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Undamped Rabi oscillations due to polaron-emitter hybrid states in a nonlinear photonic
waveguide coupled to emitters
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The collective dynamics of two noninteracting two-level emitters, which are coupled to a structured wave
guide that supports two-photon bound states, is investigated. Tuning the energy of the two emitters such that
they are in resonance with the two-photon bound-state energy band, we identify parameter regimes where the
system displays fractional populations and essentially undamped Rabi oscillations. The Rabi oscillations, which
have no analog in the single-emitter dynamics, are attributed to the existence of a collective polaron-like photonic
state that is induced by the emitter-photon coupling. The full dynamics is reproduced by a two-state model in
which the photonic polaron interacts with the state |e, e, vac〉 (two emitters in their excited state and empty wave
guide) through a Rabi coupling frequency that depends on the emitter separation. Our work demonstrates that
emitter-photon coupling can lead to an all-to-all momentum space interaction between two-photon bound states
and tunable non-Markovian dynamics, opening up exciting directions for emitter arrays coupled to a waveguide.
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Multilevel emitters coupled to a radiation field in a periodic
structure are essential for delivering on the promises sur-
rounding the second quantum revolution. Ongoing research
explores a variety of platforms, including nanophotonic lat-
tices [1–5], plasmonic wave guides [6], and superconducting
resonator arrays [7,8] coupled to atoms [9–11], quantum dots
[12], quantum solid-state defects [13,14], or superconducting
qubits [15–19]. Applications range from quantum information
processing to quantum networking to quantum simulations
[20–26]. Recent experimental milestones include the heralded
creation of a single collective excitation in a chain of atoms
coupled to a waveguide [27] and the demonstration of photon
(anti) bunching for weak atom-photon coupling by taking
advantage of dissipation [28]. Emitters coupled to a wave
guide also constitute a promising platform with which to
study fundamental questions associated with open quantum
systems, with the emitters playing the role of the system and
the wave guide or electromagnetic modes playing the role of
the bath [29–34].

Building on the tremendous successes of cavity quantum
electrodynamics (QED), waveguide QED plays a key role in
a plethora of quantum technologies [35,36]. The coupling of
one or more excited multilevel emitters to a continuum of
electromagnetic modes leads, in most cases, to irreversible
correlated radiation dynamics [37,38]. Quite generally, the
strong transverse confinement in a waveguide speeds up the
radiation dynamics compared to the free case [39]. Moreover,
the directionality of a one-dimensional waveguide facilitates
the buildup of correlations (or anticorrelations) between emit-
ters that are separated by distances larger than the natural
wave length of the wave guide leading to superradiance,
subradiance, and entanglement generation [40–50]. The emer-
gence of these characteristics can be explained in terms of
constructive and destructive interferences. This work predicts

long-lived oscillatory radiation dynamics for a generic waveg-
uide QED setup that can be realized experimentally with
existing state-of-the-art technology. The oscillatory radiation
dynamics is distinct from the typically observed irreversible
correlated radiation dynamics.

We consider a structured or nontrivial bath, namely a
waveguide with nonlinearity that supports a band of two-
photon bound states (or, more generally, a band of bound
bath quantum pairs) [30]. Working in the quantum regime,
where the system contains just two excitations, the influence
of the nontrivial mode structure of the bath on the radiation
dynamics is investigated within a full quantum mechanical
framework. Non-Markovian dynamics is observed. Rather
counterintuitively, a regime is identified where the radiation
dynamics is described nearly perfectly by a two-state Rabi
model. An analytical framework that elucidates the underly-
ing physical mechanism is developed. It is shown that two
emitters separated by multiple lattice sites are, in certain pa-
rameter regimes, glued together and coupled to a waveguide
with all-to-all momentum space interactions. It is as if the
band of two-photon bound states was feeling a localized (in
real space) impurity that leads to the formation of a photonic
polaron-like state with which the two-emitter unit interacts,
creating hybridized symmetric and antisymmetric states that
exchange population, undergoing essentially undamped Rabi
oscillations.

Figure 1(a) illustrates the setup. The total Hamiltonian Ĥ
consists of the system, tight-binding bath, or waveguide, and
system-bath Hamiltonians Ĥs, Ĥb, and Ĥsb [30],

Ĥs = h̄ωe

2

Ne∑
j=1
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σ̂ z

j + Î j
)
, (1)
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FIG. 1. (a) Schematic of the Hamiltonian Ĥ . The cavity array and
two-level emitters (2LE) are shown; the role of the different energy
terms is illustrated. (b) Illustration of the Hilbert space structure
of Ĥ (left), Ĥ adia (middle), and Ĥ 2-st. (right). The matrix element
Mb(k, n, K ) is defined in Ref. [60]. Note that the energy difference
2h̄ωe − EK,b, Stark shift 2�e, and polaron energy Epol are not shown
to scale.
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Ne∑
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j + â†

n j
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j ), (3)

where h̄ωe, h̄ωc, J , and U denote the energy difference of the
excited and ground states of the emitter, the photon energy in
the middle of the single-photon band, the hopping energy, and
the engineered or intrinsic onsite energy, respectively. Since
the coupling energy g is small compared to |U | and J , coun-
terrotating terms are not included in Ĥsb; throughout, positive
g and J and negative U are considered (positive U yield the
same results). The emitter operators σ̂ z

j = |e〉 j〈e| − |g〉 j〈g|,
Î j = |e〉 j〈e| + |g〉 j〈g|, σ̂+

j = |e〉 j〈g|, and σ̂−
j = |g〉 j〈e| act on

the jth emitter located at lattice site n j with ground and
excited states |g〉 j and |e〉 j . The bath operators â†

n j
and ân j

create and destroy a photon at lattice site n j ( j = 1, . . . , Ne

and n j ∈ 1, . . . , N). Throughout, we consider Ne = 2 emitters
with separation x, x = n1 − n2, and a large number of lattice
sites N . The bath Hamiltonian Ĥb supports, due to the Kerr-
like nonlinearity U , a band of two-photon bound states, one
bound state with energy EK,b for each two-photon center-of-
mass wave vector K [51–56]. The existence of these bound
states has been confirmed experimentally in photonic and cold
atom optical lattice systems [57,58]. Throughout, the emitter
energy is tuned such that 2h̄ωe is equal to EK (0),b at the uncou-
pled resonance wave vector K (0). Since we are interested in the
two-excitation subspace with K (0)a close to zero, the detuning
δ is measured from the bottom of the two-photon bound state
band, δ = 2h̄ωe − 2h̄ωc + √

U 2 + 16J2.
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FIG. 2. |cee(t )|2 as a function of Jt/h̄ for the initial state
|e, e, vac〉, U/J = −1, g/J = 1/50, and δ/J = 0.0431 (left) and
δ/J = 0.0011 (right). Top, middle, and bottom rows are for x/a = 0,
5, and 10, respectively. Black solid, red dotted, blue dashed, and
green dash-dash-dotted lines are obtained using Ĥ , Ĥ adia, Ĥ adia with
GK,K ′ = 0, and Ĥ adia with GK,K ′ = �e = 0, respectively.

To describe the time evolution of the initial state |e, e, vac〉,
we expand the time-dependent wave packet |�(t )〉 as [30]

|�(t )〉 = exp(−2ıωet )

[
cee|e, e, vac〉 +

∑
K

cK,b|g, g, K〉

+
∑

k

c1k|e, g, k〉 +
∑

k

c2k|g, e, k〉
]
, (4)

where cee(t ), cK,b(t ), c1k (t ), and c2k (t ) denote expansion coef-
ficients, and |k〉 = â†

k |vac〉 and |K〉 = P̂†
K,b|vac〉 single-photon

states with wave vector k and photon-pair states with center-
of-mass wave vector K , respectively. The operators â†

k and
â†

n are related via a Fourier transform. Our ansatz does not
account for the two-photon scattering continuum since it plays
a negligible role for the parameter combinations considered in
this paper [59].

The solid lines in the left column of Fig. 2 show the pop-
ulation |cee(t )|2 of the state |e, e, vac〉 as a function of time
for U/J = −1, g/J = 1/50, δ/J = 0.0431, and x/a = 0, 5,
and 10, obtained by propagating the ansatz given in Eq. (4)
using Ĥ . For this detuning, |cee(t )|2 decreases approximately
exponentially. This is the Markovian regime, discussed in
Ref. [30], where propagation with the adiabatic Hamiltonian
Ĥ adia yields quite accurate results (dotted, dashed, and dash-
dash-dotted lines show results for three different variants of
Ĥ adia). The adiabatic Hamiltonian Ĥ adia, which lives in a
reduced Hilbert space that excludes the single-photon states
|e, g, k〉 and |g, e, k〉, is introduced below [middle of Fig. 1(b)].
The inset of Fig. 2(c) for x/a = 10 shows that the short-time
behavior of |cee(t )|2 deviates from a pure exponential decay.
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This is due to the fact that the dynamics is, for x/a � 1,
seeded by the creation of two uncorrelated photons. For larger
times, the fall-off is, as for smaller separations, again gov-
erned by correlated two-photon dynamics.

When the emitter energy is set such that |δ| is very small
(K (0)a ≈ 0), the radiation dynamics changes drastically. The
right column of Fig. 2 shows an example for δ/J = 0.0011.
For x = 0 [Fig. 2(d)], the propagation under Ĥ (solid line)
yields damped oscillatory behavior. In the long-time limit, the
system is characterized by fractional steady-state atomic pop-
ulations. This is analogous to the single-emitter case [31,32],
where the emitter frequency is in resonance with the single-
photon scattering band. In the single-emitter case, the term
fractional steady-state atomic population is used to indicate
that the system is in a quasistationary state, which has ap-
preciable overlap with the state |e, vac〉 and the states |g, k〉
[31]. By analogy, we use the term fractional steady-state
atomic population in our two-emitter case to indicate that
the system is in a quasistationary state, which has apprecia-
ble overlap with the state |e, e, vac〉 and the states |g, g, K〉.
As the separation increases [Figs. 2(e) and 2(f) show re-
sults for x/a = 5 and 10, respectively], the dynamics for the
Hamiltonian Ĥ (solid lines) are characterized by slower
oscillations and weaker damping. For x/a = 10, the oscil-
lations resemble nearly perfect two-state Rabi oscillations.
Even though the emitters are coupled to a bath, dephasing
is essentially absent for large separations. These undamped
Rabi oscillations have no analog in the single-emitter system
[31,32].

The oscillation frequencies in Figs. 2(d) to 2(f) correspond
to the energy difference between the two energy eigenstates
of Ĥ that have the largest overlap with |e, e, vac〉 [solid lines
in Fig. 3(a)]; we label these states �+ and �−. For x/a � 5,
�± have an energy that is smaller than EK=0,b, i.e., both states
are bound with respect to the g = 0 two-photon bound-state
band [solid line in Fig. 3(b)]. For x/a � 5, the energy of �+
remains below the bottom of the two-photon band while that
of �− lies in the continuum. The quantity |〈e, e, vac|�+〉|2
increases from about 0.66 to 0.99 as x/a increases from 0 to
20 [upper solid line in Fig. 4(a)]; |〈e, e, vac|�−〉|2, in contrast,
is comparatively small for x/a � 4, increases for x/a = 5 to
7, and then slowly decreases as x/a increases further [lower
solid line in Fig. 4(a)].

To understand the emergence of the bound states and
their dependence on x, we adiabatically eliminate the states
|e, g, k〉 and |g, e, k〉, i.e., we assume that the change of the
expansion coefficients c1k (t ) and c2k (t ) in Eq. (4) with time
can be neglected [30]. This introduces a Stark shift 2�e

as well as effective momentum space interactions, propor-
tional to N−1g2GK,K ′ (x)/J , between two-photon bound states
with wave vectors K and K ′. Since the two-photon bound
state with wave vector K is coupled to two-photon bound
states with other K ′, i.e., GK,K ′ (x) is nondiagonal, we refer
to the effective interaction N−1g2GK,K ′ (x)/J as an effective
all-to-all momentum space interaction. The spread of GK,K ′ (x)
over a wide range of center-of-mass wave vectors is discussed
in detail in Ref. [61]; it plays a critical role when the absolute
value of the detuning δ is small. The structures of Ĥ and the
Hamiltonian Ĥ adia after adiabatic elimination are sketched,
respectively, in the left and middle diagrams of Fig. 1(b).
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FIG. 3. Static results (U/J = −1, g/J = 1/50, and δ/J =
0.0011). (a) Black solid, red dotted, and magenta dash-dotted lines
show the eigenenergies corresponding to hybridized states of Ĥ ,
Ĥ adia, and Ĥ 2-st., respectively, as a function of x/a. The gray dashed
line shows (E − E0,b)/J = 0. (b) The black solid line shows EK,b

as functions of Ka/π (main panel) and the state index (inset).
The red circles show the eigenenergies supported by Ĥ adia

b (index
1 corresponds to the polaron-like state). (c) The squares, circles,
and triangles show the dimensionless quantities Re[GK (0),K (0) (x)]/10,
Re[FK (0),b(x)], and Im[FK (0),b(x)] as a function of x/a for
K (0)a/π = 0.0152.
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FIG. 4. State composition of hybridized polaron-emitter states
(U/J = −1, g/J = 1/50, and δ/J = 0.0011). (a) Projection of
|e, e, vac〉 onto �+ (upper three lines) and �− (lower three lines) as
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lines are obtained using Ĥ , Ĥ adia, and Ĥ 2-st., respectively. (b), (c)
Projection of �+ and �− onto |g, g, K〉 as a function of Ka/π for
x/a = 10. The line styles are the same as in (a); black solid and red
dotted lines are nearly indistinguishable on the scale shown.
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For the larger δ considered in Fig. 2 (left column), the 2�e

and GK,K ′ (x) terms have negligible effects on the radiation
dynamics [the dotted, dashed, and dash-dash-dotted lines in
Figs. 2(a) to 2(c) agree well]; as a consequence, the authors
of Ref. [30] set them to zero in their reduced Hilbert space
description. For the smaller δ (right column of Fig. 2), in
contrast, both terms have a nonnegligible effect on the dy-
namics as evidenced by the fact that the dotted, dashed, and
dash-dash-dotted lines in Figs. 2(d) to 2(f) disagree.

The adiabatic Hamiltonian Ĥ adia contains the system, bath,
and system-bath Hamiltonians Ĥ adia

s , Ĥ adia
b , and Ĥ adia

sb ,

Ĥ adia
s = 2�e|e, e, vac〉〈e, e, vac|, (5)

Ĥ adia
b =

∑
K

EK,b|g, g, K〉〈g, g, K|

+
∑
K,K ′

g2

JN
GK,K ′ (x)|g, g, K〉〈g, g, K ′|, (6)

and

Ĥ adia
sb =

∑
K

g2

J
√

N
FK,b(x)|g, g, K〉〈e, e, vac| + H.c. (7)

The analytical expressions for the effective interactions
g2N−1/2FK,b(x)/J and g2N−1GK,K ′ (x)/J are lengthy and not
reproduced here [30,61]. The dotted lines in Figs. 2, 3(a),
and 4(a) show the results obtained by propagating the initial
state |e, e, vac〉 with Ĥ adia. The dotted lines agree quite well
with the full calculation (solid lines) for all detunings and
separations considered, suggesting that the reduced Hilbert
space model captures the key physics. Thus, we use it to
develop physical intuition.

To start with, we analyze the K ≈ K ′ ≈ K (0) ≈ 0 por-
tion of Ĥ adia

b , which should govern the radiation dynamics
when |δ/J| approaches zero. In this regime, the imagi-
nary part of GK,K ′ (x) is vanishingly small. In fact, since
GK,K ′ (x) is (excluding real overall factors) a sum over prod-
ucts [Mb(k, n, K )]∗[Mb(k, n, K ′)], it is purely real for K = K ′;
here, Mb(k, n, K ) measures the overlap between |K〉 and â†

n|k〉
[61]. When K and K ′ differ, GK,K ′ (x) can be loosely thought
of as an autocorrelation function for the overlaps. Impor-
tantly, the real part, shown for δ/J = 0.0011 by the squares in
Fig. 3(c), is negative and nearly independent of x. Considering
that the states |e, g, k〉 and |g, e, k〉 that are being eliminated
adiabatically contain information on the emitter locations, it
is remarkable that Re[GK,K ′ (x)] is nearly independent of the
emitter separation x/a. The behavior of GK,K ′ (x) is discussed
in detail in Ref. [61]. If we replace EK,b by E0,b (i.e., use a flat
band) and GK,K ′ (x) by GK (0),K (0) (x), then the eigenenergies of
the bath Hamiltonian are E0,b − (N − 1)g2N−1GK (0),K (0) (x)/J
(one-fold degenerate) and E0,b + g2N−1GK (0),K (0) (x)/J [(N −
1)-fold degenerate]. The eigenstate of the one-fold degenerate
bound state reads N−1/2 ∑

K |K〉. This bound state can be
interpreted as a bosonic quasiparticle that lives in the Hilbert
space of the dressed infinite cavity array, with the dressing
coming from the effective photon-pair–photon-pair interac-
tions that are introduced by the adiabatic elimination. Since
the eigenstate of the bosonic quasiparticle in the cavity array

Hilbert space can be written as a superposition of |K〉 states,
we refer to it as a polaron-like state.

While the flat band model overestimates the binding en-
ergy of the polaron-like bound state by a fair bit, it shows
that the attractive all-to-all interactions g2N−1GK,K ′ (x)/J are
responsible for the fact that the band of the bound pho-
ton pairs splits into a collective polaron-like bound state
and a band that is slightly shifted upward compared to the
GK,K ′ (x) = 0 case. This interpretation continues to hold when
a more accurate treatment is employed. The band curvature
can be thought of as introducing a wave vector cutoff (Leff )−1.
Taylor-expanding EK,b up to order (Ka)2, making the ansatz
|pol〉 = ∑

K dK |K〉 with dK = 2N−1/2(L−1
eff a/2)3/2/[(Ka)2 +

(L−1
eff a/2)2], and treating Leff as a variational parameter, the

energy Epol of the polaron |pol〉 can be found analytically.
For the parameters considered in Fig. 3(b), the analytical
result is in excellent agreement with the lowest eigenenergy
of Ĥ adia

b , which is shown in Fig. 3(b) by the circle for state
index 1.

Since GK (0),K (0) (x) is, for fixed δ/J and U/J , approximately
independent of x, the separation dependence displayed in
Figs. 2(d) to 2(f) must enter through FK (0),b(x). Figure 3(c)
shows that Re[FK (0),b(x)] (circles) has a strong x dependence
and is much larger, in magnitude, than Im[FK (0),b(x)] (tri-
angles). Throughout, we work with parameter combinations
where the resonant wave number K (0) is much smaller than a,
implying that the oscillatory behavior of FK (0),b(x), encoded
in sin(Ka) and cos(Ka) terms, does not play a role [61].
This is in contrast to earlier studies where the emitter was
in resonance with the single-photon band and where the os-
cillatory nature of the coherent and dissipative dipole-dipole
interactions played a role (see, e.g., Ref. [29]). Rewriting
Ĥ adia in the basis in which Ĥ adia

b is diagonal, we find that
the state |e, e, vac〉 couples comparatively strongly to the state
|g, g, pol〉 and comparatively weakly to all other bath states.
The dynamics in the |δ/J| → 0 limit is thus approximately
described by the two-state Hamiltonian Ĥ2-st.,

Ĥ2-st. = Ĥ adia
s + Epol|g, g, pol〉〈g, g, pol|

+ (Geff|g, g, pol〉〈e, e, vac| + H.c.). (8)

Using our variational expression for |g, g, pol〉, we find

Geff = g3(U 2 + 16J2)1/4

2J5/2
FK (0),b(x)|GK (0),K (0) (x)|1/2. (9)

The eigenenergies of the hybridized polaron-emitter states �+
and �− supported by Eq. (8) for U/J = −1, g/J = 1/50, and
δ/J = 0.0011 [dash-dotted lines in Fig. 3(a)] agree reasonably
well with those of Ĥ when x/a is large. State �+ is symmetric
(the coefficients of |e, e, vac〉 and |g, g, pol〉 are both positive)
while �− is antisymmetric (the coefficients have opposite
signs).

The two-state description deteriorates with decreasing sep-
aration; the state composition of the more weakly bound
state �−, which has a smaller overlap with the emitter state
|e, e, vac〉 [lower three lines in Figs. 4(a) and 4(c)] than the
more deeply bound state �+ [upper three lines in Figs. 4(a)
and 4(b)], deviates notably from that obtained by diagonaliz-
ing Ĥ . In fact, for x/a � 5, the first excited state of Ĥ is no
longer a simple superposition of |e, e, vac〉 and |g, g, pol〉, but
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instead contains multiple nearly degenerate energy eigenstates
with energy close to EK=0,b. In the dynamics, this results
in dephasing, thereby explaining the damping observed in
Figs. 2(d) and 2(e). We emphasize that the emergence of the
three different regimes (exponential decay, fractional popu-
lations, and Rabi oscillations), illustrated in Fig. 2 for the
separations of x/a = 0, 5, and 10, depends on the values of
U/J , g/J , and δ/J . For the same U/J and δ/J , the Rabi os-
cillation regime can be understood by analyzing the interplay
between Epol (which contains a term that scales as −g4/J4),
Geff (which is proportional to g3/J3), and �e (which is pro-
portional to g2/J2) within the two-state Hamiltonian Ĥ2-st.

[61].
In summary, our analysis shows that the essentially un-

damped Rabi oscillations are associated with population
exchange between two hybridized polaron-emitter states.
These states are distinct from previously predicted hybridized
states [29,62–66]. For the parameters considered in this paper,
the more weakly bound hybridized state merges into the con-
tinuum for x/a � 5, making the emergence of long-lived Rabi
oscillations an intriguing emitter separation-dependent long-
range phenomenon. When the emitters are close together, the
radiation dynamics, starting with |e, e, vac〉 at t = 0, leads
to quasistationary fractional populations. When the emitters
are spaced further apart, regular revivals are observed. We
emphasize the crucial role of the Stark shift 2�e and the

attractive all-to-all momentum space interactions. Neglecting
these terms yields the dash-dotted lines in Figs. 2(d) to 2(f).
Setting 2�e to the correct value but using GK,K ′ (x) = 0 yields
the dashed lines.

Our work illustrates that the structure of the bath Hamilto-
nian with Kerr-like nonlinearity can be modified nontrivially
(introducing attractive all-to-all momentum space interac-
tions) through the coupling to two two-level emitters, resulting
in qualitatively new radiation dynamics. Continuing to work
in the two-excitation manifold, extension to arrays of regu-
larly spaced emitters where neighboring emitters have a fixed
separation (simple emitter lattice) or alternating separations
(emitter superlattice) offers the prospect of establishing non-
trivial bath-induced correlations between separated emitter
pairs. Taking an alternative viewpoint, this work points toward
utilizing emitters to create bath Hamiltonian with unique char-
acteristics. Our analysis assumes that losses from the wave
guide can be neglected. Over the timescales considered, this
should be justified for several state-of-the-art experiments.
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