurements of the bath qubits. This framework ex-
tends beyond prior single-qubit trajectory work to situations
where coherences and entanglement among the bath qubits
can be converted into quantum correlations across the systems
[30–32]. This happens stochastically and is highly dependent
on the measurement basis, which can be chosen to mimic
the two standard types of trajectories in quantum optics:
jump-type and diffusive-type. Moreover, collisional models
can go beyond input-output quantum optical models, which
are bound by physical constraints that limit the excitation
probability in the bath over small time intervals [12,33,34].
We identify a different type of conditional dynamics arising
from this fact that we call quasidiffusive, which has features
of diffusion but produces less pronounced effects.

This paper is organized as the following. In Sec. II we
lay out the physical model and present necessary background
on dynamical maps and quantum trajectories. To set the
stage for the quantum trajectories, in Sec. III we review
the two-qubit bath states and corresponding master equa-
tions from Ref. [30]. Section IV contains the main results of
this work: quantum trajectories for two-qubit baths. Focusing
on local measurements of the bath qubits in their energy
eigenbases, we derive the Kraus operators, conditional maps,
outcome probabilities, and conditional difference equations.
These form a toolbox with which one can construct quantum
trajectories for other bases, including entangled Bell-basis
measurements and local mixed measurements, where one of
the two qubits is measured in a basis orthogonal to its energy
basis. Section V illustrates features of two-qubit trajectories
with an example, where the system itself comprises a pair of
remote, two-level atoms. In Sec. VI we show that by coarse
graining over some of the outcomes in the quantum trajec-
tories, one can derive standard jump-type and diffusive-type
stochastic master equations (SMEs). This reveals the mathe-
matical connection between the maps derived in Sec. IV and
various well-known master equations.

In Sec. VII we discuss the consequences of considering
more than two qubits in the bath within the weak-coupling
limit, and we illustrate them with a three-qubit example. Fi-
nally, in Sec. VIII we summarize the findings of this paper
and consider avenues for further study.

II. PHYSICAL MODEL

To describe the underlying framework behind our concep-
tual model, we begin with the concept of collisional models
(or repeated quantum interactions) [16,18,20,23,35]. Within

this formalism, a quantum system in the Hilbert space HS

couples to a bath comprising a stream of identical and inde-
pendent quantum systems H (k)

B , such that HB = ⊗
k H (k)

B .
This stream sequentially couples to the system, with each

element interacting over a short time interval of duration
�t := tk+1 − tk , after which it can (a) carry on unimpeded or
(b) undergo a projective measurement. If it is measured, the
process is equivalent to a weak measurement of the system,
resulting in conditional evolution in HS [12].

A similar scenario arises in quantum optical settings, where
a probe field interacts with the system continuously in time.
However, the situation here is different, because system-bath
coupling is discrete, as it is packaged into time steps of dura-
tion �t . This is not a critical distinction, as the transition from
discrete repeated interactions to continuous-in-time is well
defined [16,17,35–37]. More importantly, the bath is made up
of two-level systems (qubits) rather than bosonic modes.

In each time interval �t the environment is composed of n
potentially entangled qubits, each of which couples to its own
subsystem. In this work we will focus on n = 2 as this is suffi-
cient to capture interesting features; see Fig. 1. It is important
to note that while the bath qubits may be entangled within
each interaction time interval, they are not entangled between
time intervals. This type of quantum correlated environment
underlies non-Markovian dynamics [26,34,38] which should
be treated differently [28,39].

For each interaction time step the total Hilbert space of
the system plus environment is H = HS ⊗ H (k)

B , and the
evolution of the joint system environment is generated by the
following Hamiltonian:

Ĥ = ĤS + Ĥ (k)
B + Ĥ (k)

SB , (1)

where ĤS and Ĥ (k)
B are the Hamiltonians of the system and

environment, respectively, and Ĥ (k)
SB is the system-environment

interaction Hamiltonian, expressed as the following:

ĤS =
∑
�=1,2

ωS�
ĉ†
� ĉ�, Ĥ (k)

B =
∑
�=1,2

ωB�
σ̂

†
� σ̂�, (2)

Ĥ (k)
SB =

∑
�=1,2

λ�(ĉ†
�σ̂� + ĉ�σ̂

†
� ). (3)

Here ωS�
and ωB�

are the characteristic frequencies of the
subsystems and qubit bath, respectively; λ� is the coupling
strength between the �th subsystem and its qubit; the system
operators ĉ� are eigenoperators of the system Hamiltonian
[40]; σ̂� := |g〉�〈e| is a lowering operator acting on the
space of the qubit bath; and σ̂

†
� is the corresponding rais-

ing operator. Since the bare Hamiltonian ĤS + Ĥ (k)
B generates

well-understood free evolution, we move to the interaction
picture in order to highlight the interesting dynamics. In this
picture the interaction Hamiltonian becomes

Ĥ (k)
SB →

∑
�=1,2

λ�(ĉ†
�σ̂�e−iδ�t + H.c.), (4)

where δ� := ωB�
− ωS�

is the detuning and H.c. is the Hermi-
tian conjugate of the term.

In this work, we specialize to on-resonant system-
environment couplings (δ� = 0) for two qubits as this is
sufficient to capture interesting behavior. For coupling rates
λ� that vary considerably, the respective qubits should be
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considered as separate baths with different effective rates and
separate Lindblad operators in a master-equation setting. Here
we aim to consider the grouping of two qubits as a single
bath, so we take λ1 = λ2 = λ. We work in the weak-coupling
regime, where system-bath interactions, given by Eq. (4),
generate only weak correlations between each pair of bath
qubits and their respective systems. Weak coupling occurs
in settings where the coupling rates λ� are small or where
the interactions are fleeting (small �t). In this limit, we can
expand the unitary evolution operator for the joint system
environment, Û (k)

SB = exp{−iĤ (k)
SB �t}, to second order in �t

[39]:

Û (k)
SB = ÎSB − iĤ (k)

SB �t − 1
2

(
Ĥ (k)

SB

)2
�t2 + O(�t3). (5)

Note that although λ��t is assumed small, it is nonvanishing.
Indeed, the second order term must be kept to retain unitarity,
Û (k)†

SB Û (k)
SB = ÎS ⊗ ÎB + O(�t3). Another approach defines an

effective coupling parameter

γ := λ2�t, (6)

interpreted as a rate such that the weak-coupling limit keeps
terms to first order in γ�t [41,42] and discards higher-order
terms. Regardless, with either method, the result is Eq. (5).
Note that weak coupling does not mean that the interactions
are continuous-in-time—that limit is taken separately [39].

A. Unconditional maps: Master equations

A dynamical map for the unconditional (i.e., average) re-
duced system state is obtained by tracing over the bath after
the interaction. The reduced state could describe a single
quantum system or could be the joint state of multiple subsys-
tems interacting with the same bath. For a single pair of bath
qubits weakly interacting over a time �t , the unconditional
dynamical map M, also called the “collision map” [39], is

M
[
ρ̂(tk )

]
:= TrB

{
Û (k)

SB

[
ρ̂(tk ) ⊗ ρ̂

(k)
B

]
Û (k)

SB
†
}
. (7)

The joint state of the environment is assumed to be of the form

ρ̂B ≡
⊗

k

ρ̂
(k)
B , (8)

where each pair of entangled bath qubits k is described by ρ̂
(k)
B

and is independent of other pairs in the chain. This guarantees
the resulting map, (7), is completely positive, trace-preserving
(CPTP), and Markovian—in fact, it is CP divisible [39].

In an appropriate limit, the dynamical map can be de-
scribed by a continuous-in-time Markovian master equation.
The details for deriving such a ME can be found, for instance,
in Ref. [30,39,43]. In the following, for the clarity of nota-
tion we drop the explicit k subscripts and superscripts unless
confusion could arise.

B. Conditional maps: Quantum trajectories

After interacting with the system, the bath contains system
information that can be recovered upon measurement. This
recovered information can be used to construct a conditional
map describing the outcome-dependent evolution of the re-
duced system. Since quantum measurements yield random
outcomes, these conditional reduced-state maps are stochastic
in nature, and the form of these maps depends on the basis

FIG. 2. Circuit diagram illustration of quantum repeated interac-
tions. The first (k − 1) interactions and measurements have prepared
the system state ρ̂(tk ) for the collision with the environmental system
prepared in ρ̂

(k)
B . They interact and become correlated via the unitary

Û (k)
SB , after which the environment is measured. The outcome of that

measurement determines the conditional system state, 
̂(tk+1).

in which the environmental measurement is performed. For
a given measurement record, which is in general a string
of measurement results, the conditional reduced system state
explores a path in the Hilbert space of the system HS called
a quantum trajectory [10]. We briefly review quantum tra-
jectories and discuss the two commonly studied examples,
jump-type and diffusive-type, in repeated interaction and
quantum optical settings.

Consider the canonical case of a system prepared in state 
̂

and a single auxiliary system, which acts as the bath, prepared
in the pure state |ψB〉〈ψB|. After unitary interaction via ÛSB,
the bath is projectively measured in some basis resulting in a
single outcome m associated with eigenstate |m〉.1 The map
Em updates the state of the system conditioned on the mea-
surement outcome [12],

Em(
̂) := 〈m|ÛSB(
̂ ⊗ |ψB〉〈ψB|)Û †
SB|m〉 (9a)

= K̂m
̂K̂†
m, (9b)

where in the second line we define Kraus operators

K̂m := 〈m|ÛSB|ψB〉, (10)

which satisfy the completeness relation
∑

m K̂†
mK̂m = ÎS , with

the sum taken over all possible outcomes. The trace of the
output of the map Eq. (9b) encodes the probability of outcome
m,

℘m = Tr[K̂m
̂K̂†
m], (11)

so that the normalized output state is 
̂out = ℘−1
m Em(
̂).

We apply the above formalism to the case of repeated weak
interactions (or “collisions”) described by Eq. (5), where the
environmental state Eq. (8) is pure and identical across all
time slices, ρ̂ (k)

B = |ψB〉〈ψB| (the mixed-state case is discussed
in Appendix A). A quantum circuit representation of this
situation is shown in Fig. 2. For outcome m, the conditional
reduced state at each time step is given by the discrete dynam-
ical map


̂(tk+1) = 1

℘m
Em[
̂(tk )] = 1

℘m
K̂m
̂(tk )K̂†

m, (12)

with weak-measurement Kraus operators

K̂m = 〈m|[ÎSB − iĤ (k)
SB �t − 1

2

(
Ĥ (k)

SB

)2
�t2

]|ψB〉, (13)

1We take the measurements to be sharp; that is, the measurement
projectors are rank 1.
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whose explicit form can be found given a specific environ-
mental state and measurement basis. The unconditional map
in Eq. (7) can be obtained by taking the average over condi-
tional maps corresponding to all measurement outcomes.

Often one works with difference maps (or differential
maps) rather than the state update maps. For our situation, the
conditional difference map takes the form [44]

�
̂m(tk ) = 
̂(tk+1) − 
̂(tk ) = (
℘−1

m Em − I
)
[
̂(tk )], (14)

with I being the identity map. The transition between maps
of this type arising from discrete repeated quantum interac-
tions and those in continuous quantum measurement theory
has been established [17,36,37], wherein discrete quantum
trajectories—classical Markov chains that describe the evo-
lution of the system in the context of quantum repeated
interactions—can be interpreted as solutions to discrete
stochastic differential equations (SDEs). By allowing the in-
teraction time interval to go to zero �t → 0 while properly
scaling the interaction strength, λ� ∼ (�t )−1/2 [39,44], the
continuous-limit solutions satisfy SDEs describing continu-
ous quantum trajectories. The mathematical tools required to
show this are related to convergence of SDEs and/or general
martingale problems in probability theory; we direct inter-
ested readers to Ref. [17] for more information. Practically,
though, the explicit convergence of discrete quantum trajec-
tories to continuous ones is less valuable, as any physical
settings involve digitization of measurements through inte-
gration of detector currents, and numerical simulations also
inevitably employ discretization.

Jump-type and diffusion-type dynamics

Both discrete and continuous quantum trajectories have
been widely studied for single-qubit baths [39]. We briefly
review two critical types of conditional evolution—“jump”-
type evolution and “diffusion”-type evolution—that arise for
single-qubit baths [23] and also appear in quantum optical
settings with bosonic-mode baths [10,12]. There the bath state
is typically a Gaussian state of the field, and it is the mea-
surement basis—typified by photon counting or homodyne
detection—that determines the nature of the conditional map.
Qubit bath models can be used to emulate quantum optical
cases [23,39], and qubit baths have the additional freedom that
input bath states can be more exotic [39].

Consider a single quantum system interacting with a
stream of bath qubits. For the model in Sec. II, this is de-
scribed by the second system and its associated probe qubit
being absent (also, set λ1 = λ and ĉ1 = ĉ for convenience).
Suppose that each bath qubit is prepared in the ground state
|g〉 and is measured in the {g, e} basis, akin to photon counting
in quantum optics. Detection of a bath qubit in the excited
state |e〉 (orthogonal to its input state) indicates a quantum
jump, where the system state abruptly changes in a signifi-
cant way. The probability of a quantum jump to take place
is ℘jump = γ 〈ĉ†ĉ〉�t = O(γ�t ), where γ is the jump rate,
Eq. (6), and 〈ô〉 is the expectation value of ô with respect to
the system state. Since γ�t � 1, quantum jumps are rare.
On the other hand, the probability of no jump occurring is
1 −℘jump = 1 − O(γ�t ). Thus, most of the time, the bath
qubits are found to be in |g〉, and the system evolves smoothly

under a “no-jump” map with only small changes to the system
state in each �t .

Quantum jumps as described above emerged from quantum
trajectory theory in quantum optics, where the environment
comprises bosonic modes. Specifically, in quantum optics
these modes are electromagnetic fields (quantum harmonic
oscillators) [2,3,10,45–48]. In bosonic-environment settings,
the environment is often treated as being in the vacuum state
(analogous to a qubit ground state) or extremely close to
vacuum in that each weak interaction time possesses only a
small single-photon probability, ℘∼ O(γ dt ) [34,49,50]. That
is, the probability of a single photon in the field in each time
step is proportional to �t , which becomes infinitesimal as
�t → dt . This is in marked contrast to a (stream of single)
qubit environment model, where each qubit can be prepared
in an arbitrary superposition or mixture of ground and excited
states with no limit on the excited state amplitude.

The other type of commonly considered conditional dy-
namics is diffusive evolution. Consider the projection of the
bath qubit in our example onto the X -basis eigenstates,

|±〉 = 1√
2

(|e〉 ± |g〉), (15)

with two outcomes {±} that have nearly the same probability:
℘± = 1

2 ± √
γ 〈ĉ + ĉ†〉√�t ∼ 1

2 ± O(
√

γ�t ). The associated
conditional maps are only perturbatively different from the
identity map, such that the conditional state of the system
is not significantly modified at each measurement time, and
neither outcome provides much system information to an ob-
server [50]. As these measurements are repeated, and in the
continuous-time limit [51], the system state undergoes diffu-
sive dynamics, in sharp contrast to the jump-type evolution
described above.

To reiterate, we discuss two standard types of (discrete)
quantum trajectory—jump-type and diffusive-type. Jump-
type dynamics are characterized by one outcome (or more,
generally) whose corresponding conditional map, Eq. (12),
has nontrivial terms that are not multiplied by γ�t2. When
this outcome is obtained, the state undergoes a significant
change—the state undergoes a “jump.” For diffusive dynam-
ics, on the other hand, all outcomes correspond to maps that
are mostly identity, with nontrivial dynamics generated by
terms proportional to

√
γ�t in the conditional map [for ex-

ample, see Eqs. (C1a) and (C2a)]. As a result, the state of
the system experiences small changes in marked contrast to
quantum jumps. A useful observation is that the nature of
the conditional evolution (and thus the quantum trajectories)
depends on how the measurement basis relates to the initial
environmental state |ψB〉. Jump-type evolution can arise when
|ψB〉 has no overlap with one of the outcomes, and diffusive
evolution can arise when |ψB〉 has equal overlap with the
outcomes.

The two types of dynamics discussed above arise when
the bath measurements are two outcome—i.e., when the bath
is a single qubit. More generally, input environmental states

2This is because both the unnormalized map and outcome probabil-
ity [the numerator and denominator in Eq. (12), respectively] scale as
O(γ�t ). For instance, see Eqs. (C1c) and (C2c).
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and/or measurement bases can give rise to richer dynamics
that mix jump- and diffusion-type dynamics, which are readily
studied with repeated interaction models [17]. In this work, we
find that two-qubit baths can drive a different type of dynamics
that we call quasidiffusive. Quasidiffusive dynamics are dif-
ferent from true diffusive dynamics, and they do not arise with
more commonly studied two-mode bosonic baths in quan-
tum optical settings. There the white-noise conditions require
that the joint probability of detecting more than one photon
always vanishes, even when multiple bath modes are consid-
ered. For instance, over two bath modes, the joint two-photon
detection probability scales as ℘two-jump ∼ O[(γ dt )2] = 0. A
consequence is that jump-type dynamics always has a single
no-jump map with probability near 1 (no photons detected)
and possibly many jump-type maps, each corresponding to
a single photon detected in a single mode. In contrast, qubit
baths do not have this restriction—the probability of detecting
the bath qubits in |ee〉 can be nonnegligible or even significant.
As we will see, for two-qubit baths, this can split the no-jump
dynamics into two separate maps, each occurring with sig-
nificant, noninfinitesimal probability. Thus, most of the time
(e.g., in the absence of jumps), one of the two no-jump maps
is applied, randomly chosen from the two, in analogy to true
diffusive trajectories. However, the nontrivial terms in the
Kraus operators scale as O(γ�t )—instead of O(

√
γ�t ) for

true diffusive maps—thus the effects are less pronounced.

III. MASTER EQUATIONS FOR ENTANGLED
TWO-QUBIT BATHS

The focus of this work is the situation described in
Fig. 1, where two quantum systems repeatedly interact with
identically prepared two-qubit environments, which are then
detected. Within the formalism, the systems can be two-level
systems (qubits) themselves, or they can be more exotic ob-
jects such as bosonic modes or atomic-type systems with
complex internal structure. Moreover, the systems may be
near one another or they may be remote, in that they are
spacelike separated. The dynamics of such a system coupled
to two-qubit baths is quite rich—depending on the state of
the bath qubits, the system can experience completely distinct
evolution as analyzed in Ref. [30] when the bath qubits are
traced out. The reduced-system dynamics in this case are
described by an unconditional master equation. We briefly
review the results of that work including the specific entangled
two-qubit bath states considered, as we will be building on
those results throughout this work.

A. State of the bath qubits

Following Ref. [30], we consider a two-qubit state for
the repeated environment ρ̂B described by the block-diagonal
density matrix in the basis {|ee〉, |gg〉, |eg〉, |ge〉}:

ρ̂B =

⎛
⎜⎜⎜⎜⎜⎝

|bee|2 beeb∗
gg 0 0

b∗
eebgg |bgg|2 0 0

0 0 |beg|2 begb∗
ge

0 0 b∗
egbge |bge|2

⎞
⎟⎟⎟⎟⎟⎠, (16)

with Tr[ρ̂B] = 1.3 While not the most general state, this two-
qubit state can exhibit quantum correlations between the two
qubits, which is the essential feature in the quantum trajecto-
ries. By selecting the coefficients b jk appropriately, one can
use the state in Eq. (16) to describe all four Bell states:

|±〉 := 1√
2

(|ee〉 ± |gg〉), (17a)

|�±〉 := 1√
2

(|eg〉 ± |ge〉), (17b)

as well as various superpositions and mixtures thereof.
Thus, a suitable representation of the bath state is given

by expressing it as a mixture of two orthogonal pure states,
one in each of two orthogonal subspaces, span{|ee〉, |gg〉} and
span{|eg〉, |ge〉}:

ρ̂B = p

∣∣ψB

〉〈
ψB

∣∣+ p�

∣∣ψB�

〉〈
ψB�

∣∣, (18)

with 〈ψB
|ψB�

〉 = 0. Drawing the coefficients from the den-
sity matrix above, the normalized states are∣∣ψB

〉 = 1√
p

(bee|ee〉 + bgg|gg〉), (19a)

∣∣ψB�

〉 = 1√
p�

(beg|eg〉 + bge|ge〉), (19b)

and the corresponding mixture probabilities for the Bell sub-
spaces are

p = |bee|2 + |bgg|2, (20a)

p� = |beg|2 + |bge|2, (20b)

with p + p� = 1.4

A useful observation is that each subspace is also
spanned by the two maximally Bell states, that is, |ψB

〉 ∈
span{|+〉, |−〉} and |ψB�

〉 ∈ span{|�+〉, |�−〉}.

B. Master equation

In Ref. [30] a Markovian master equation for the reduced
system state ρ̂ was obtained by evaluating the dynamical map,
Eq. (7), for the above two-qubit bath state in an appropriate
continuous-time limit. We briefly review that result, as it will
give insight into the quantum trajectories that are the main
focus of this work. Additionally, the master equation and
quantum trajectories are connected by the fact that an average
over measurement outcomes given any measurement scheme
(including the two discussed below) yields the same master
equation.

The Gorini-Kossakowski-Sudarshan-Lindblad master
equation, commonly referred to simply as a Lindblad master
equation, is [30]

˙̂ρ(t ) =
4∑

m=1

D[L̂m]ρ̂ := Lρ̂, (21)

3This two-qubit state appears different from that in Ref. [30] be-
cause the basis vectors there are ordered differently.

4Take note that bge and beg are amplitudes in the pure state,
Eq. (19b), not coherences in a density matrix, so in general bge �= b∗

eg.
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with Lindblad operators,5

L̂1 = √
γ(bggĉ1 + beeĉ†

2), (22a)

L̂2 = √
γ(beeĉ†

1 + bggĉ2), (22b)

L̂3 = √
γ(bgeĉ1 + begĉ2), (22c)

L̂4 = √
γ(begĉ†

1 + bgeĉ†
2), (22d)

and the dissipation superoperator is

D[ô]ρ̂ := ôρ̂ô† − 1
2 (ρ̂ô†ô + ô†ôρ̂ ). (23)

We have set the rates, Eq. (6), equal in the Lindblad operators,
γ1 = γ2 = γ , and henceforth we make this simplification in
all formulas in order to clarify expressions.6

This master equation drives incoherent dynamics on the
system via four decoherence channels each of which is
responsible for a correlated dissipative process that is a com-
bination of loss (ĉ�) and heating (ĉ†

� ) across both subsystems.
Finally, it is interesting that the Lindblad operators L̂1 and
L̂2 are determined by the portion of the environmental state
in the Bell subspace {|ee〉, |gg〉} and the last two Lindblad
operators, L̂3 and L̂4, by the portion of the state in the other
Bell subspace {|eg〉, |ge〉}. Further details can be found in
Ref. [30]. These master-equation Lindblad operators will be
useful for more compactly representing some of the Kraus
operators and conditional maps in the remainder of this work.

We will find it useful later to rewrite the master equation,
Eq. (21), by expanding each Lindblad dissipator, Eq. (23), and
regrouping terms to give

˙̂ρ(t ) = −i(Ĥeffρ̂ − ρ̂Ĥ†
eff ) +

4∑
m=1

J [L̂m]ρ̂. (24)

In this form, the dynamical map is divided into a portion
generated by an effective anti-Hermitian Hamiltonian,

Ĥeff = − i

2

4∑
m=1

L̂†
mL̂m, (25)

and a portion described by the superoperator,

J [ô]ρ̂ := ôρ̂ô†. (26)

This division is a generic feature of Lindblad-form master
equations and can be useful for understanding the connections
with quantum trajectories, as we see in the following sections.

IV. QUANTUM TRAJECTORIES FOR ENTANGLED
TWO-QUBIT BATHS

We extend the work of Ref. [30] to find the quantum
trajectories for the conditional system state when the bath
qubits are measured in various ways. For various measure-
ment bases, we present the fundamental mathematical objects:

5Often, these are also called “jump operators,” but we choose not
to use that term because of the frequent use of the word “jump” for
other things.

6To restore separate rates in any of the equations, use the following
simple procedure. First, remove all instances of the rate γ , then make
the replacements ĉ� → √

γ�ĉ�.

the weak-measurement Kraus operators, Eq. (13). From
these, the components that constitute quantum trajectories—
conditional maps, outcome probabilities, and conditional
difference equations—directly follow. We devote much of
this section to local energy-basis measurements, where each
bath qubit is measured individual in the {e, g} basis. Kraus
operators (and associated quantum trajectories) for other
measurement bases can be constructed using linear combina-
tions of those for local energy-basis measurement. We give
two examples: entangled Bell-basis measurements that gives
jump-type dynamics and local-basis measurements where one
of the qubits is measured in |±〉, giving rise to diffusive
dynamics.

The master-equation analysis above considered a mixed
bath state, Eq. (19). For the quantum trajectories, we focus
on the pure state ∣∣ψB

〉 = bee|ee〉 + bgg|gg〉, (27)

which is just Eq. (19a) with p = |bee|2 + |bgg|2 = 1. We
leave the amplitudes bee and bgg unspecified, as their values
can significantly influence the conditional dynamics. For the
interested reader, in Appendix B we present Kraus opera-
tors, conditional maps, and probabilities for the other state,
Eq. (19b).

A. Local energy-basis measurements

There are infinitely many detection schemes that can be
used for projective measurements of the environment qubits.
Each detection scheme—characterized by the basis in which
the environmental qubits are measured—leads to a different
map and type of conditional system evolution (two examples
are jump-type and diffusive-type as discussed in Sec. II B 1).
This measurement dependence is lifted if an ensemble average
is taken over the outcomes; doing so produces the master
equation in Eq. (21) in the continuous-time limit regardless
of the measurement basis.

When each of the bath qubits is measured in its local
eigenbasis, the four measurement outcomes correspond to
projections onto the following basis set:

m = {|ee〉, |gg〉, |eg〉, |ge〉}, (28)

whose elements we label as mj . The first step towards finding
conditional maps is to work out the corresponding Kraus
operators.

1. Kraus operators

In quantum trajectories that are interspersed with jumps,
the Kraus operators fall into two different categories: those
where the input state and the state associated with each mea-
surement outcome—see Eq. (28), for example—are in the
same subspace (no-jump Kraus operators), and those where
they are in different subspaces (jump Kraus operators). As we
will see, these two types of Kraus operator lead to different
types of conditional map.

Consider the outcomes {ee} or {gg}, which are in the same
subspace as the input state. These yield no-jump Kraus oper-
ators (also called quasidiffusive Kraus operators for reasons
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discussed below), which are found by respective projections
onto m1 = |ee〉 and m2 = |gg〉,

K̂m1 = bee

(
ÎS − γ�t

2

∑
�=1,2

ĉ�ĉ†
�

)
− bggγ�t ĉ1ĉ2, (29a)

K̂m2 = bgg

(
ÎS − γ�t

2

∑
�=1,2

ĉ†
� ĉ�

)
− beeγ�t ĉ†

1ĉ†
2, (29b)

with equal effective rates for each subsystem γ = λ2�t , aris-
ing from λ1 = λ2 = λ in Eq. (6), and we have kept terms
to order γ�t according to weak coupling. The expressions
for the outcome probabilities are lengthy and are presented
in Appendix C 1. It is useful to inspect the scaling of the
probabilities,7

℘m1 ∼ |bee|2 − |bee|O(γ�t ), (30a)

℘m2 ∼ |bgg|2 − |bgg|O(γ�t ), (30b)

as different bath amplitudes can drastically alter the nature of
the probabilities and the conditional maps.

We take a moment to discuss the form of these Kraus
operators and their associated probabilities, focusing on K̂m1 ,
with all arguments likewise applying to K̂m2 under comple-
mentary settings. First, consider the portion multiplied by bee.
This portion is dominated by the first term (proportional to
identity), with the outcome-dependent terms being a pertur-
bative correction at order γ�t . This is the form of a standard
“no-jump” Kraus operator. The other portion of Eq. (29a),
proportional to bgg, arises from the σ̂

†
1 σ̂

†
2 terms in (ĤSB)2. This

term has no counterpart in quantum optical settings, because
the analogous terms that simultaneously create or destroy two
photons in the same infinitesimal interval vanish [34].8 The
balance between these portions can be tuned by adjusting the
relative amplitudes in the bath-qubit state, |bee| and |bgg|.

For even a small amount but nonvanishing |bee|, the iden-
tity term in K̂m1 is the dominant one, and the conditional state
undergoes a “no-jump”-type evolution, where it is only per-
turbatively disturbed. We remark on an interesting difference
from the quantum optical case, where due to the white-noise
limit, only a single outcome, occurring with probability near
1, gives a no-jump-type Kraus operator. Here two separate
outcomes, which can have significant and similar probabilities
(most pronounced at bee = bgg = 1√

2
), give no-jump Kraus

operators. During a system’s conditional evolution, most often
one of these two randomly occurs (since the jumps, described
below, occur only with probabilities ∼γ�t). This is reminis-
cent of diffusive quantum trajectories, but it differs because
the Kraus operators here are no-jump-type, not the diffusive-
type, whose nontrivial terms are of order

√
γ�t compared

to γ�t here. Since
√

γ�t  γ�t , true diffusive trajectories
exhibit much more significant random behavior, which is why
we call these random no-jump dynamics quasidiffusive.

7Note that the scaled probabilities might not necessarily add up to
one. This is because only those probability amplitudes that change
the scaling are kept in the expressions.

8The statement is equivalent to the Itô table in QSDE treatments
[9].

An important threshold occurs when bee ∼ √
γ�t .9 Then

bgg ∼ 1 − 1
2γ�t , and the no-jump Kraus operators are

K̂m1 →
√

γ�t ÎS, (31a)

K̂m2 →
(

1 − 1

2
γ�t

)
ÎS − γ�t

2

∑
�=1,2

ĉ†
� ĉ�. (31b)

The outcome {ee} occurs with probability ∼γ�t , and its
effect on the system is trivial. If bee is any smaller, i.e.,
bee ∼ γ�t or the limiting case bee = 0, something interest-
ing happens in the conditional evolution. Applying K̂m1 as in
Eq. (12) generates a conditional state proportional to (γ�t )2,
which is vanishing in the weak-coupling limit. The remedy to
the apparent problem is that the probability for this outcome,
Eq. (11), also vanishes at the same order as is evident in
Eq. (30). What this means is that the outcome {ee} never
occurs when the bath state is perturbatively close to |gg〉.

The two outcomes in the subspace orthogonal to |ψB
〉,

{eg} and {ge}, give jump dynamics. Projections onto m3 =
|eg〉 and m4 = |ge〉 give the respective weak-measurement
Kraus operators,

K̂m3 = −i
√

γ�t (bggĉ1 + beeĉ†
2) = −i

√
�t L̂1, (32a)

K̂m4 = −i
√

γ�t (beeĉ†
1 + bggĉ2) = −i

√
�t L̂2. (32b)

On the right-hand side of each equation, we have expressed
the Kraus operators in terms of Lindblad operators L̂i that
arise in the master equation, Eq. (22). We retain the −i
phases, because superpositions of these Kraus operators can
be used to describe other measurement bases where such
phases can matter. These Kraus operators have no component
proportional to the identity, so they give rise to “jump-type”
conditional maps that significantly change the system state.
Since each is the coherent sum of two operators, they can
generate superpositions or, if the system itself comprises two
subsystems, entanglement. The probability of the outcomes to
occur, Eq. (11), scale as

℘m3 ,℘m4 ∼ O(γ�t ), (33)

making them much more infrequent than the “no-jump” out-
comes. Unlike Eq. (30), there is no dependence on bee and bgg

in the order of the scaling—it is O(γ�t ) regardless.
We have presented the full set of four Kraus operators, with

each corresponding to an outcome in the local energy basis

9One might at first think that bee ∼ √
γ�t yields an analog to

quantum optical models, as a similar situation describes single-mode
setting with single-qubit baths [23]. For example, a continuous-wave
coherent state of amplitude α (with |α|2 giving the photon flux)
has a continuous tensor-product decomposition |α〉 = ⊗

t |αt 〉. Each
|αt 〉 is an infinitesimal decomposition at time t [34,50], where the
state is expanded in a basis of vacuum and a single photon with
higher order terms vanishing; here the unnormalized state is |αt 〉 =
|0t 〉 + α

√
dt |1t 〉. However, that is a description in a single mode

only. Across two modes, the two-photon probability vanishes in the
white-noise limit. Thus, the qubit description of that situation has
bee = 0.
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across both bath qubits. Together they resolve the identity,

4∑
j=1

K̂†
mj

K̂mj = ÎS, (34)

thus, the Kraus operators comprise a valid POVM, and the
sum over outcome probabilities is equal to 1.

2. Conditional maps

The Kraus operators are the fundamental objects used to
describe quantum trajectories by simply updating the state
according to the conditional map, Eq. (12), once an outcome
is obtained. These equations are lengthy and can be found in
Appendix C 1 along with expressions for the outcome proba-
bilities. If the bath is in the mixed state described by Eq. (18)
with 0 < p, p� < 1, then the appropriate map for a given
measurement outcome mj for any measurement basis is the
convex sum of the maps for each pure state [Eq. (A2b)],


̂(tk+1) = 1

℘mj

[
pEmj (
̂) + p�E (�)

mj
(
̂)

]
, (35)

and the probability of obtaining the outcomes is

℘j = pTr
[

̂K̂ ()†

mj
K̂mj

]+ p�Tr
[

̂K̂ (�)†

mj
K̂ (�)

mj

]
. (36)

Finally, averaging the conditional maps using the outcome
probabilities supplies the connection to the master equation,
Eq. (21),

4∑
j=1

[
pK̂mj 
̂K̂ ()†

mj
+ p�K̂ (�)

mj

̂K̂ (�)†

mj

]− 
̂ = �tL
̂. (37)

3. Conditional difference equations

With the conditional maps, one can also construct condi-
tional difference equations, Eq. (14), which can be instructive
for analysis and for comparison with other types of quantum
trajectory equations. The general forms for the conditional
difference equations are straightforward using the conditional
maps and probabilities, which are given in detail in Ap-
pendix C 1. We present a useful form for the conditional
difference equations that is valid when the probability of
getting both no-jump outcomes is significantly greater than
γ�t—that is, when |bee|, |bgg| >

√
γ�t . In this case, the

jump equations take the general form, but the no-jump equa-
tions can be reexpressed in a form typical of standard SMEs.
Their derivation is given in Appendix D, and the resulting set
of conditional difference equations is

�
̂m1 = −γ�t

(∑
j=1,2

1

2
M[ĉ j ĉ

†
j ] + M

[
bgg

bee
ĉ1ĉ2

])

̂,

(38a)

�
̂m2 = −γ�t

(∑
j=1,2

1
2M[ĉ†

j ĉ j] + M
[

bee

bgg
ĉ†

1ĉ†
2

])

̂,

(38b)

�
̂m3 = G[bggĉ1 + beeĉ†
2]ρ̂ = G[L̂1]ρ̂, (38c)

�
̂m4 = G[beeĉ†
1 + bggĉ2]ρ̂ = G[L̂2]ρ̂, (38d)

where Re[z] indicates the real part of complex number z,
〈ô〉 = Tr[ô
̂], and the standard no-jump and jump measure-
ment superoperators are, respectively, defined

M[ô]
̂ := ô
̂ + 
̂ô† − 〈ô + ô†〉
̂, (39)

G[ô]
̂ := ô
̂ô†

〈ô†ô〉 − 
̂. (40)

The jump superoperator is related to the superoperator in
the master equation, Eq. (26): G[ô]
̂ = J (ô)
̂/〈J [ô]〉 − 
̂.10

Following from the above analysis of the Kraus operators,
if either |bee| or |bgg| is too small, O(

√
γ�t), then the two

no-jump equations, Eq. (38a) and Eq. (38b), are not simulta-
neously valid, although one of them always is since |bgg|2 +
|bee|2 = 1. For example, when |bee| is small, Eq. (38b) is
valid, but �
̂m1 = 0 is trivial [see Eq. (31a)]. In the limiting
case, |bee| = 0, the outcome {ee} never occurs at all, and the
dynamics have only a single no-jump equation, just as in
quantum optical settings.

B. Other measurement bases: Examples

The main focus of this work are the quantum trajectories
driven by local energy basis measurements analyzed above,
since those Kraus operators can be used to generate any other
set given by projective measurements of the bath qubits. Be-
low we highlight two other interesting measurement bases and
provide some details of their quantum trajectories.

1. Entangled Bell-basis measurements

As the natural counterpart to the local measurement basis,
we also consider the situation where the two bath qubits are
jointly measured in a maximally entangled basis correspond-
ing to projections onto the set

{|+〉, |−〉, |�+〉, |�−〉}

= 1√
2
{m1 + m2, m1 − m2, m3 + m4, m3 − m4}, (41)

where the Bell states are defined in Eq. (17). The second
line gives the relation to the local energy basis in Eq. (28),
which allows us generate the Bell-basis Kraus operators with
superpositions of the local-basis ones,

K̂± = 1√
2

(
K̂m1 ± K̂m2

)
, (42a)

K̂�± = 1√
2

(
K̂m3 ± K̂m4

)
, (42b)

10It may seem curious that the two jump-type equations can be
written in terms of the master-equation Lindblad operators L̂1 and
L̂2, while the no-jump equations cannot. Although the no-jump Kraus
operators do not individually factorize, they do average to produce
the anti-Hermitian dynamics in the alternate form of the mas-
ter equation, Eq. (24),

∑
j=1,2 K̂m j 
̂K̂†

m j
− 
̂ = −i�t (Ĥeff
̂ − 
̂Ĥ †

eff ).
This becomes important in Sec. VI A. Whether the no-jump maps can
be written in terms of L̂1 and L̂2 depends on the measurement basis. In
Sec. V B we give an example using Bell-basis measurements where
they can be.
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with explicit forms given in Appendix C 2. The outcome prob-
abilities scale as

℘± ∼ 1
2 |bee ± bgg|2 − |bee ± bgg|O(γ�t ) (43a)

℘�± ∼ |bee ± bgg|O(γ�t ). (43b)

The superpositions in the Kraus operators still respect the
division into the two Bell subspaces. That is, outcomes ±
are related only to m1 and m2; likewise �± are related only
to m3 and m4. Thus, the nature of the maps for each outcome,
either jump or no-jump, are preserved. Similarly, the scaling
of the probabilities and the forms of the conditional difference
equations are preserved.

Although we do not delve further in this direction, one
could consider more general cases, by measuring in an entan-
gled basis of unequally weighted local states. In this case, the
new Kraus operators would simply be appropriately weighted
superpositions of the local-basis ones.

2. Local XZ-basis measurements: Towards diffusive dynamics

Diffusive dynamics occur when a measurement basis is
chosen such that the Kraus operators are linear combinations
of jump-type and no-jump type. This can be done in many
different ways. For example, a diffusive Kraus operator could
be constructed using a Kraus operator from Eq. (29) with
one from Eq. (32). Following with other similar selections,
the full set can be constructed such the POVM resolves the
identity, Eq. (34). We take a measurement-model approach
by making adjustments to local-basis measurements, as this
is most relevant when the bath qubits themselves are spatially
separated.

We measure the first bath qubit in the X -basis, with
outcomes {±} corresponding to projections onto |±〉 in
[Eq. (15)], while the second qubit is still measured in the
local energy basis {e, g}, as above. We refer to this as local
XZ-basis measurements. The measurement basis is spanned
by the four bath-qubit states,

{|+ e〉, |− e〉, |+ g〉, |− g〉}

= 1√
2
{m1 + m4, m1 − m4, m2 + m3,−m2 + m3}, o (44)

and the Kraus operators are found by combining the local
energy-basis Kraus operators in Sec. IV A 1 appropriately. For
input state |ψB

〉, Eq. (27), the four Kraus operators are

K̂±e = 1√
2

(
K̂m1 ± K̂m4

)
, (45a)

K̂±g = 1√
2

(
K̂m3 ± K̂m2

)
. (45b)

with outcome probabilities scaling like

℘±e ∼ 1

2
[|bee|2 ± |bee|O(

√
γ�t ) − O(γ�t )], (46a)

℘±g ∼ 1

2
[|bgg|2 ± |bgg|O(

√
γ�t ) + O(γ�t )]. (46b)

The explicit forms of the Kraus operators, the conditional
maps they generate, and the probabilities are given in Ap-
pendix C 3. The fact that there are four outcomes complicates
a simple categorization of the dynamics just as it did for

the local energy basis measurements above. That is because,
while the first qubit’s outcome drives diffusive-type dynam-
ics, the second qubit’s outcome sets this diffusion on one
of two branches—that for {e} or that for {g}—which switch
randomly. However, we show in Sec. VI B that averaging over
the second qubit’s outcome yields a bona fide diffusive SME.

V. EXAMPLE: TWO REMOTE TWO-LEVEL ATOMS
INTERACTING WITH ENTANGLED TWO-QUBIT BATHS

The above quantum trajectories can be applied to arbi-
trary systems probed by entangled baths. We illustrate some
properties of entangled-qubit-bath quantum trajectories by
focusing on the specific situation where the bath couples to
two remote subsystems, each a two-level atom. This situation
was considered in Ref. [30] in the context of unconditional,
master-equation dynamics. Following that work—for the sake
of clarity in discussions—we refer to the bath as qubits and the
subsystems as atoms (which are themselves also qubits).11 Af-
ter introducing the necessary details of the model, we review
some features found in the master-equation analysis. Then we
lay out and analyze the quantum trajectories using different
measurement bases: the local energy basis and the maximally
entangled Bell basis.

We first describe the physical model. The two atom subsys-
tems are identical, each with ground state |0〉 and excited state
|1〉. The bare Hamiltonian is Ĥ� = 1

2ω10 σ̂z,�, where ω10 is the
atomic transition frequency, and σ̂z,� = (|1〉〈1| − |0〉〈0|)� is
the Pauli operator for the �th subsystem. Each atom interacts
with its qubit bath through excitation exchange processes de-
scribed by the atomic lowering and raising operators, ĉ� → σ̂�

and ĉ†
� → σ̂

†
� with σ̂� = |0〉〈1|�. Just as for the general settings

above, the couplings are equal λ� = λ in the interaction-
picture Hamiltonian, Eq. (4), and the detuning is zero, δ� = 0,
indicating that the atoms and the bath qubits are energetically
identical.

Given two-level atomic subsystems, the anti-Hermitian
Hamiltonian Ĥeff in the master equation, Eq. (24), can be
exactly diagonalized and has spectrum

w = −i
γ

2
(p�, p� + 2p, p, p + 2p� ), (47)

with p j defined in Eq. (20). The associated orthonormal eigen-
states are

|w1〉 = 1√
p

(bee|11〉 − bgg|00〉), (48a)

|w2〉 = 1√
p

(b∗
gg|11〉 + b∗

ee|00〉), (48b)

|w3〉 = 1√
p�

(beg|10〉 − bge|01〉), (48c)

|w4〉 = 1√
p�

(b∗
ge|10〉 + b∗

eg|01〉), (48d)

11We also use {|0〉, |1〉} and {|g〉, |e〉} as bases to express the
system’s and bath’s states, respectively. Basis elements are the eigen-
states of σ̂z acting on the corresponding space.
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such that the state ρ̂ jk = |w j〉〈wk| is an eigenoperator of evo-
lution under the effective Hamiltonian alone: −i(Ĥeffρ̂ jk −
ρ̂ jkĤ†

eff ) = −i(w j − w∗
k )ρ̂ jk . Note that the two groups of

eigenstates, {|w1〉, |w2〉} and {|w3〉, |w4〉}, span orthogonal
subspaces.

In this section, we focus on a specific set of pure bath qubit
states that will allow us to write conditional difference equa-
tions and explore situations that were introduced and analyzed
in the case of unconditional master equations [30]. Here we
consider bath states |ψB〉 described by two-qubit entangled
states |+(ε)〉 in the subspace spanned by |ee〉 and |gg〉:

|±(ε)〉 = 1√
2 + ε

(|ee〉 ± √
1 + ε |gg〉). (49)

This equation also defines |−(ε)〉, which will be useful be-
low. We call these near-Bell states, because for 0 � ε � 1,
they have fidelity 1 − O(ε2) with their respective Bell state
|±〉 [Eq. (17a)], and they are exactly |±〉 for ε = 0. The
near-Bell states are given by p = 1 and p� = 0 in Eq. (19),
with the amplitudes bee and bgg being strictly real and param-
eterized by ε.

Before we consider the various quantum trajectories,
we briefly review some results for unconditional, master-
equation dynamics under the bath qubit state |+(ε)〉. This
can be useful in understanding the quantum trajectories,
since the dynamics they describe average to the master-
equation dynamics, independent of measurement basis. The
average (unconditional) evolution of the two-atom state ρ̂ is
governed by the master equation given in Eq. (21), where two
Lindblad operators are [see Eq. (22)]

L̂1 =
√

γ

2 + ε
(
√

1 + ε σ̂1 + σ̂
†
2 ), (50a)

L̂2 =
√

γ

2 + ε
(σ̂ †

1 + √
1 + ε σ̂2). (50b)

The spectrum of Ĥeff = − i
2 (L̂†

1L̂1 + L̂†
2 L̂2) is − iγ

2 (0, 2, 1, 1)
with associated eigenstates

|w1〉 = |−(ε)〉, (51a)

|w2〉 = 1√
2 + ε

(
√

1 + ε|11〉 + |00〉), (51b)

|w3〉 = f |10〉 + g∗|01〉, (51c)

|w4〉 = g|10〉 − f ∗|01〉, (51d)

where f , g can be chosen arbitrarily as long as | f |2 + |g|2 = 1.
The four eigenstates are orthogonal (thus comprising a basis)
and will be useful in the analyses below. Note that the first two
are highly entangled for ε � 1.

In the long-time limit, t → ∞, the two-atom steady state,
ρ̂ss of the master equation for ε �= 0 is the near-Bell state
|−(ε)〉 = |w1〉 [30]. The two-atom steady-state changes
abruptly when the bath qubits are prepared in the maxi-
mally entangled Bell state |+(ε = 0)〉. In this case, the two
Lindblad operators become Hermitian conjugates of one an-
other, L̂1 = L̂†

2 = √
γ /2(σ̂1 + σ̂

†
2 ), and the master equation in

Eq. (21) does not have a rank-1 steady state. Instead, ρ̂ss is
in general a mixed state with support in both Bell subspaces
and is determined by the initial state of the atoms ρ̂0. An exact

form for ρ̂ss and an extensive study can be found in Ref. [30].
We highlight two interesting cases here. First, consider an
initial two-atom state |−〉. This state does not evolve (and
thus it is a steady state), in analogy to |−(ε)〉 for the near-
Bell master equation discussed above. Second, consider an
arbitrary state (pure or mixed) ρ̂−

⊥ in the three-dimensional
subspace orthogonal to |−〉, i.e., 〈−|ρ̂−

⊥ |−〉 = 0. In this
case the master-equation steady state is

ρ̂−
⊥ −→ ρ̂ss = 1

3 (|10〉〈10| + |01〉〈01| + |+〉〈+|), (52)

which is the fully mixed state in that subspace. Note that the
final states in the mixture are eigenstates of Ĥeff, Eq. (51).

A. Local energy-basis measurements

The procedure to find the conditional system state for each
outcome is presented in Sec. IV A 1 for bath qubits described
by Eq. (18) and measurements in the local energy basis m,
Eq. (28). The Kraus operators can be read off from their
general forms above in Eq. (29) and Eq. (32) and making the
proper replacements for the system operators as the bath-qubit
amplitudes. With these Kraus operators, one can derive condi-
tional difference equations or simply use the general form in
Eq. (38) with appropriate replacements.

For typical two-outcome jump-type trajectories, the coun-
terpart to infrequent jumps are periods of smooth evolution
given by a no-jump map whose associated outcome occurs
with probability near 1. In the four-outcome situation we con-
sider here, things work differently. The outcome probabilities,
found from the general forms given in Eq. (B3), scale in the
following way:

℘m1 ∼ 1

2 + ε
− O(γ�t ), (53a)

℘m2 ∼ 1 + ε

2 + ε
− O(γ�t ), (53b)

℘m3 ,℘m4 ∼ O(γ�t ). (53c)

The two jump outcomes, m3 and m4, occur only rarely with
probability O(γ�t ). The two no-jump outcomes, m1 and m2,
each occur with probability near 1

2 —i.e., the “typical” smooth
no-jump evolution has been split in two via the two (roughly)
equally likely outcomes. This is typically the hallmark of
diffusive dynamics, except that the Kraus operators, Eq. (29),
do not contain terms proportional to

√
γ�t—nor do the

conditional maps, Eq. (C1). Rather, they have terms propor-
tional to γ�t multiplying two types of operator Eq. (38a) and
Eq. (38b). The first are single-atom projectors, σ̂ j σ̂

†
j = |0〉〈0| j

and σ̂
†
j σ̂ j = |1〉〈1| j . The second are bona fide two-atom tran-

sitions that each have one nontrivial operation over the two
atoms: σ̂1σ̂2 = |00〉〈11| and σ̂

†
1 σ̂

†
2 = |11〉〈00|. Together, these

no-jump maps drive quasidiffusive atomic dynamics until a
jump occurs. In Sec. VI we show that coarse graining over
the no-jump outcomes removes the two-outcome dependence,
thereby averaging out the quasidiffusive nature to produce
smooth evolution characteristic of typical no-jump evolution
in quantum optical settings.

In the long-time limit, t → ∞, the steady state ρ̂ss of the
master equation is the other near-Bell state |−(ε)〉 [30].
Since the master equation can be obtained by an average over
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FIG. 3. A single, example quantum trajectory for a two-atom system interacting with a bath of qubits prepared in a near-Bell state, Eq. (49),
with ε = 0.1. The atoms are prepared in the maximally mixed state. (a) Fidelity of the conditional two-atom state with the atomic steady state
ρ̂ss = |−(ε)〉〈−(ε)|. For reference, the fidelity is also shown for the average, master-equation dynamics (note the timescale is significantly
different). (b–d) Fidelity of the conditional state with the three other eigenstates of the effective Hamiltonian, Eq. (51), with f = g = 1 giving
|w3〉 = |10〉 and |w4〉 = |01〉. (e) Conditional-state entanglement as measured by the logarithmic negativity, Eq. (56), which ultimately reaches
the steady-state value ≈0.9992; see Eq. (57). (f) Expectation value 〈σ̂z,1〉. Note the quasidiffusive behavior of the curve when it is not ±1.

trajectories, a rank-1 steady-state subspace requires that the
trajectory equations also have ρ̂ss as the stationary state. The
atoms are in a stationary state of conditional evolution when
the two following conditions are met: outcomes with nonzero
probability have trivial maps (proportional to the identity),
and any outcomes with nontrivial maps have probability zero.
This is indeed the case for the steady state |−(ε)〉. Once it is
reached, one can verify that the two jump outcomes no longer
occur (℘m3 = ℘m4 = 0), and the no-jump maps [Eqs. (C1)] are
trivial,

K̂m1 |−(ε)〉 ∝ |−(ε)〉, K̂m2 |−(ε)〉 ∝ |−(ε)〉. (54)

We show a sample trajectory in Fig. 3. Using the Uhlmann-
Jozsa fidelity between mixed state ρ̂ and pure state ρ̂ψ =
|ψ〉〈ψ |,

F (ρ̂|ρ̂ψ ) := 〈ψ |ρ̂|ψ〉, (55)

we plot the fidelity of the conditional state 
̂ with the pure
steady state ρ̂ss = |−(ε)〉〈−(ε)| as well as the fidelities
with the other eigenstates of the effective Hamiltonian given
in Eq. (51). Indeed, the atoms do eventually fall into the steady
state. Before that happens, the atoms become periodically
entangled and unentangled as quantum jumps occur. We use

the logarithmic negativity [52],

LN (ρ̂ ) := log2(Tr[
√

ρ̂
†
PTρ̂PT]), (56)

to quantify two-atom entanglement, where ρ̂PT is the partial
transpose of the two-atom state taken with respect to the
atomic subsystem Hilbert spaces. The logarithmic negativity
lies in [0,1], with the lower limit characterizing separable
states and the upper limit maximally entangled states. The
logarithmic negativity of the steady state,

LN[ρ̂ss] = log2

(
1 + 2

√
1 + ε

2 + ε

)
, (57)

is achieved periodically before steady state is reached, since
it is identical for |+〉. The trajectory illustrates that entan-
glement is generated and destroyed both by the jump and
no-jump evolutions (although the former is much more pro-
nounced).

We identify three distinct periods in the conditional dynam-
ics12 in Fig. 3. The first is an initial period of purification,

12Dynamical stochastic states are simulated following the usual
recipe in the literature [2,3,12]. That is, an initial state evolves by

022202-11



DARYANOOSH, GILCHRIST, AND BARAGIOLA PHYSICAL REVIEW A 106, 022202 (2022)

which occurs until ≈2γ�t for this trajectory. The second
is a long period of jumps to and from the {|10〉, |01〉} sub-
space. The final is a slower, quasidiffusive approach to the
steady state beginning from ≈175γ�t in this trajectory. To
understand what is happening, we find the action of the Kraus
operators on an arbitrary pure state; see Appendix E for de-
tails. When the state is found in one the two pure states |10〉
or |01〉 (as indicated by F = 1 for either of these states), it
does not evolve until an outcome (either m3 or m4) signals a
jump to |+(ε)〉:

K̂m3 |eg〉 ∝ |+(ε)〉, (58a)

K̂m4 |ge〉 ∝ |+(ε)〉. (58b)

If the same outcome is detected immediately afterwards, the
jump process is exactly reversed:

K̂m3 |+(ε)〉 ∝ |01〉, (59a)

K̂m4 |+(ε)〉 ∝ |10〉. (59b)

Note that there are no jumps between the two states in
Eq. (58). Thus each time a jump occurs, a significant amount
of entanglement is either created or destroyed, clearly shown
by drastic flips in the logarithmic negativity from 0 to ≈1 and
back again.

However, if a jump does not occur immediately after the
state is projected into |+(ε)〉, then quasidiffusive evolution
proceeds according to

K̂m1 |+(ε)〉 ∝ (1 − γ�t )|+(ε)〉 + γ�t |−(ε)〉, (60a)

K̂m2 |+(ε)〉 ∝ (1 − γ�t )|+(ε)〉 − γ�t |−(ε)〉. (60b)

As this continues, the portion of the state in |+(ε)〉
steadily decreases (albeit stochastically) with population be-
ing slowly transferred to |−(ε)〉. At any time, a jump may
occur, which resets the whole process. However, if no jump
occurs, then the state ultimately lands in the steady state, as in
the final stage of evolution in Fig. 3.

We note that the specific durations of each of the three
periods will in general be different for each trajectory due
to randomness in the measurement outcomes. Additionally,
the length of these periods depends on the initial state of the
atoms. For example, if the atoms are initially in a pure state
|10〉 or |01〉, then they skip the first period entirely, and their
dynamics are those described in the paragraph above.

Exact Bell-state bath

When the bath qubits are in the exact Bell state |+〉,
the two Lindblad operators in the master equation become
Hermitian conjugates of one another. The invariant subspace
of the master equation, Eq. (21), expands from rank 1 (pure
steady state) to rank 4, where a given steady state is dependent
on the initial two-atom state [30].

The trajectory evolution is distinct from the aver-
age, master-equation evolution. We narrow our focus

applying the mth conditional map Em with probability ℘m, Eq. (12).
Calling a random number at each time step determines the likelihood
of each map. Then the evolved state is normalized so that outcome
probabilities for the subsequent step can be calculated.

TABLE I. Conditional output states given outcome mj and asso-
ciated probabilities ℘j when the bath qubits are prepared in the exact
Bell state |+〉 and a single interaction followed by measurement
of the bath qubits. Each row is one of four two-atom input states
in the leftmost column, chosen because of their association with the
master-equation steady states.

m1 ℘1 m2 ℘2 m3 ℘3 m4 ℘4

|−〉 |−〉 1
2 |−〉 1

2 — 0 — 0
|+〉 |+〉 1−2γ�t

2 |+〉 1−2γ�t
2 |01〉 �t |10〉 γ�t

|10〉 |10〉 1−γ�t
2 |10〉 1−γ�t

2 |+〉 γ�t — 0
|01〉 |01〉 1−γ�t

2 |01〉 1−γ�t
2 — 0 |+〉 γ�t

on the conditional evolution of the states in the set,
{|−〉, |+〉, |01〉, |10〉}, as they play a crucial role in the
long-time behavior of the master equation, Eq. (52)—also
see the discussion around Eq. (47). We apply each of the
four Kraus operators to these states to find the output state
|ψout〉 = ℘

−1/2
j K̂mj |ψ〉, and the probability of the outcome,

℘j . A succinct summary of the results is given in Table I;
we discuss them in this paper. The dynamical behavior of
the Bell state |−〉 is inherited from the case of near-Bell
baths studied above, since |−(ε = 0)〉 = |−〉. That is, if
the conditional two-atom state reaches |−〉, it does not ex-
perience further evolution at all regardless of outcome. The
other three states, |+〉, |01〉, and |10〉 experience nontrivial
evolution. However, none of these states evolves under the
no-jump equations, as their evolution is governed entirely by
jumps, which are signaled by outcomes m3 and m4. Atoms
in the state |+〉 periodically jump to |01〉 and |10〉 and then
jump back to |+〉 eventually. However, the state never jumps
directly between states in the {|10〉, |01〉} subspace. Thus,
entanglement is created or destroyed during each jump. If the
two-atom system begins in the {|+〉, |01〉, |10〉} subspace,
it will remains trapped there, forever jumping between the
three states as illustrated in Fig. 4. An average over trajectories
gives an equal mixture over these states, Eq. (52).

FIG. 4. A single trajectory for the qubit bath in the exact Bell
state |+

B 〉 and measurements in the local energy basis. Here the
two-atom initial state is |+〉, and the resulting conditional state
never leaves the subspace spanned by {|+〉, |10〉, |01〉}; fidelities
with these states are shown, and the fidelity with |−〉 is always zero.
An average over trajectories yields the state ρ̂−

⊥ , Eq. (52).

022202-12



COLLISIONAL-MODEL QUANTUM TRAJECTORIES FOR … PHYSICAL REVIEW A 106, 022202 (2022)

B. Bell-state measurement basis

As a counterpart to the local-basis measurements for a
two-atom system above, we consider the trajectories for the
opposite case here: the entangled Bell-basis measurements
described in Sec. IV B 1. From a practical perspective, this
takes on a different physical setting than the situation above in
that the bath qubits should (likely) be close together spatially
in order to perform entangled measurements. We consider the
same near-Bell bath-qubit state as above, |+(ε)〉 in Eq. (49),
which means that the average over measurements gives the
same master equation. The entangled Bell-state measurement
basis still produces jump-type dynamics and respects the di-
vision into two no-jump maps and two jump maps. As before,
the two no-jump maps together comprise quasidiffusive dy-
namics.

From the Kraus operators, Appendix C 2, it is straightfor-
ward to find the conditional maps and outcome probabilities
for the quantum trajectories. The outcome probabilities scale
as

℘± ∼
(

1

2
±

√
1 + ε

2 + ε

)
−
(

1 ± √
1 + ε√

2 + ε

)
O(γ�t ), (61a)

℘�± ∼
(

1 ± √
1 + ε√

2 + ε

)
O(γ�t ). (61b)

Unsurprisingly, the outcome corresponding to projection onto
|+〉 is the most likely (with a probability approaching one
for small ε) given that it has maximal overlap with the input
bath state. The other no-jump outcome, |−〉, has a small but
nonvanishing probability until ε → 0, when it never occurs at
all.

Generally, when the bath state coefficients are real-valued,
such as we have here, the conditional difference equations in
Appendix D 2 can be written entirely in terms of the Lind-
blad operators. Under the condition that the probability of
getting both no-jump outcomes is significantly greater than
γ�t , which occurs when 1

2 ± (1 + ε)/
√

2 + ε > γ�t , they
become

�
̂± = �t f ±(ε)

{∑
�=1,2

1

2
M[L̂†

� L̂�]±1

2
M[L̂1L̂2+L̂†

1 L̂†
2]

}

̂,

(62a)

�
̂�± = G[L̂±]
̂, (62b)

where f ±(ε) := ±(2 + ε)/(1 ± (
√

1 + ε)2, and L̂± are de-
fined in Eq. (73).

A sample trajectory is shown in Fig. 5 for near-Bell
state bath qubits. After a period of jumps, the two-
atom system reaches the master-equation steady state ρ̂ss =
|−(ε)〉〈−(ε)|, after which no more evolution occurs. This
particular trajectory reaches ρ̂ss quickly compared to the av-
erage time γ�t ∼ 103; see Fig. 3(a). The reason why many
trajectories take much longer than this is that the only path
to the steady state is via no-jump dynamics from the state
|−(ε)〉. Any jump will reset the process by forcing the
state into the {|�±〉} subspace. The Bell measurements dif-
fer significantly from jump dynamics when the bath qubits
are monitored in the local energy basis. In that case, jumps
project into the separable states |eg〉 and |ge〉. Here, after the

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

5 100 3020 2515

(a)

(b)

(c)

(d)

(e)

FIG. 5. A single, example quantum trajectory for a two-atom
system interacting with a bath of qubits prepared in a near-Bell state,
Eq. (49), with ε = 0.1 and measured in the maximally entangled Bell
basis, Eq. (41). (a) Fidelity of the conditional two-atom state with the
atomic steady state ρ̂ss (see text). (b–d) Fidelity of the conditional
state with the three other eigenstates of the effective Hamiltonian,
Eq. (51), with f = g = 1/

√
2 giving |w3〉 = |�+〉 and |w4〉 = |�−〉.

(e) Conditional-state entanglement as measured by the logarithmic
negativity, Eq. (56).

early-time dynamics, these jumps project the state into the
specific maximally entangled Bell states |�±〉—logarithmic
negativity is plotted as an entanglement proxy in Fig. 3(e).

Exact Bell-state bath

We now consider the exact Bell state bath mainly to point
out some contrasting behavior compared to the local-energy
basis measurements in Sec. V A 1. When the environment is
initialized in the exact Bell state |+〉, Eq. (17a), the scaling
of the outcome probabilities are obtained by setting ε = 0 in
Eq. (61):

℘+ ∼ 1 − O(γ�t ), (63a)

℘− ∼ O[(γ�t )2] ≈ 0, (63b)

℘�± ∼ O(γ�t ). (63c)

Because the measurement basis includes the input two-qubit
state |+〉, that outcome is much more likely than all the oth-
ers. Also, the probability for outcome − is too high order in
γ�t , and thus it never occurs at all. This is in contrast to local
energy-basis measurements, where both no-jump outcomes
are equally likely, see Eq. (53) with ε = 0.

For Bell measurements, the state never jumps directly be-
tween states in the {|�+〉, |�−〉} subspace. Instead, it jumps
between from that subspace to the state |+〉 and then po-
tentially back again. In contrast to the local energy basis
measurements, these jumps do not signal the creation or
destruction of entanglement, as all of the three two-atom
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FIG. 6. A single trajectory for the qubit bath in the exact Bell
state |+

B 〉 and measurements in the Bell basis. Just as in Fig. 4,
the two-atom initial state is |+〉, and the resulting conditional state
never leaves the subspace spanned by {|+〉, |�+〉, |�−〉}; fidelities
with these states are shown, and the fidelity with |−〉 is always zero.
An average over trajectories yields the state ρ̂−

⊥ , Eq. (52).

states are maximally entangled. However, for both measure-
ment bases, if the two-atom system begins in the {|+〉,
|�+〉, |�−〉} subspace, it will remain trapped there, forever
jumping between the three states, as illustrated in Fig. 6, and
an average over trajectories gives an equal mixture over these
states, Eq. (52).

VI. CONNECTION TO STANDARD STOCHASTIC MASTER
EQUATIONS BY AVERAGING OUTCOMES

In this section we show that standard-form stochastic
master equations (SMEs), such as those that arise in quantum-
optical settings, can be derived from the above quantum
trajectories. The recipes we give involve averaging over some
of the four outcomes in the measurement models described
above. However, as described below, the procedures by which
a jump SME and a diffusive SME are derived do not involve
the same type of average over outcomes. First, an average is
performed over two of the four outcomes to yield a three-
outcome measurement. Second, we average over one of the
bath qubits entirely, which yields an effective two-outcome
measurement.

A. Jump SME by averaging local energy-basis measurements

Consider a system driven by the two-qubit state |ψB
〉,

Eq. (27). The system’s unconditional, average dynamics can
be described by the master equation, Eq. (24), where the
dynamical map comprises two terms: a sum of jump su-
peroperators, J [L̂1] + J [L̂2], and a commutator-type term
containing the effective anti-Hermitian Hamiltonian. This
suggests that there exists a three-outcome POVM with two
jump Kraus operators

K̂1 = −i
√

�t L̂1, (64a)

K̂2 = −i
√

�t L̂2, (64b)

and a no-jump Kraus operator

K̂0 = ÎS − �t
(

1
2 L̂†

1 L̂1 + 1
2 L̂†

2L̂2
)
, (65)

whose POVM elements satisfy ÎS = ∑
j K̂†

j K̂ j .
This three-outcome measurement setting can be realized

by measuring in the local energy basis, Eq. (28). One can
immediately see that the two jump Kraus operators are those
in Eq. (32), K̂1 = K̂m3 and K̂2 = K̂m4 . The third Kraus operator
is found by discarding some information—specifically, which
no-jump outcome occurred, {ee} or {gg}. Then the no-jump
dynamics is given by averaging the two Kraus maps for m1

and m2 [using Eq. (29)] according to their probabilities:∑
j=1,2

℘mjEmj (
̂) =
∑
j=1,2

K̂mj 
̂K̂†
mj

= K̂0
̂ K̂†
0 . (66)

Typically, when averaging over outcomes in a measurement,
the resulting map cannot be written as a single term in a Kraus
representation. The reason that it can be here is that each of
the individual Kraus maps separates into terms with operators
acting from the left and terms with operators acting from the
right. All cross-terms that would act from both sides in a sand-
wich fashion are higher order than O(γ�t ) and summarily
vanish. The measurement outcome probabilities are

℘1 = �t〈L̂†
1 L̂1〉, (67a)

℘2 = �t〈L̂†
2 L̂2〉, (67b)

℘0 = 1 − (℘1 +℘2), (67c)

where the explicit forms can be found from the expressions in
Eq. (B3). Since quantum jumps occur with probability in the
order of O(γ�t ), we can describe their stochastic nature with
two random variables described by Poisson increment �Nj

for j ∈ {1, 2}. Each �Nj can take on one of two values {0, 1},
and satisfies

(�Nj )
2 = �Nj, (68a)

E[�Nj] = ℘j . (68b)

Additionally, �N1�N2 = 0, since the probability of both
taking on the value 1 is O[(γ�t )2]. These conditions are a
reflection of that fact that the measurement model has three
mutually exclusive outcomes.

No-jump evolution occurs when both stochastic incre-
ments are zero, �N1 = �N2 = 0, and a jump associated with
Lindblad operator L̂ j occurs if �Nj = 1. With these random
variables, we follow the standard procedure and combine the
conditional difference equations into a single SME:

�
̂ =
∑
j=1,2

�Nj�
̂ j +
(

1 −
∑
j=1,2

�Nj

)
�
̂0 (69a)

=
∑
j=1,2

�Nj�
̂ j + �
̂0, (69b)

where the no-jump conditional difference equation is

�
̂0 = K̂0
̂K̂†
0

Tr[K̂0
̂K̂†
0 ]

− 
̂ = −�t
∑
�=1,2

1

2
M[L̂†

� L̂�]
̂, (70)

and for the jumps �
̂ j with j = 1, 2 are given in Eqs. (38c)
and (38d). In the second line of Eq. (69), terms containing
�Nγ�t have been discarded, because they are of vanishing
order under expectation. This enforces that the jump and no
jump outcomes do not simultaneously occur, which is simply

022202-14



COLLISIONAL-MODEL QUANTUM TRAJECTORIES FOR … PHYSICAL REVIEW A 106, 022202 (2022)

a reflection of the fact that ours is a measurement model with
three mutually exclusive outcomes.

Equation (70) is a jump-type SME in standard form. An
alternate form arises by using the jump innovations �I j :=
�Nj − E[�Nj], which is a description of the new information
gained in each measurement (expressed as a deviation from
the expected value). With this, the jump SME in Eq. (70) can
be recast as

�
̂ =
∑
j=1,2

�I j G[L̂ j]
̂ + �t L
̂, (71)

where L and G are defined in Eqs. (21) and (40) with beg =
bge = 0 in the former. Taking a continuous-time limit in the
appropriate way as discussed above in Sec. II B, �t → dt ,
and this expression becomes the continuous-in-time SME:

d
̂ =
∑
j=1,2

dIj G[L̂ j]
̂ + dt L
̂. (72)

Here dIj := dNj − E[dNj], where dN represents a point pro-
cess increment [12], whose expectation is given by Eq. (68b)
with �t replaced by dt .

As a final note, recall that the Bell-basis measurements
in Sec. IV B 1 respect the same division into jump and no-
jump Kraus operators as the ones we consider here. Thus, the
Bell-measurement maps also satisfy Eq. (66), with the sum
running over ±. As a consequence, one can follow the same
procedure by averaging over these two outcomes to produce
an SME of the same form as Eq. (71) where the jump portion
G[L̂±] contains superpositions of the Lindblad operators,

L̂± := 1√
2

(L̂1 ± L̂2). (73)

B. Diffusive SME by averaging local XZ measurements

Using a procedure similar to that above, we construct a
diffusive SME from the local XZ-basis measurements in Sec
IV B 2 by averaging over the second bath qubit’s outcome.
Unlike the previous section, this produces a two-outcome
measurement with outcomes {+,−}, since the outcomes on
the second qubit are completely averaged out.

Using the Kraus operators, Eq. (45a), we construct the
average map for each outcome of the first qubit (+ or −),

E±(
̂) :=
∑

s∈{e,g}
K̂±s
̂K̂†

±s

= 1

2

{

̂ + �t

∑
j=1,2

D[L̂ j]
̂ ±
√

�t (L̂′
̂ + 
̂L̂′†)

}
,

(74)

where we have defined

L̂′ := −i(b∗
eeL̂1 + b∗

ggL̂2). (75)

The outcome probabilities ℘± are found by taking the trace of
these expressions,

℘± = 1
2 (1 ±

√
�t〈L̂′ + L̂′†〉). (76)

In contrast to the outcome averaging performed for the jump
SME above, the averaging here does not result in a map
described by a single Kraus operator. Thus, the resulting SME

will have additional decoherence. We now have two-outcome
quantum trajectories, each outcome occurs with probabil-
ity ∼ 1

2 , and the associated maps contain outcome-dependent
terms proportional to

√
�t . These are the conditions for a

standard diffusive-type SME.
Therefore, it is straightforward to calculate the following

difference equations:

�
̂± = 
̂ + �t
∑

j=1,2 D[L̂ j]
̂ ± √
�t (L̂′
̂ + 
̂L̂′†)

1 ± √
�t〈L̂′ + L̂′†〉 − 
̂

(77a)

≈ �t
∑
j=1,2

D[L̂ j]
̂ ± (
√

�t ∓ �t〈L̂′ + L̂′†〉)M[L̂′]
̂,

(77b)

where the superoperator M is defined in Eq. (39). The sec-
ond line follows by expanding the denominator and keeping
resulting terms to O(γ�t ), similar to the procedure described
in Appendix D 1 for the no-jump conditional difference equa-
tions.

We now combine the two conditional difference equa-
tions into a diffusive-type SME. First, define a random
variable �J that takes on values ±√

�t depending on the
measurement result and has expectation

E[�J] =
√

�t ℘+ −
√

�t ℘− =
√

�t 〈L̂′ + L̂′†〉. (78)

We introduce the diffusive innovations

�W := �J − E[�J], (79)

with zero mean by definition and second moment

E[�W 2] = E[�J2] − (E[�J])2 = �t + O[(γ�t )2]. (80)

Thus, in the weak-coupling limit, �W is a Wiener increment.
With the diffusive innovations, one can group the two condi-
tional difference equations in Eq. (77) into a single diffusive
SME:

�
̂ = �t
∑
j=1,2

D[L̂ j]
̂ + �W M[L̂′]
̂. (81)

Note that this diffusive SME differs from single-channel
versions, where the Lindblad operator that appears in the
measurement superoperator M is the same that appears in
the dissipator D. This is because the averaging procedure
we used to reduce the four-outcome quantum trajectories to
two-outcome ones introduced additional decoherence.

The continuous-in-time form of Eq. (81) can be con-
structed by taking the appropriate infinitesimal limit, which
gives �t → 0 to obtain the following stochastic differential
equation:

d
̂ = dt
∑
j=1,2

D[L̂ j]
̂ + dW M[L̂′]
̂, (82)

where the Wiener process dW is the continuous limit of the
diffusive innovations satisfying E[dW ] = 0 and E[dW 2] =
dt .
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VII. BEYOND TWO-QUBIT BATHS

Thus far, we have focused our attention on two-qubit
baths, as these types of bath contain essential features that
distinguish them from the single-qubit baths typically con-
sidered. A natural extension is to generalize to n-qubit
environments, which was considered in the case of average
master-equation dynamics in Ref. [30]. Before moving to
quantum trajectories, we present some of the points from the
master-equation analysis. Assuming all of the approximations
made to derive the two-qubit ME for weak coupling, Eq. (21),
a Markovian master equation can also be constructed for the
n-qubit case [30]. Interestingly, the antidiagonal coherences
in the n > 2 qubit bath states do not enter into the ME
at all [30]. This means that highly entangled Greenberger-
Horne-Zeilinger (GHZ) state baths [53] (and the more general
class of X -state baths where only diagonal and antidiago-
nal entries are nonzero when ρ̂B is expressed in a product
basis

⊗n
j=1 |b j〉 with b j ∈ {e, g} [54]) do not drive mean-

ingful master-equation dynamics, i.e., entanglement between
subsystems will not be generated, only destroyed via simple
decoherence channels. For example, a multi-atom system ini-
tialized in an n-qubit GHZ state [53] would ultimately lose all
of its entanglement [55].

The absence of the antidiagonal bath coherences in the ME
is directly connected to the weak-coupling limit. The unitary
time evolution operator, Eq. (5), is truncated to second order
in �t (recalling that λ2�t2 = γ�t), which means that there is
at most two-body operators acting on the bath’s Hilbert space.
Even for just three qubits in the bath, such operators can never
transform |eee〉 to |ggg〉, so all system-bath terms will vanish
under a bath trace if the initial bath state is the GHZ state

|ψB〉 = beee|eee〉 + bggg|ggg〉, (83)

with |beee|2 + |bggg|2 = 1. If one were to go beyond weak
coupling in the interaction and include terms with many-body
operators, that would allow further antidiagonal coherences to
contribute to master-equation dynamics.

We now move to quantum trajectories in the context of
three-qubit baths. At each time �t , the bath qubits are initial-
ized the GHZ state, Eq. 83, then they interact with the system
via the weak-coupling unitary, after which they are measured
in the local-energy basis via projections onto the set

q = {|eee〉, |ggg〉, |eeg〉, |gge〉, |ege〉, |geg〉, |egg〉, |gee〉},
(84)

with qj labeling each of the eight individual elements. The
next steps for analyzing the system evolution require calcu-
lating the Kraus operators, conditional maps, and the outcome
probabilities. For this input state and measurement basis, there
are two no-jump Kraus operators, Eq. (F2), and six jump
Kraus operators, Eq. (F2c). This is due to the fact that, in gen-
eral, elements of q that have overlap with the input state give
no-jump Kraus operators, while those that have no overlap
give jump Kraus operators. From the forms of these Kraus
operators, it is evident that antidiagonal bath coherences, such
as beeeb∗

ggg, play no role in the conditional maps. This is

also evident in their absence in the scaling of the outcome
probabilities,

℘q1 ∼ |beee|2[1 − O(γ�t )], (85a)

℘q2 ∼ |bggg|2[1 − O(γ�t )], (85b)

℘q3 ,℘q5 ,℘q8 ∼ |bggg|2O(γ�t ), (85c)

℘q4 ,℘q6 ,℘q7 ∼ |beee|2O(γ�t ). (85d)

As discussed above, their absence is tied to weak coupling.
If one kept terms up to (λ�t )3 in the unitary evolution opera-
tor, the three-body bath operators that appear would introduce
bath coherences into the conditional reduced-state dynamics.

Since only a single bath-state amplitude, beee or bggg, ap-
pears in each Kraus operator, all bath amplitudes cancel in the
normalized conditional maps (although they still play a role
in the probabilities). A result is that the conditional difference
equations,

�
̂q1 = −1

2
γ�t

8∑
�=1

M[ĉ�ĉ†
�]
̂, (86a)

�
̂q2 = −1

2
γ�t

8∑
�=1

M[ĉ†
� ĉ�]
̂, (86b)

�
̂q3 = G[ĉ†
3]
̂, �
̂q4 = G[ĉ3]
̂, (86c)

�
̂q5 = G[ĉ†
2]
̂, �
̂q6 = G[ĉ2]
̂, (86d)

�
̂q8 = G[ĉ†
1]
̂, �
̂q7 = G[ĉ1]
̂, (86e)

which are valid when both |beee| and |bggg| are greater than√
γ�t , contain no amplitudes at all. Also, there are no coher-

ent superpositions of system operators in the jump equations,
compared to the two-qubit-bath setting in Eq. (38). Because
system operators ĉ� act on separate subsystems, entanglement
cannot be created, since the conditional evolution is entirely
local regardless of the outcome.

Trajectories for baths containing more qubits will exhibit
similar behavior when the initial bath state is a GHZ-type
state—the bath coherences will not affect the conditional sys-
tem dynamics regardless of the outcome. However, this is
not the only type of bath state. Others that have amplitudes
differing by only a single excitation, for example, bggg and
begg for three qubits, can contribute.

VIII. CONCLUSION

In this work, we studied the stochastic conditional evo-
lution of Markovian open quantum systems for repeated
interactions with entangled two-qubit bath states. We focused
here on a particular type of two-qubit input state that could
describe fully entangled Bell states. This produced both jump-
type and diffusive-type conditional dynamics depending on
the measurement basis. In a departure from typical quantum
optical settings, more than one outcome can be associated
with no-jump maps, giving rise to quasidiffusive dynamics
during evolution between jumps. An interesting situation not
considered here is where the bath state has support over the
full two-qubit Hilbert space. In this case, all the elements
from any measurement basis have overlap with the input bath
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state, so no quantum jumps occur at all—only combinations
of no-jump and diffusive dynamics.

Essential to the task of deriving quantum trajectories is
the choice of measurement basis. A thorough analysis of the
local-energy basis here set the stage for examining two others:
local mixed-type and Bell-state bases. A general study of
other bases has not been performed and could yield inter-
esting results, with a focus on local bases, as they allow for
more straightforward experimental implementations. If one
is willing to relax the restriction to projective measurements,
then more general POVMs for bath-qubit measurement can be
considered. In addition, regardless of the measurement model,
a thorough investigation of measurement statistics deserves its
own study, as it could provide further understanding of effects
such as quasidiffusive trajectories.

The formalism here for two-qubit baths is mathemati-
cally equivalent to a single four-level qudit in the bath,
although that setting has different physical interpretations.
Consider a stream of identically prepared atoms sent through
a microwave cavity, similar to that in Ref. [56], but where
each atom is prepared in a superposition across a four-
dimensional set of metastable Rydberg states. In this case,
the coupling operators ĉ� and ĉ†

� are all cavity operators (i.e.,
they do act on separate subsystems). This could provide fur-
ther tools for quantum control and state preparation of the
cavity.

Various other avenues could be explored in future works.
Notable is an extension beyond the weak-coupling regime,
which has been done to various extents for single-qubit baths
[43,57,58]. This would be particularly pertinent to baths with
larger numbers of qubits, where many bath coherences whose
effects are absent in weak coupling would play a role for
stronger couplings. Another area of research is to devise quan-
tum control protocols of the system which can make use of
the measurement record to achieve certain goals. For instance,
one may employ adaptive measurement techniques [59,60]
for entangling the subsystems at a faster rate. In physical set-
tings, various non-Markovian effects can arise including bath
qubit-qubit interactions, initial bath states that are correlated
in time, and multiple collisions with the same bath qubits (po-
tentially with a time delay between collisions). Each of these
effects requires modifying the Markovian formalism used
here; some of these modifications are described in Ref. [39]
for single-qubit baths. However, the extension to entangled
multiqubit baths remains an interesting avenue for future
research.

Finally, there has recently been interest in using collisional
models as a simulator for other systems of interest [25],
notably Gaussian [23] and few-excitation states of a single
bosonic mode [27]. Collisional models have the advantage
that a sufficiently large quantum computer could execute
these simulations. Multiqubit environments may provide
the structure to extend the scope of these simulations to mul-
tiple bosonic modes.
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APPENDIX A: MIXED-STATE BATHS

More generally, the environment can be in a mixed state
ρ̂B. The conditional map on the system can be found by
diagonalizing the environmental state,

ρ̂B =
∑

�

p�

∣∣ψB�

〉〈
ψB�

∣∣, (A1)

where 0 � p� � 1 are mixture probabilities, and the pure
states are orthogonal, 〈ψB�

|ψB�′ 〉 = δ�,�′ . The conditional map
is then simply a mixture of maps of the form in Eq. (9b),

Em(
̂) := 〈m|ÛSB(
̂ ⊗ ρ̂B)Û †
SB|m〉 (A2a)

=
∑

�

p�K̂ (�)
m 
̂K̂ (�)†

m , (A2b)

where we have a set of Kraus operators for each state in the
diagonalization,

K̂ (�)
m := 〈m|ÛSB|ψB�

〉. (A3)

The probability of outcome m then becomes

℘m =
∑

�

p�Tr
[
K̂ (�)

m 
̂K̂ (�)†
m

] = Tr[Em(
̂)]. (A4)

APPENDIX B: LOCAL ENERGY-BASIS KRAUS
OPERATORS FOR BATH QUBITS IN THE {eg, ge}

SUBSPACE

Consider case where the bath state is |ψB�
〉 in Eq. (19b),

i.e., p = 0 and p� = 1, and the bath qubits are measured
in the local energy basis. The Kraus operators take on forms
similar to those in Sec. IV A 1 depending on whether the
outcomes are in the same Bell subspace as |ψB�

〉—{ge, eg}
or the orthogonal one {gg, ee}:

K (�)
m1

= −i
√

γ�t (bgeĉ1 + begĉ2) = −i
√

�t L̂3, (B1a)

K (�)
m2

= −i
√

γ�t (begĉ†
1 + bgeĉ†

2) = −i
√

�t L̂4, (B1b)

K (�)
m3

= beg

[
ÎS − γ�t

2
(ĉ1ĉ†

1 + ĉ†
2ĉ2)

]
− bgeγ�t ĉ1ĉ†

2, (B1c)

K (�)
m4

= bge

[
ÎS − γ�t

2
(ĉ†

1ĉ1 + ĉ2ĉ†
2)

]
− begγ�t ĉ†

1ĉ2. (B1d)

To avoid confusion with Kraus operators in the main text,
we include the additional superscript (�) to indicate the input
bath state. The first two Kraus operators are “jump” operators,
like Eq. (32), and the second two are “no-jump” operators,
like Eq. (29). These Kraus operators resolve the identity,∑4

j=1 K̂ (�)†
mj

K̂ (�)
mj

= ÎS .
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By substituting the corresponding Kraus operators into the Eq. (12), we find the conditional maps for weak coupling
(discarding terms higher order than γ�t):

K̂ (�)
m1


̂K̂ (�)†
m1

= γ�t (|bge|2ĉ1
̂ĉ†
1 + |beg|2ĉ2
̂ĉ†

2 + begb∗
geĉ2
̂ĉ†

1 + b∗
egbgeĉ1
̂ĉ†

2) = �t L̂3
̂L̂†
3, (B2a)

K̂ (�)
m2


̂K̂ (�)†
m2

= γ�t (|beg|2ĉ†
1
̂ĉ1 + |bge|2ĉ†

2
̂ĉ2 + begb∗
geĉ†

1
̂ĉ2 + b∗
egbgeĉ†

2
̂ĉ1) = �t L̂4
̂L̂†
4, (B2b)

K̂ (�)
m3


̂K̂ (�)†
m3

= |beg|2
̂ − γ�t
(

1
2 |beg|2ĉ1ĉ†

1
̂ + 1
2 |beg|2ĉ2ĉ†

2
̂ + begb∗
geĉ†

1ĉ2
̂ + H.c.
)
, (B2c)

K̂ (�)
m4


̂K̂ (�)†
m4

= |bge|2
̂ − γ�t
(

1
2 |bge|2ĉ†

1ĉ1
̂ + 1
2 |bge|2ĉ†

2ĉ2
̂ + begb∗
geĉ†

1ĉ2
̂ + H.c.
)
. (B2d)

The associated probabilities are

℘(�)
m1

= γ�t (|bge|2〈ĉ†
1ĉ1〉 + |beg|2〈ĉ†

2ĉ2〉 + 2Re[begb∗
ge〈ĉ†

2ĉ1〉]) = �t 〈L̂†
3 L̂3〉, (B3a)

℘(�)
m2

= γ�t (|beg|2〈ĉ1ĉ†
1〉 + |bge|2〈ĉ2ĉ†

2〉 + 2Re[begb∗
ge〈ĉ†

2ĉ1〉]) = �t 〈L̂†
4 L̂4〉, (B3b)

℘(�)
m3

= |beg|2 − γ�t (|beg|2〈ĉ1ĉ†
1〉 + |beg|2〈ĉ2ĉ†

2〉 + 2Re[begb∗
ge〈ĉ†

2ĉ1〉]), (B3c)

℘(�)
m4

= |bge|2 − γ�t (|bge|2〈ĉ†
1ĉ1〉 + |bge|2〈ĉ†

2ĉ2〉2Re[begb∗
ge〈ĉ†

2ĉ1〉]). (B3d)

Note that the probabilities for jump outcomes here scale as℘m1 ,℘m2 ∼ 1 + O(γ�t ), and the no-jump outcome probabilities scale
as ℘m3 ∼ |beg|2 − |beg|O(γ�t ) and ℘m4 ∼ |bge|2 − |bge|O(γ�t ).

APPENDIX C: CONDITIONAL MAPS AND OUTCOME PROBABILITIES

In this section, we present rather lengthy expressions for the conditional maps and outcome probabilities for the measurement
bases described in the main text.

1. Local energy-basis measurements

The Kraus operators for the bath state |ψB
〉, Eq. (27), are given in Eqs. (29) and (32). By substituting the Kraus operators

into the Eq. (12), we find the conditional maps for weak coupling (to order γ�t):

K̂m1 
̂K̂†
m1

= |bee|2
̂ − γ�t
(

1
2 |bee|2ĉ1ĉ†

1
̂ + 1
2 |bee|2ĉ2ĉ†

2
̂ + bggb∗
ee ĉ1ĉ2
̂ + H.c.

)
, (C1a)

K̂m2 
̂K̂†
m2

= |bgg|2
̂ − γ�t
(

1
2 |bgg|2ĉ†

1ĉ1
̂ + 1
2 |bgg|2ĉ†

2ĉ2
̂ + b∗
ggbeeĉ†

1ĉ†
2
̂ + H.c.

)
, (C1b)

K̂m3 
̂K̂†
m3

= γ�t (|bgg|2ĉ1
̂ĉ†
1 + |bee|2ĉ†

2
̂ĉ2 + bggb∗
eeĉ1
̂ĉ2 + b∗

ggbeeĉ†
2
̂ĉ†

1) = �t L̂1
̂L̂†
1, (C1c)

K̂m4 
̂K̂†
m4

= γ�t (|bee|2ĉ†
1
̂ĉ1 + |bgg|2ĉ2
̂ĉ†

2 + bggb∗
eeĉ2
̂ĉ1 + beeb∗

ggĉ†
1
̂ĉ†

2) = �t L̂2
̂L̂†
2 . (C1d)

At the extremes, |bee| = 0 or |bee| = 1, one of the first two maps becomes trivial. For the former Eq. (C1a) is trivial and the
probability of getting outcome m1 vanishes, and for the latter, Eq. (C1b) is trivial, and the probability of getting outcome m2

vanishes.
Tracing over the system gives the respective outcome probabilities,

℘m1 = |bee|2 − γ�t (|bee|2〈ĉ1ĉ†
1〉 + |bee|2〈ĉ2ĉ†

2〉 + 2Re[bggb∗
ee〈ĉ1ĉ2〉]), (C2a)

℘m2 = |bgg|2 − γ�t (|bgg|2〈ĉ†
1ĉ1〉 + |bgg|2〈ĉ†

2ĉ2〉 + 2Re[bggb∗
ee〈ĉ1ĉ2〉]), (C2b)

℘m3 = γ�t (|bgg|2〈ĉ†
1ĉ1〉 + |bee|2〈ĉ2ĉ†

2〉 + 2Re[bggb∗
ee〈ĉ1ĉ2〉]) = �t 〈L̂†

1 L̂1〉, (C2c)

℘m4 = γ�t (|bee|2〈ĉ1ĉ†
1〉 + |bgg|2〈ĉ†

2ĉ2〉 + 2Re[bggb∗
ee〈ĉ1ĉ2〉]) = �t 〈L̂†

2 L̂2〉, (C2d)

where Re denotes the real part.

2. Entangled Bell-basis measurements

It is straightforward to find explicit forms for these relations by employing Eqs. (29) and (32) given bath qubit state |ψB
〉:

K̂u1 = 1√
2

{
(bee + bgg)ÎS − γ�t

2

[∑
�

(beeĉ�ĉ†
� + bggĉ†

� ĉ�) + 2(bggĉ1ĉ2 + beeĉ†
2ĉ†

1)

]}
, (C3a)

K̂u2 = 1√
2

{
(bee − bgg)ÎS − γ�t

2

[∑
�

(beeĉ�ĉ†
� − bggĉ†

� ĉ�) + 2(bggĉ1ĉ2 − beeĉ†
2ĉ†

1)

]}
, (C3b)
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K̂u3 = −i

√
γ�t

2

[
bgg(ĉ1 + ĉ2) + bee(ĉ†

1 + ĉ†
2)
] = −i

√
�t

2
(L̂1 + L̂2), (C3c)

K̂u4 = −i

√
γ�t

2
[bgg(ĉ1 − ĉ2) − bee(ĉ†

1 − ĉ†
2)] = −i

√
�t

2
(L̂1 − L̂2). (C3d)

These Kraus operators produce jump-type dynamics just like the local energy-basis measurements above, with the first two
yielding no-jump dynamics and the latter two jump dynamics. The conditional maps, outcome probabilities, and conditional
difference equations can be found straightforwardly using the same techniques, and we omit their explicit forms here for brevity.

3. Mixed local measurements: Diffusive-type maps

When the first bath qubit is measured in the |±〉 = 1√
2
(|e〉 ± |g〉) basis, and the second in the |e〉, |g〉 basis, the Kraus operators

are

K̂±e = 1√
2

(K̂m1 ± K̂m4 ) = 1√
2

[
bee

(
ÎS − γ�t

2

∑
�=1,2

ĉ�ĉ†
�

)
− bggγ�t ĉ1ĉ2 ∓ i

√
γ�t (beeĉ†

1 + bggĉ2)

]
, (C4a)

K̂±g = 1√
2

(K̂m3 ± K̂m2 ) = 1√
2

[
±bgg

(
ÎS − γ�t

2

∑
�=1,2

ĉ†
� ĉ�

)
∓beeγ�t ĉ†

1ĉ†
2 − i

√
γ�t (bggĉ1 + beeĉ†

2)

]
, (C4b)

where the Lindblad operators L̂ j are given in Eq. (22). The corresponding conditional maps are

K̂±e
̂K̂†
±e = 1

2

{
|bee|2
̂ − γ�t

[(
1

2
|bee|2

∑
�=1,2


̂ĉ�ĉ†
� + b∗

ggbee
̂ĉ†
1ĉ†

2 + H.c.

)
− 1

γ
L̂2
̂L̂†

2

]
± i

√
�t
(
bee
̂L̂†

2 − b∗
eeL̂2
̂

)}
, (C5a)

K̂±g
̂K̂†
±g = 1

2

{
|bgg|2
̂ − γ�t

[(
1

2
|bgg|2

∑
�=1,2


̂ĉ†
� ĉ� + bggb∗

ee
̂ĉ1ĉ2 + H.c.

)
− 1

γ
L̂1
̂L̂†

1

]
± i

√
�t ( bgg
̂L̂†

1 − b∗
ggL̂1
̂)

}
, (C5b)

and the outcome probabilities are the following:

℘±e = 1

2
[|bee|2 − γ�t (|bee|2〈ĉ2ĉ†

2〉 − |bgg|2〈ĉ†
2ĉ2〉) ± i

√
�t〈beeL̂†

2 − b∗
eeL̂2〉

]
, (C6a)

℘±g = 1

2

[
|bgg|2 + γ�t (|bee|2〈ĉ2ĉ†

2〉 − |bgg|2〈ĉ†
2ĉ2〉) ± i

√
�t〈bggL̂†

1 − b∗
ggL̂1〉

]
. (C6b)

APPENDIX D: CONDITIONAL DIFFERENCE EQUATIONS

Deriving the conditional difference equations is straightforward using the following procedure. At each time, use the Kraus
operators to find the conditional state for each outcome, and then normalize that state by the associated measurement probability.
The Kraus operators and probabilities for various measurement bases can be found in Appendix C. Then subtracting the system
state at the previous time gives the conditional difference equations.

We focus here on the local energy basis and Bell-state basis measurements. The conditional difference equations for mixed
local-basis measurements can be derived with the same methods.

1. Local energy-basis measurements

The conditional maps and probabilities for local energy-basis measurements are given in Appendix C 1. The two conditional
difference equations for jumps can be written immediately, but for the no-jump outcomes, m1 and m2, they can be simplified in
the weak coupling limit with some work. For outcome m1, the conditional difference equation is

�
̂m1 = 1

℘m1

K̂m1 
̂K̂†
m1

− 
̂ = |bee|2
̂ − γ�t
2 |bee|2(ĉ1ĉ†

1
̂ + ĉ2ĉ†
2
̂ + H.c.) − γ�t (bggb∗

eeĉ1ĉ2
̂ + H.c.)

|bee|2 − γ�t |bee|2(〈ĉ1ĉ†
1〉 + 〈ĉ2ĉ†

2〉) − γ�t 2Re[bggb∗
ee〈ĉ1ĉ2〉]

− 
̂. (D1a)

Assuming that |bee|2 > γ�t ,

�
̂m1 = 
̂ − γ�t
2 (ĉ1ĉ†

1
̂ + ĉ2ĉ†
2
̂ − 2 bgg

bee
ĉ1ĉ2
̂ + H.c.)

1 − γ�t
(〈ĉ1ĉ†

1〉 + 〈ĉ2ĉ†
2〉 − 2Re

[ bgg

bee
〈ĉ1ĉ2〉

]) − 
̂, (D2a)

≈
[

̂ − γ�t

2

(
ĉ1ĉ†

1
̂ + ĉ2ĉ†
2
̂ − 2

bgg

bee
ĉ1ĉ2
̂ + H.c.

)][
1 + γ�t

(
〈ĉ1ĉ†

1〉 + 〈ĉ2ĉ†
2〉 − 2Re

[
bgg

bee
〈ĉ1ĉ2〉

])]
− 
̂, (D2b)

= γ�t

(
〈ĉ1ĉ†

1〉 + 〈ĉ2ĉ†
2〉 − 2Re

[
bgg

bee
〈ĉ1ĉ2〉

])

̂ − γ�t

(
1

2
ĉ1ĉ†

1
̂ + 1

2
ĉ2ĉ†

2
̂ − bgg

bee
ĉ1ĉ2
̂ + H.c.

)
. (D2c)
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In the third line we used that in weak-coupling γ�t � 1 and expanded the denominator up to order γ�t , discarding terms
of higher order. Rearranging the terms and employing Eq. (39) leads to Eq. (38a). The equation for outcome m2 follows in the
same way.

2. Bell-state basis

The Kraus operators for Bell-basis measurements are given in Eq. (C3). They can be used to find the conditional state and
associated probabilities for each outcome. Together these can be used to write the conditional difference equations. Under the
conditions that 1

2 |(bee ± bgg)|2 > γ�t , the no-jump equations may be reexpressed using a derivation similar to that in Sec. D 1,
and the equations become

�
̂u1 = (α+ + β+)
̂ − γ�t
[∑

�
1
2 (α+
̂ĉ�ĉ†

� + β+
̂ĉ†
� ĉ� + H.c.) + (α+
̂ĉ1ĉ2 + β+
̂ĉ†

1ĉ†
2 + H.c.)

]
(α+ + β+) − γ�t

(∑
�〈Re[α+]ĉ�ĉ†

� + Re[β+]ĉ†
� ĉ�〉 + 〈(α+ + β∗+)ĉ1ĉ2 + H.c.〉) − 
̂, (D3a)

�
̂u2 = (α− − β−)
̂ − γ�t
[∑

�
1
2 (α−
̂ĉ�ĉ†

� − β−
̂ĉ†
� ĉ� + H.c.) − (α−
̂ĉ1ĉ2 − β−
̂ĉ†

1ĉ†
2 + H.c.)

]
(α− − β−) − γ�t

(∑
�〈Re[α−]ĉ�ĉ†

� − Re[β−]ĉ†
� ĉ�〉 − 〈(α− − β∗−)ĉ1ĉ2 + H.c.〉) − 
̂, (D3b)

�
̂u3 =
∑

�(bggĉ� + beeĉ†
� )
̂(bggĉ� + beeĉ†

� )† + [(bggĉ1 + beeĉ†
1)
̂(bggĉ2 + beeĉ†

2)† + H.c.]∑
�〈(bggĉ� + beeĉ†

� )†(bggĉ� + beeĉ†
� )〉 + 〈(bggĉ2 + beeĉ†

2)†(bggĉ1 + beeĉ†
1) + H.c.〉 = G[L̂+]
̂ (D3c)

�
̂u4 =
∑

�(bggĉ� − beeĉ†
� )
̂(bggĉ� − beeĉ†

� )† − [(bggĉ1 − beeĉ†
1)
̂(bggĉ2 − beeĉ†

2)† + H.c.]∑
�〈(bggĉ� − beeĉ†

� )†(bggĉ� − beeĉ†
� )〉 − 〈(bggĉ2 − beeĉ†

2)†(bggĉ1 − beeĉ†
1) + H.c.〉 = G[L̂−]
̂ (D3d)

where α± = b∗
ee(bee ± bgg) and β± = b∗

gg(bee ± bgg), and L̂± are given in Eq. (73).

APPENDIX E: CONDITIONAL TWO-ATOM STATES

In this Appendix, we give various conditional two-atom
states given bath state |ψB〉 = bee|ee〉 + bgg|gg〉 and a pure
input state for the atoms,

|ψ〉 = c0|11〉 + c1|00〉 + c2|10〉 + c3|01〉. (E1)

We focus here on local energy-basis measurements in
Sec. IV A 1. Conditional states for other measurement bases
can be constructed in a straightforward way by taking appro-
priate superpositions of the states presented here.

Since they act linearly, we apply each Kraus individually to
the basis states in |ψ〉 above. We begin with the two no-jump
outcomes, {ee} and {gg}. The first has Kraus operator K̂m1 ,
which gives

K̂m1 |11〉 = bee|11〉 − bggγ�t |00〉, (E2a)

K̂m1 |00〉 = bee(1 − γ�t )|00〉, (E2b)

K̂m1 |10〉 = bee

(
1 − γ�t

2

)
|10〉, (E2c)

K̂m1 |01〉 = bee

(
1 − γ�t

2

)
|01〉. (E2d)

The second outcome {gg} gives

K̂m2 |11〉 = bgg(1 − γ�t )|11〉, (E3a)

K̂m2 |00〉 = bgg|00〉 − beeγ�t |11〉, (E3b)

K̂m2 |10〉 = bgg

(
1 − γ�t

2

)
|10〉, (E3c)

K̂m2 |01〉 = bgg

(
1 − γ�t

2

)
|01〉. (E3d)

Combining the above equations according to the coeffi-
cients in |ψ〉, gives the unnormalized conditional states,

K̂m1 |ψ〉 = bee|ψ〉 − γ�t (c0bgg + c1bee )|00〉
− 1

2γ�t bee(c2|10〉 + c3|01〉), (E4a)

K̂m2 |ψ〉 = bgg|ψ〉 − γ�t (c0bgg + c1bee )|11〉
− 1

2γ�t bgg(c2|10〉 + c3|01〉), (E4b)

We remark on a pathological case described previously in
Sec. IV A 1. Consider the state K̂m1 |ψ〉 above. When bee = 0,
the only surviving term is O(γ�t ). This means the probability
of getting the outcome is of order ℘m1 ∼ O[(γ�t )2] = 0, and
K̂m1 |ψ〉 effectively vanishes. Alternatively, the density matrix
element is (γ�t )2. The same is true of K̂m2 |ψ〉 when bgg = 0.

The two jump outcomes are {eg} and {ge}. For outcome
{eg}, we get

K̂m3 |11〉 = −i
√

γ�t bgg|01〉, (E5a)

K̂m3 |00〉 = −i
√

γ�t bee|01〉, (E5b)

K̂m3 |10〉 = −i
√

γ�t (bgg|00〉 + bee|11〉), (E5c)

K̂m3 |01〉 = 0. (E5d)

For outcome {ge}, we get

K̂m4 |11〉 = −i
√

γ�t bgg|10〉, (E5e)

K̂m4 |00〉 = −i
√

γ�t bee|10〉, (E5f)

K̂m4 |10〉 = 0, (E5g)

K̂m4 |01〉 = −i
√

γ�t (bgg|00〉 + bee|11〉). (E5h)
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Combining these, we have the unnormalized conditional
states

K̂m3 |ψ〉 = −i
√

γ�t[(c0bgg + c1bee )|01〉
+ c2(bgg|00〉 + bee|11〉)], (E6a)

K̂m4 |ψ〉 = −i
√

γ�t[(c0bgg + c1bee )|10〉
+ c3(bgg|00〉 + bee|11〉)]. (E6b)

Importantly, in the conditional state for {eg}, no term
proportional to c3 is present, because K̂m3 |01〉 = 0. Further,
the conditional state has no support on |10〉. When this out-
come occurs, the state entirely leaves |10〉 with any support
originally there, c3, is transferred into the orthogonal Bell
subspace. Similarly, in the conditional state for outcome {ge},
no term proportional to c2 is present, because K̂m4 |10〉 = 0.

Using the above relations, one can write useful forms for
the system state immediately after a jump occurs in terms of
the effective Hamiltonian eigenstates. An arbitrary two-atom
state


̂ =
∑

j,k∈{1,0}

∑
j′,k′∈{1,0}


 jk, j′k′ | jk〉〈 j′k′|. (E7)

is transformed according to the following jump maps:

J [L̂1]
̂ = γ [η1|�〉〈�| + η2|01〉〈01|
+ (η3|�〉〈01| + H.c.)], (E8a)

J [L̂2]
̂ = γ [μ1|�〉〈�| + μ2|10〉〈10|
+ (μ3|�〉〈10| + H.c.)], (E8b)

where the coefficients are determined by the matrix elements
of the two-atom state as follows:

η1 = 
10,10, (E9a)

η2 = b∗
ee(bgg
11,00 + bee
00,00)

+ b∗
gg(bee


∗
11,00 + bgg
11,11), (E9b)

η3 = b∗
ee
10,00 + b∗

gg

∗
11,10, (E9c)

μ1 = 
01,01, (E9d)

μ2 = η2, (E9e)

μ3 = b∗
ee
01,00 + b∗

gg

∗
11,01. (E9f)

APPENDIX F: THREE-QUBIT BATH: KRAUS OPERATORS
AND MAPS

Given the three-qubit bath state,

|ψB〉 = beee|eee〉 + bggg|ggg〉, (F1)

and measurements in the local energy basis given by pro-
jections onto the elements of q, Eq. (84), we calculate the
Kraus operators according to Eq. (13). For this bath state and
measurement basis, we have two no-jump Kraus operators

K̂q1 = beee

(
ÎS − γ�t

2

3∑
�=1

ĉ�ĉ†
�

)
, (F2a)

K̂q2 = bggg

(
ÎS − γ�t

2

3∑
�=1

ĉ†
� ĉ�

)
, (F2b)

and six jump Kraus operators

K̂q3 = −i
√

γ�t beeeĉ†
3 − γ�t bggg ĉ1ĉ2, (F2c)

K̂q4 = −i
√

γ�t bgggĉ3 − γ�t beee ĉ†
1ĉ†

2, (F2d)

K̂q5 = −i
√

γ�t beeeĉ†
2 − γ�t bggg ĉ1ĉ3, (F2e)

K̂q6 = −i
√

γ�t bgggĉ2 − γ�t beee ĉ†
1ĉ†

3, (F2f)

K̂q7 = −i
√

γ�t bgggĉ1 − γ�t beee ĉ†
2ĉ†

3, (F2g)

K̂q8 = −i
√

γ�t beeeĉ†
1 − γ�t bggg ĉ2ĉ3. (F2h)

In each of the jump Kraus operators, we retain the term
proportional to γ�t simply to show the form. When used to
calculate the maps, the Kraus operators are applied in pairs,
and these terms vanish as their effect is too high order in γ�t .

Using these Kraus operators, it is straightforward to calcu-
late the dynamical maps,

K̂q1 
̂K̂†
q1

= |beee|2
[

̂ − γ�t

2

∑
�

(
̂ĉ�ĉ†
� + ĉ�ĉ†

�
̂)

]
, (F3a)

K̂q2 
̂K̂†
q2

= |bggg|2
[

̂ − γ�t

2

∑
�

(
̂ĉ†
� ĉ� + ĉ†

� ĉ�
̂)

]
, (F3b)

K̂q3 
̂K̂†
q3

= γ�t |beee|2ĉ†
3
̂ĉ3, (F3c)

K̂q4 
̂K̂†
q4

= γ�t |bggg|2ĉ3
̂ĉ†
3, (F3d)

K̂q5 
̂K̂†
q5

= γ�t |beee|2ĉ†
2
̂ĉ2, (F3e)

K̂q6 
̂K̂†
q6

= γ�t |bggg|2ĉ2
̂ĉ†
2, (F3f)

K̂q7 
̂K̂†
q7

= γ�t |bggg|2ĉ1
̂ĉ†
1, (F3g)

K̂q8 
̂K̂†
q8

= γ�t |beee|2ĉ†
1
̂ĉ1. (F3h)

The difference equations in Eq. (86) are obtained simply
by normalizing the maps and then subtracting the initial state.

To complete the analogy with the two-qubit baths consid-
ered in Ref. [30], one could consider more general mixed
states of the form

ρ̂B =
4∑

n=1

pn

∣∣ψBn

〉〈
ψBn

∣∣, (F4)

which can also be represented as a block diagonal matrix just
like two-qubit in Eq. (16), making this an X state. This state
is a mixture of four mutually orthogonal pure states, |ψBn〉,
each of which is in a subspace spanned by two GHZ states:

|GHZ±
1 〉 := 1√

2
(|eee〉 ± |ggg〉), (F5a)

|GHZ±
2 〉 := 1√

2
(|eeg〉 ± |gge〉), (F5b)

|GHZ±
3 〉 := 1√

2
(|ege〉 ± |geg〉), (F5c)

|GHZ±
4 〉 := 1√

2
(|egg〉 ± |gee〉). (F5d)

That is, |ψBn〉 ∈ span{|GHZ±
n 〉}. Finding the Kraus oper-

ators, maps, probabilities, and conditional difference equa-
tions for each pure state is a straightforward application of
the techniques throughout this paper. The maps can then be
statistically combined using the mixing probabilities pn.
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[32] A. Černoch, K. Bartkiewicz, K. Lemr, and J. Soubusta,
Experimental tests of coherence and entanglement conser-
vation under unitary evolution, Phys. Rev. A 97, 042305
(2018).

[33] B. R. Mollow, Quantum theory of field attenuation, Phys. Rev.
168, 1896 (1968).

[34] B. Q. Baragiola and J. Combes, Quantum trajectories for prop-
agating Fock states, Phys. Rev. A 96, 023819 (2017).

[35] S. Attal and Y. Pautrat, From repeated to continuous quantum
interactions, Ann. Henri Poincaré 7, 59 (2006).

[36] C. Pellegrini, Existence, uniqueness and approximation of
a stochastic Schrödinger equation: The diffusive case, Ann.
Probab. 36, 2332 (2008).

[37] C. Pellegrini, Existence, uniqueness and approximation of the
jump-type stochastic Schrödinger equation for two-level sys-
tems, Stochastic Proc. Appl. 120, 1722 (2010).

[38] A. N. Korotkov, Continuous measurement of entangled qubits,
Phys. Rev. A 65, 052304 (2002).

[39] F. Ciccarello, S. Lorenzo, V. Giovannetti, and G. M. Palma,
Quantum collision models: Open system dynamics from re-
peated interactions, Phys. Rep. 954, 1 (2022).

[40] F. Barra, The thermodynamic cost of driving quantum systems
by their boundaries, Sci. Rep. 5, 14873 (2015).

[41] L. van Hove, Quantum-mechanical perturbations giving rise to
a statistical transport equation, Physica 21, 517 (1954).

[42] L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and Its
Stochastic Limit (Springer, 2002).

022202-22

https://doi.org/10.1016/j.pquantelec.2017.07.002
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevA.45.4879
https://doi.org/10.1103/PhysRevLett.70.2273
https://doi.org/10.1119/1.1475328
https://doi.org/10.1103/PhysRevLett.112.170501
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1103/PhysRevX.6.011002
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1209/0295-5075/133/60001
https://doi.org/10.1038/22275
https://doi.org/10.1007/s10955-006-9085-z
https://doi.org/10.1214/09-AIHP330
https://doi.org/10.1063/1.4879240
https://doi.org/10.1103/PhysRevE.85.031110
https://doi.org/10.1103/PhysRevX.7.021003
https://doi.org/10.1103/PhysRevLett.123.180602
https://doi.org/10.1103/PhysRevLett.127.100601
https://doi.org/10.1088/2058-9565/aaa39f
https://doi.org/10.1103/PhysRevLett.108.040401
https://doi.org/10.1103/PhysRevLett.126.130403
https://doi.org/10.1103/PhysRevA.96.053819
https://doi.org/10.1088/1751-8121/ab01ac
https://doi.org/10.1103/PhysRevA.105.062410
https://doi.org/10.1088/1367-2630/ac3c60
https://doi.org/10.1103/PhysRevA.98.062104
https://doi.org/10.1103/PhysRevLett.121.050401
https://doi.org/10.1103/PhysRevA.97.042305
https://doi.org/10.1103/PhysRev.168.1896
https://doi.org/10.1103/PhysRevA.96.023819
https://doi.org/10.1007/s00023-005-0242-8
https://doi.org/10.1214/08-AOP391
https://doi.org/10.1016/j.spa.2010.03.010
https://doi.org/10.1103/PhysRevA.65.052304
https://doi.org/10.1016/j.physrep.2022.01.001
https://doi.org/10.1038/srep14873
https://doi.org/10.1016/S0031-8914(54)92646-4


COLLISIONAL-MODEL QUANTUM TRAJECTORIES FOR … PHYSICAL REVIEW A 106, 022202 (2022)

[43] D. Grimmer, D. Layden, R. B. Mann, and E. Martín-Martínez,
Open dynamics under rapid repeated interaction, Phys. Rev. A
94, 032126 (2016).

[44] C. Francesco, Collision models in quantum optics, Quantum
Measure. Quantum Metrol. 4, 53 (2017).

[45] C. W. Gardiner, A. S. Parkins, and P. Zoller, Wave-function
quantum stochastic differential equations and quantum-jump
simulation methods, Phys. Rev. A 46, 4363 (1992).

[46] A. Barchielli, Stochastic differential equations and a posteriori
states in quantum mechanics, Int. J. Theor. Phys. 32, 2221
(1993).

[47] N. Gisin and I. C. Percival, Wave-function approach to dissi-
pative processes: Are there quantum jumps? Phys. Lett. A 167,
315 (1992).

[48] H. M. Wiseman and G. J. Milburn, Quantum theory of field-
quadrature measurements, Phys. Rev. A 47, 642 (1993).

[49] B. Q. Baragiola, R. L. Cook, A. M. Brańczyk, and J. Combes,
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