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Existence of a threshold for second-harmonic generation inside high-confinement microresonators
as a consequence of the generalized creation and annihilation operators
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This work presents a quantum theory of the nonlinear optical process of second-harmonic generation (SHG) in
one-dimensional microresonators. More specifically, we show how the manipulation of vacuum field fluctuations
in high-confinement systems, leading to a spectrally (and spatially) modulated commutation relation for the
photon’s generalized formulations of their creation and annihilation operators, deeply affects SHG behavior and
gives rise to a threshold level. The two main effects the modulated commutator has on this optical process
are an inhibition of the SHG process at low pumping level and a significant (cubic) amplification of the
second-harmonic signal production rate once the threshold is overcome (finally reaching the usual quadratic
dependence at sufficiently high pumping level). Our predictions, which represent a concrete picture of a fractional
quantum system, could be used to probe vacuum field fluctuations present in high-confinement microresonators
and emphasize the fundamental importance of vacuum field fluctuations.
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I. INTRODUCTION

As we are now capable of miniaturizing electromagnetic
(EM) and photonic systems to reach the nanometer scale
[1–12], the reduction and control of quantum noise have
become increasingly crucial. The ability to measure and con-
trol electromagnetic quantum noise in confinement structures
is of great importance both for fundamental interests and
for applications. Despite efforts to reduce thermal and EM
noise through various fabrication techniques and measure-
ment structures, there will always remain a minimal level of
quantum noise in the form of vacuum field fluctuations in any
system [13–15].

The existence of virtual photons generating quantum
vacuum field fluctuations is predicted by Heisenberg’s uncer-
tainty principle. Even though their role has been qualitatively
recognized [16–21], their spectral and spatial density, which
is linked to their rate of creation and amplified within
high-confinement systems due to resonance, have not been ex-
plicitly formulated. Instead, the theoretical approach is based
on Purcell’s and Kleppner’s conjectures [17,22]; the former
consists of replacing the free spectral range by the “linewidth,”
and the latter consists of replacing the electronic density
of states by an ad hoc “photonic density of states.” While
founded on the concept of the density of states, these conjec-
tures are, nevertheless, questionable in the case of resonators
(open cavities) [23]. The main concern is that they distort the
original definitions of modes. As pointed out in Sec. II, this
might lead to confusing quasimodes (resonant modes), espe-
cially quasinormal modes, with eigenmodes. Moreover, these
conjectures assume the possibility of continuously modulating
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(here, spectrally) the density of modes (states) in between
resonant frequencies and, accordingly, in the vicinity of a
single quasimode (“piling up” of modes near resonances) [23].

However, a quantized fluctuational electrodynamics for-
malism was recently developed to show how the density of
states concept can be used to describe the electromagnetic
field ladder operators so that they no longer exhibit the anoma-
lies reported for resonant structures [24]. As an alternative
and in contrast to Langevin’s formalism to describe open
cavities [25–29], our approach is based on the so-called modes
of the universe [30–33]. This ab initio approach turns out
to be markedly distinct from previous approaches [34,35].
Formally, this approach leads to the introduction of a mod-
ulated commutator [36] between the creation and annihilation
operators for photons inside a microcavity and results in the
generalized creation and annihilation operators [23,37]. As
detailed in Sec. V, the application of this formalism turns out
to be very simple and might be a very useful alternative to
investigate various dissipative (open) systems.

In this work, we focus on the nonlinear optical pro-
cess of second-harmonic generation (SHG). By appropriately
pumping a microcavity containing a second-order nonlinear
material, we can probe vacuum field fluctuations by studying
how they affect both the signal and noise of the SHG output.

This paper is organized as follows. In Sec. II, the one-
dimensional high-confinement open microcavity system is
defined, and the physical significance of the modulated com-
mutator is underlined. Next, in Sec. III, using the cavity’s
quasinormal modes to describe the fields, the relevant in-
teraction Hamiltonian for SHG is obtained. In Sec. IV,
Heisenberg’s equation of motion is used to predict the tem-
poral evolution of the creation and annihilation operators for
SHG within the microcavity. Finally, in Sec. V, the results are
summarized and discussed.
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FIG. 1. Illustration of a one-dimensional universe conceived as a
lossless closed cavity, bounded by perfectly conducting walls (R = 1
at z = −L and z = D) including a second-order nonlinear resonator.
The pump wave originates from the rest of the universe, between
z = 0 and z = D. In the event of a high-finesse resonator, the semire-
flecting mirror at z = 0 is assumed to have a reflectance close to
unity. The operators â represent the annihilation operators for each
electric field component E . The subscripts “in” and “ex” refer to
the resonator and the rest of the universe, respectively, while the
superscripts “-” and “+” refer to the propagation direction.

II. PHYSICAL SIGNIFICANCE OF THE MODULATED
COMMUTATOR IN MICROCAVITY SYSTEMS

As shown in Fig. 1, we consider a one-dimensional system
at a temperature of 0 K enclosed between two perfect parallel
reflectors with a reflectance of 1 at all frequencies. With the
z axis defined as the direction normal to these surfaces, the
reflectors are placed at z = −L and z = D. An interface is
located at z = 0 with a reflectance R almost equal to 1. This
interface separates the microcavity of length L from the rest
of the system. A nonlinear material is placed in the high-
confinement region, and the pump wave originates from the
region of length D. It is assumed that the entire system is
composed of lossless materials.

It is important to underline that our formalism is based on
the modes-of-the-universe point of view [30–33]. As shown
in Fig. 1, in this approach the so-called universe is constituted
by a single open planar microresonator, here incorporating
a second-order nonlinear medium, and the “rest of the uni-
verse.” In the event that D → ∞, the microcavity has a
negligible effect, and the rest of the universe is viewed as
an immutable reservoir, which behaves as a canonical closed
cavity where we assume that canonical commutation relations
apply. This postulate about the reservoir is essential. Only the
universe is a closed cavity. As such, true eigenmodes can be
strictly defined only for the universe.

Such eigenmodes, having well-defined angular frequency
ω, do not have any spectral width (“zero measure”). In the
limit D → ∞, the Fock states become very close together,
and the ω values can be assumed to form (or be approximated
by) a continuous set, so that ω can take practically any value.
On the other hand, since the microcavity is open, the modes of
the universe naturally extend spatially into the microcavity. At
some specific angular frequencies ων (ν = 1, 2, 3, . . . ), which
ensure that an eigenmode reproduces itself (returns in phase)
inside the microresonator after a single round trip, “quasi-
modes” can be formed in the vicinity of ων . When D → ∞, a
large (“infinite”) number of the universe’s eigenmodes, having
an angular frequency close to ων , occur. Then, due to self-

destructive interference, a quasimode is established, which is
a superposition of an infinite number of eigenmodes (Ref. [38]
showed that the weighting distribution is �(ω), given by
Eq. (4)). Incidentally, the higher the finesse (or the quality
factor Q) of the microresonator is, the closer the quasimodes
are to a subset of the modes of the universe. It is noteworthy
that each eigenmode contributes at least partially to the total
quantum noise of the quasimode. As underlined in Sec. 3.3 of
Ref. [39], in free space we can work with discrete sums over
modes and replace the summations by suitable integrations
when the cavity is sufficiently large so that there is practi-
cally a continuum of modes [40]. This approach is possible
whenever there is an approximately continuous distribution of
modes of interest. In summary, our formalism is equivalent
to assuming that D can be as large as required but never
model an unbounded universe. Here, D → ∞ a posteriori.
From this point of view, one can always implicitly keep the
discrete picture of eigenstates and thus avoid the problem
of the zero-measure bandwidth of eigenstates encountered
in the truly continuous Fock-space mode description of an
unbounded universe (see Sec. 10.10 in Ref. [34]). Incidentally,
since the wave vectors of the continuous Fock space defined
in Ref. [34] are here coincident, the definitions of creation and
annihilation operators in that book do not apply properly to
our point of view.

When the microcavity has a high quality factor, we can
approximate that the quasinormal modes are identical to those
found in a perfectly closed cavity of length L. The condition
for resonant angular frequencies ω in the microcavity will be
Lω = mπc, with m being an integer and c being the speed of
light in the nonlinear medium. The pump region has a length
D chosen so that mode coupling to the microcavity is possible
when D is several orders of magnitude larger than L. The
pump region then acts as a reservoir and does not contain any
confinement effects comparable to those of the microcavity.
Experimentally, this condition is automatically met, as L is in
the nanometer- or micrometer-scale.

Following Ueda and Imoto [36], we now define the four
relevant operators to describe the pump photons as they travel
through the system shown in Fig. 1 at normal incidence to the
interface at z = 0. Those originating from the pump region
traveling towards the microcavity (left) are represented by
â−

ex. The output traveling away from the microcavity (right)
is represented by â+

ex. We use â−
in and â+

in for photons within
the microcavity, propagating to the left and to the right, re-
spectively.

Because the pump region is empty and very large compared
to the microcavity, the implicit postulate made by Ueda and
Imoto, where the rest of the universe is considered to be an
unbounded immutable reservoir and ω is continuous, appears
to be suitable. This allows giving the commutator between the
annihilation and creation operators for this region its canoni-
cal value [36],[

â−
ex,ω, â−†

ex,ω′
] = [

â+
ex,ω, â+†

ex,ω′
] = δ(ω − ω′)Î. (1)

However, recalling our point of view of a bounded universe
and its discrete picture of eigenstates that resort to a qua-
sicontinuous basis, Eq. (1) is regarded here as a suitable
approximation (see Eqs. (41) and (42) and the text that follows
in [23]). Nevertheless, this assumption naturally leads to the
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FIG. 2. Examples of the modulation function � for various con-
finement levels, which are determined by the value of R (ω is
expressed in units of πc/L). The �max value is calculated from
Eq. (5).

formalism of the generalized creation and annihilation opera-
tors that follows. The presence of the distribution of Dirac’s δ

imposes that the operators are no longer dimensionless. Since
they describe field-amplitude distributions for an infinitesimal
frequency range, these operators are physically meaningful
only under proper integration [34,35,40].

To find the relationship between the four operators, al-
lowing us to derive the other commutators for â−

in and â+
in,

we define the relevant boundary conditions. Specifically, we
use energy conservation and Stokes’s reversibility principle
using the amplitude transmittance t and reflectivity r at the
microcavity interface. We also note that the field must vanish
at the R = 1 reflector at z = −L. Taking t = i

√
1 − R and

r = −√
R [36], these conditions are

â−
in = i

√
1 − R â−

ex −
√

R â+
in, (2a)

â+
ex = i

√
1 − R â+

in −
√

R â−
ex, (2b)

â−
in exp(iωL/c) + â+

in exp(−iωL/c) = 0̂. (2c)

By writing â−
in and â+

in in terms of â−
ex and using Eq. (1), we

find that[
â−

in,ω, â−†
in,ω′

] = [
â+

in,ω, â+†
in,ω′

] = �(ω)δ(ω − ω′)Î, (3)

where the modulation function � is (see Fig. 2)

�(ω) = 1 − R

1 + R − 2
√

R cos(2ωL/c)
. (4)

Note the similarity between Eq. (4) and the predicted ra-
tio between the internal and external light intensities for a
semiopen cavity of length L [38]. The modulation function
thus represents the self-interference of photons in a round trip
within the microcavity, which is shorter than the coherence
length [36]. Additionally, resonance not only modulates the
field amplitudes but also controls the EM noise at resonant
frequencies according to Eqs. (3) and (4). For pump frequen-
cies ωp matching the condition for resonance, the value of
the modulation function can be much larger than 1 due to
enhanced vacuum fluctuations. This maximum value of � is

calculated using

�max = 1 + √
R

1 − √
R

(5)

in the event of constructive interference of ωp virtual photons
propagating back and forth in the high-confinement structure.

We are naturally led to the following generalized creation
and annihilation operators while fulfilling the conditions of
the modulated commutator Eq. (3), as shown in a previous
work [23]. They must be used inside the resonator. Inci-
dentally, the â±

in operators are related to the canonical â±
ex

operators via Eqs. (2).
Even though the generalized operators apply to every

standing-wave Fock state of the universe |n〉, they describe the
photon dynamics inside the resonator. On the other hand, the
number of photons inside the microresonator nin is obtained
from the ratio of intensities inside and outside the resonator
and the dimensions of the system [see Eq. (8)].

The generalized operators are (see the Supplemental Mate-
rial [41], where � = �(ω))

â±†
in |n〉 = √

n + �|n + �〉 (6a)

and

â±
in|n〉 = √

n|n − �〉. (6b)

The first state of eigenmode ω is written as
√

�|�〉 =
â±†

in |0〉. Since â±†
in â±

in|n〉 = n|n〉, � does not describe the pho-
ton number in a mode but is a measure of its fluctuation,
which is increased through confinement. This is a threshold
to be overcome in order to detect the smallest amplitude
variation, from a classical point of view. Accordingly, from
Eq. (6b), one sees that quantum states such as 0 < n < �,
which correspond to bewildering “negative kets,” are linked
to eigenmodes that are too buried in vacuum field fluctuations
to be clearly identifiable in a classical way and formally de-
scribable in terms of harmonic modal functions.

It is clear that the above operators define generalized states,
which are not usual number (Fock) states (unless � is fortu-
itously an integer). Rather, they appear as states that should be
described by fractional Hermite’s polynomials (see Eq. (3.49)
in [42] and Eqs. (3.13) and (3.14) in [43]). It is noteworthy that
in a quasicontinuous basis space the integral of �(ω)â±†

in |0〉
over frequency introduces a superposition of vacuum states
containing information about the total quantum noise level
in a specified frequency domain. This might be useful when
considering quasimodes.

We stress that n is the number of photons belonging to a
universe’s eigenmode, not only to a quasimode of the res-
onator. As expected, the generalized operators recover their
canonical form whenever � = 1, as in the case of free space.

Inside a resonator the quantum noise level due to vacuum
field fluctuations is spectrally and spatially modulated. The
spatial modulation of � matches the spatial mode profile of
the resonators. In the case of sufficiently high finesse Gires-
Tournois or Fabry-Pérot resonators, the modulation can be
described by sine functions (since the operators describe the
electric fields). In a highly confining resonator (R ≈ 1) where
steady-state conditions are met, the noise level might be so
important that inside the resonator at least � real photons
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must be added to or removed from an eigenmode in order
to detect a noticeable variation in its electric field amplitude.
This is especially true at frequencies close to the resonant
modes. This number is only one photon in free space. In other
words, for the fields inside the resonator buried in quantum
noise, the smallest detectable classical amplitude variation in
the corresponding eigenmode is

√
�, and � is the smallest de-

tectable intensity variation. From measurements provided by a
“detector” located inside the resonator (the nonlinear medium
in our case), the virtual states between |n〉 and |n + �〉 are not
physically discernible from one another. This is the case for
virtual states between |n〉 and |n + 1〉 in free space. However,
these arguments apply to only a steady-state condition. On a
timescale determined by the quality factor of the resonator,
the addition (removal) of one input photon at ω outside the
resonator, corresponding to � photons accumulating in (being
expelled from) the resonator, is linked to a final steady state
that is reached only asymptotically in time. Of course, a con-
venient approximation of steady-state conditions is obtained
for time much larger than the time constant of the resonator
Q/ω. This process requires a total addition (removal) of � + 1
photons to the eigenmode.

This discussion is further supported by the calculation of
the single-mode degree of second-order coherence g(2). For
the forward-propagating component inside the resonator and
with τ being the detection time delay, we write [40]

g(2)
in (τ ) = 〈â+†

in â+†
in â+

inâ+
in〉

〈â+†
in â+

in〉2
= g(2)

in (0). (7)

With nex being the number of photons in the rest of the
universe (nex + nin = n), while assuming that the resonator
and the rest of the universe are both nonabsorbing media and
α represents the ratio of the refractive index of the resonator
over the refractive index of the rest of the universe, we can
write (see Eq. (5) in [23])

nin = α
L

D
�nex = αL�

D + αL�
n. (8)

In terms of linear photon densities, which are more useful for
experimental investigations because D 	 L, we can write

nin

L
= α�

D + αL�
n ≈ α�

n

D
. (9)

At this point, making use of Eq. (7) and with (	n)2 being
the variance, the single-mode degree of second-order coher-
ence inside the resonator can also be generalized to

g(2)
in (0) = 〈â+†

in (â+
inâ+†

in − �)â+
in〉

〈â+†
in â+

in〉2
= 1 − �

〈n〉 + (	n)2

〈n〉2 . (10)

Because (	n)2 is a positive value,

g(2)
in (0) � 1 − �

〈n〉 . (11)

For photon-number Fock states,

g(2)
in (0) = 1 − �

n
. (12)

In order to ensure a positive value for g(2)
in (0), the mean

number of real photons that are partially buried in the quantum

noise constituted of virtual photons must exceed the level
�, instead of the familiar 1 in free space. In other words, a
nonvanishing optical signal occurs only for a superposition of
eigenmodes that contain photon-number states with values of
n differing by �.

In the case of sufficiently low variance [(	n)2 
 〈n〉2],
a nearly coherent state in the sense g(2)

in (0) = 1 [not in the
Poissonian statistics sense (	n)2 = 〈n〉] can emerge inside a
resonator only when 〈n〉 	 �. More generally, making use
of the “relative variance” ν (also known as the “Fano fac-
tor” [44], sometimes referred inadvertently to as the “Fano
parameter” [33], with the latter representing the line-shape
asymmetry in the Fano resonance), defined as ν〈n〉 = (	n)2,
Eq. (10) is written as

g(2)
in (0) = 1 + ν − �

〈n〉 . (13)

In the same way that, here, ν is a measure of the single-mode
field fluctuations due to real photons, inside the resonator
� is a measure of the single-mode field fluctuations due to
virtual photons, which must be overcome to obtain a posi-
tive value for g(2)

in . Therefore, it appears that in the presence
of resonators, the coherence condition g(2) = 1 is uncoupled
from the Poissonian statistics condition ν = 1, which is the
case in free space. Inside a resonator, the modulation function
� is interpreted as the threshold variance that a signal must
overcome to be distinctive from quantum noise. Remarkably,
with the exception of 〈n〉 = 0, the photon statistics inside
the resonator appear to be coherent (meaning g(2) = 1) when
ν = � and even for ν > 1. Likewise, the photon statistics
inside the resonator appear to be incoherent when ν �= �.

One notices that the expected positive value for second-
order coherence is disobeyed when 〈n〉 < �, which produces
“negative coherence” (or “superincoherence”). The formal
constraints 0 � |g(1)| � 1 [45] and 0 � g(2) < ∞ [40] are
deduced only for a coherence time that can be unambigu-
ously defined through an averaging process, which requires
long integration times. For experiments that involve a very
low number of photons, the coherence time is undetermined.
Accordingly, the above constraints are relaxed and in some
circumstances could be violated. From Eqs. (10) and (13),
one notices that for a sufficiently low variance ν or for a suffi-
ciently high � value, g(2)

in is negative. Because the second term
in Eq. (13) could be related to an integral form of the Glauber-
Sudarshan P(α) function, which is known to eventually have
negative values [45] (which can be used as the definition
of nonclassical light), the relationship between Eq. (13) and
P(α) should be established. Such study is postponed for future
work.

Despite recent progress in SHG using incoherent light
sources [46–52] and other nonlinear processes [15,53,54],
efficient SHG requires coherent light sources. Indeed, the
higher the probability is for two real photons to be found in
a nonlinear medium at the same position at the same time,
the higher the probability is to create a second harmonic pho-
ton. Therefore, a high g(2)

in (0), which favors photon bunching,
is also favorable to SHG. However, from Eq. (10), � has
an adverse effect on g(2)

in . Even considering an eigenmode
with 〈n〉 > � such that g(2)

in is positive, g(2)
in decreases as �
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increases. This can be achieved through a variation of the
pump angular frequency ω toward a resonant mode by chang-
ing the semireflecting mirror reflectance R or by changing the
cavity length L (see Fig. 2). The decreasing rate of g(2)

in (0) is
especially important for low 〈n〉 values. Although antibunch-
ing is usually defined by g(2)

in (τ ) > g(2)
in (0) [55–57], here, it

is permitted to interpret the decrease in g(2)
in as a “structural

antibunching,” which reduces the SHG efficiency.
Finally, the modulation function � is a measure of the

minimal level of light intensity fluctuations in an eigenmode
inside the resonator. Indeed, it is easily determined that for
the forward-propagating component inside the resonator we
can write [40]

〈n|Ê+2
in |n〉 = h̄ω

2εo

(
n + �

2

)
. (14)

For a single eigenmode, the ratio of the intensity inside the
resonator to the outside determines the relative probability per
unit of length P� to detect a photon inside the resonator rela-
tive to the rest of the universe. Assuming α = 1 for simplicity,
we then write

P+
� = 〈n|Ê+†

in Ê+
in |n〉

〈n|Ê+†
ex Ê+

ex|n〉 = n + �/2

n + 1/2
. (15)

One sees that for an increasing �, P� increases proportion-
ally. As expected, this indicates that the photons accumulate
into the quasimodes of the resonator. This is associated with
the “concomitance law” discussed in [23,37], which estab-
lishes an intimate link between vacuum field fluctuations and
the density of states. Indeed, this concomitance emphasizes
the complementary points of view based of the seemingly
diverging concepts of density of states and vacuum field
fluctuations. In addition, Eq. (15) gives further physical in-
terpretation to �. When n 	 �, the probability is always
close to unity, and the effects of confinement vanish. Due
to the relatively low value of �max, this could explain why
the predictions described in this paper, especially about the
eventual existence of a threshold for SHG, have not yet been
reported. Experimentally, the use of a low pump level and
photon-counting methods appear to be necessary. On the other
hand, when n is sufficiently small, � is no longer negligible.
When the resonator is highly confining (in resonance), then
� 	 1, and P+

� ∼ �. When the resonator is expelling (out of
resonance) when � < 1, this probability is lower than 1. As
anticipated, this last result gives a probability of exactly � for
the zero-point energy state (n = 0), which is the case of virtual
photons.

Many of the above arguments, especially the threshold
variance seen in Eq. (13) that describes the pump-beam co-
herence inhibition inside the resonator at low pumping level,
support the idea that SHG might also be inhibited inside a res-
onator to the point that a SHG threshold exists. The following
sections will theoretically demonstrate that this is formally the
case.

III. SECOND-HARMONIC-GENERATION HAMILTONIAN

In order to validate the modulated commutator and the
generalized operators, we require a detection system present
outside of the microcavity to be able to infer the effects of

Eqs. (3) and (4) on an optical processes taking place inside.
This is possible by studying how the nonlinear optical process
of SHG is modulated by �. The microresonator in Fig. 1 is
pumped by a laser with an appropriate value of ωp to match
the resonance condition of the microcavity.

Since it is simpler to expend the field operators and per-
form calculations in terms of a discrete basis of well-defined
mode profiles, here, we deviate from our rigorous approach in
Secs. I and II and consider the use of quasinormal-mode for-
malism (i.e., approximation of quasimodes by superposition
of very sharp “Lorentz” distribution profiles that ultimately
become “Dirac δ” distribution profiles). We stress that this
working hypothesis preserves the physical significance of
Secs. I and II, especially concerning the � modulation func-
tion. Accordingly, as a simplification that maintains the usual
formal handling of the SHG process without loss of generality
from Secs. I and II, in this section we assume a very high
quality factor resonator. We can then approximate quasinor-
mal modes as normal eigenmodes. The 2ωp mode, which is
populated by the nonlinear effect, is also assumed to be a
normal eigenmode.

The Hamiltonian is written as the total energy contained in
the EM fields inside the microcavity

Ĥ = 1

2

∫ (
ε(Ep)Ê2 + B̂2

μo

)
d3r, (16)

where ε(Ep) is the permittivity of the nonabsorbing dielectric
material ε modulated by the harmonic pump field Ep. Using
the approximation for second-order nonlinear Pockels effect
in the steady state, an expression for ε(Ep) is written as

ε(Ep) = εrεo + χ (2)
e εoEp(r) cos(ωpt ), (17)

with Ep(r) being the spatial envelope of the pump field and
χ (2)

e being the second-order electric susceptibility term.
The creation and annihilation operators for photons are in-

troduced by the electric- and magnetic-field operators through
standard (Coulomb gauge) second quantization. The spatial
mode profiles u j of the jth normal mode (standing-wave basis
[58]) corresponding to ω j are real (sine) functions [45],

Ê =
∑

j

i

√
h̄ω j

2ε
(â j − â†

j )u j, (18a)

B̂ =
∑

j

√
h̄

2εω j
(â j + â†

j )rotu j . (18b)

Here, the operators â and â† refer to those inside the microres-
onator (the “in” subscripts have been removed for simplicity).

By placing Eq. (17) into Eq. (16), the Hamiltonian can be
written in the form Ĥ = Ĥo + Ĥ ′. Taking the nonlinear term
in ε(Ep) as being small compared to εrεo, we can use pertur-
bation theory. The first term, Ĥo, is the canonical Hamiltonian
of a cavity containing EM fields in a linear medium,

Ĥo =
∑

j

h̄ω j (â
†
j â j + Î/2). (19)
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The solutions to the temporal evolution of this familiar system
are known to be simply harmonic,

â†
j (t ) = â†

j0 exp(iω jt ), (20a)

â j (t ) = â j0 exp(−iω jt ). (20b)

The correspondence between the creation and annihilation
operators of the jth normal mode and complex exponential
functions of angular frequency ω j is used below to select
particular nonlinear processes. The second term, Ĥ ′, is the
perturbation from the nonlinear optical process inside the
microcavity. Calling this term the interaction Hamiltonian, it
represents the nonlinear coupling between normal modes,

Ĥ ′ = −h̄ cos(ωpt )
∑

i

∑
j

κi, j (âi − â†
i )(â j − â†

j ), (21)

where κi, j is the effective coupling constant characteristic of
the nonlinear interaction of modes within the microcavity,

κi, j = χ (2)
e

√
ωiω j

4εr

∫
Ep(r)ui · u jd

3r. (22)

Phase-matching conditions are assumed for simplicity. Any
phase mismatch found in an experimental setup could be
described by simply reducing the κi, j value. An appropriate
spatial envelope Ep(r) is chosen in order to optimize the κi, j

value of interest.
The photonic process of SHG is described as two ωp pho-

tons annihilated to create a single 2ωp photon. The pump wave
ωp is designated as the j = 1 mode, and the SHG signal 2ωp

is designated as the j = 2 mode. All other mode-coupling
terms in Eq. (21) are ignored. Formally, all κi, j values are
approximated to have a null value, either by using an appropri-
ate nonlinear material or by assuming large phase mismatch
between waves i and j, with the exception of κ1,2 = κ2,1. Only
processes satisfying the ω2 = 2ω1 condition are selected to
write the SHG interaction Hamiltonian

Ĥ ′ = h̄κ

2
(â1â1â†

2 + â†
1â†

1â2). (23)

For simplicity, ω = ωp, and κ = 2κ1,2. Note that we used
Euler’s formula to write cos(ωt ) in terms of complex expo-
nential functions, then used Eq. (20) to relate those to creation
and annihilation operators. The first term represents the SHG
process itself. The second term is the process of degenerate
parametric fluorescence, being the adjoint of the first term.
Both are present in Eq. (23) to preserve dynamical equilibrium
and to ensure that the Hamiltonian remains Hermitian.

IV. EQUATIONS OF MOTION

The temporal evolution of SHG in a high-confinement
structure can now be determined while taking into account
the effects of the generalized operators through the modulated
commutator. Using the SHG Hamiltonian, the solution is ob-
tained by applying Heisenberg’s equation of motion

dâ j

dt
= − i

h̄
[â j, Ĥ ]. (24)

Under first-order perturbation theory, we take the known
result of these equations when Ĥ = Ĥo as the first term of

dâ j/dt ,

dâ j

dt
= −iω j â j − i

h̄
[â j, Ĥ ′]. (25)

How â j commutes with Ĥ ′ includes all effects from the mi-
crocavity and acts as a perturbation to the familiar Ĥo system.
With Eqs. (23) and (3), we write the equations of motion for
the two relevant modes in SHG [37],

dâ1

dt
= −iω1â1 − iκ�â†

1â2, (26a)

dâ2

dt
= −i2ω1â2 − i

κ

2
�â1â1. (26b)

These equations form the coupled differential equations of
motion (CDEMs) that describe the dynamics of the photonic
process. When combined with their equivalent equations for
â†

1 and â†
2, the quantum version of the Manley-Rowe relation

of SHG can be found:

d (â†
1â1)

dt
+ 2

d (â†
2â2)

dt
= 0̂. (27)

This confirms that one ω2 photon is created simultaneously as
two ω1 photons are annihilated.

A common approximation is to ignore pump depletion. Ex-
perimentally, the laser source maintains a near-constant beam
containing far more ω1 photons than the number of ω2 photons
generated by the SHG process. In such a case, the expected
number of photons present in the ω1 resonator quasimode is
constant in time and equal to its initial value,

n1(t ) = n10, (28)

where n j is the expectation value of â†
j â j and the solutions for

â†
1 and â1 are given by Eq. (20).

Under this approximation, the CDEMs can now easily be
solved. Focusing on the mode of interest, the â2 equation of
motion in Eq. (26) becomes

dâ2

dt
= −i2ω1â2 − i

κ

2
�â10â10 exp(−i2ω1t ). (29)

The solution of this equation allows us to write the expected
number of SHG photons in the harmonic cavity quasimode as

n2(t ) = n20 + n10(n10 − �)
κ2

4
�2t2. (30)

Often, n20 = 0 (no injection) is experimentally more relevant.
As expected from the arguments exposed in the previous
section, the modulation function � can be interpreted as a
threshold variance that the pump wave must overcome to
generate a perceptible SHG signal inside the microresonator.
As long as the threshold value is overcome, from the very
first moment the photonic system is triggered at t = 0, the
number of ω2 photons monotonically increases. However, the
approximation of ignoring pump depletion is not valid at
times t where n2(t ) is no longer several orders of magnitude
smaller than n10. This condition can more easily be met in a
steady state with continuous wave pumping but may present
additional experimental complications under a pulsed pump
setup, especially for ultrashort pulses where the beam is far
from being monochromatic.
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Additional impacts of the modulation function on the SHG
process can be seen in Eq. (30).

The �2 term represents the classical pump-field quadratic-
dependence amplification effect of the high-confinement
structure. The second-harmonic signal production rate dn2/dt
is stimulated by an increase in vacuum field fluctuations due to
resonance. As a numerical example, for 2L/c = 3 fs and R =
0.9, � > 30 near ωp = πc/L according to Eq. (4), therefore
increasing dn2/dt by three orders of magnitude. This result is
a simple consequence of constructive interference within the
microcavity.

In the case of a weak pump beam, such that n10 is not
many orders of magnitude larger than �, the �3 dependence
represents a nonclassical effect which is specific to the modu-
lation of quantum noise in the system due to confinement. The
main impact of the n10 − � term on n2(t ) is how the nonlinear
photonic process is triggered at t = 0. Because n2(t ) cannot be
negative, the minimum number of pump photons to obtain a
single ω2 photon is now increased to � + 1 in a microcavity.
The intensification of vacuum field fluctuations hinders the
triggering process of SHG in high-confinement systems by
increasing the pump threshold level.

As discussed in Sec. II, a coherent pump beam is required
for the SHG process to occur. By increasing quantum noise
in the microcavity via �, incoherence is introduced in the
pump wave. Consequently, a greater number of ω1 photons
is required to gain sufficient coherence, which inhibits the
triggering of the nonlinear effect. In other words, n10 must
be greater than the number of virtual photons arising from
vacuum field fluctuations in the microcavity to sustain SHG.
Note that the ω1 virtual photons cannot play the role of the
pump, as n2(t ) = 0 for all � if n10 = 0 in Eq. (30).

In support of the preceding calculations leading to the
existence of a threshold for SHG, it is worthwhile to put
forward the following alternative approach based on Fermi’s
golden rule to evaluate the transition probability P. Making
use of Eq. (23) and the following eigenstates, where n10 and
n20 are the initial photon numbers in the pump and second-
harmonic modes, respectively, with |i〉 = |n10, n20〉 and | f 〉 =
|n10 − 2�, n20 + �〉, a simple calculation gives

P ∝ |〈 f |Ĥ ′|i〉|2 = n10(n10 − �)(n20 + �). (31)

One sees that P is positive only for n10 > �. Here, too,
the modulation function � can be interpreted as a threshold
intensity that the pump wave must overcome to generate a
perceptible and sustainable SHG signal inside the microres-
onator. It is noteworthy that similar to the free-space condition
(where � = 1 and the threshold is n10 = 2 photons as ex-
pected), initial and final states other than the above |i〉 and
| f 〉 lead to P = 0.

V. SUMMARY, CONCLUSION, AND PERSPECTIVES

The modulation function � for creation and annihilation
operators in a microcavity acts as a signature for vacuum
field fluctuations. These in turn produce virtual photons ca-
pable of affecting nonlinear photonic processes such as SHG.
Through high-confinement effects, we have shown that both
the SHG signal and the quantum noise are amplified in a
microcavity. The production rate of ω2 photons is inhibited for

n10 < �, is dependent on �3 for n10 ≈ �, and is proportional
to �2 for n10 	 �. This peculiar signature should help to
experimentally validate our theoretical findings. However, the
triggering of the SHG process is inhibited by introducing in-
coherence in the pump wave. Classical theories cannot predict
the threshold as it originates purely from quantum noise. Note
that by ignoring confinement effects in the microcavity, thus
setting � = 1, we recover the familiar quantum description
of SHG. In this case, the canonical n10(n10 − 1) term in
Eq. (30) would produce the two-pump-photon threshold stated
by the Manley-Rowe relation. To the best of our knowledge,
since the modulation commutator and the ensuing generalized
creation and annihilation operators were not previously con-
sidered, the results shown in Eqs. (27) and (31) differ from
those obtained in the framework of the canonical approach
(where � is always equal to 1).

The predicted SHG threshold might be difficult to
detect experimentally. However, making use of photon-
counting methods, experimental investigations are currently
in progress. Another experimental challenge arising from our
approximations is that the system must be lossless (nonab-
sorbing) and in a steady state with continuous wave pumping.
These conditions may be troublesome to satisfy.

In summary, we have shown that an inclusive understand-
ing of the detailed quantum mechanism is needed in order
to study confinement effects in nonlinear photonic systems.
Experimental confirmation of both amplification and inhibi-
tion effects in SHG would corroborate our result that quantum
noise in microcavities can be probed. The experimental con-
firmation of these quantum effects could open the door to
the development of new photonic devices and deepen our
fundamental understanding of vacuum field fluctuations.

One of the most important conclusions emerging from
our investigation is that a further possible extension of the
generalized operators appears to be possible, beyond the
case of resonating electromagnetic structures. The modulation
function � is defined as the “intensity enhancement factor”
through the ratio of the intensity inside a resonator Iin to the
intensity outside the resonator Iex (which is linked to the “field
enhancement factor” �E ) [23],

�(ω) = Iin

Iex
=

∣∣∣∣E±
in (ω)

E±
ex

∣∣∣∣
2

= �2
E (ω). (32)

However, it can also be applied to any electromagnetic
(nanophotonic) structures that spatially and spectrally alter the
electromagnetic field profile not only inside but also in their
near surroundings. One can envision that the electromagnetic
structure of interest is inserted in a multidimensional plane-
parallel capacitor with zero capacitance and subjected to an
alternative electric field.

Because vacuum field fluctuations are omnipresent at all
frequencies, we assume that (in the Coulomb gauge) a steady-
state condition permanently applies to electrical field vacuum
fluctuations. Similar to resonance, the spatial distribution
profile of the vacuum field fluctuation’s intensity and the cor-
responding field enhancement factor �E can be used to obtain
the intensity enhancement factor �(ω). Therefore, using the
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same assumptions to write Eq. (32), we then predict that

�(r, ω) =
∣∣∣∣E±

near (r, ω)

E±
far

∣∣∣∣
2

= �2
E (r, ω). (33)

Fortunately, �E can always be determined from classical
linear and nonlinear electromagnetism, possibly by involv-
ing numerical methods. From Eq. (33), we perceive that the
generalized creation and annihilation operators are position
dependent, as discussed in [59,60]. Incidentally, because �

is directly linked to the density of states [23], this last result
reinforces the introduction of a local density of states based on
the local density of energy, as previously proposed [61,62].

In conclusion, it is our belief that in addition to emphasiz-
ing the fundamental importance of vacuum field fluctuations,
the present study provides a platform for innovative techno-
logical developments. On the other hand, despite the clear
picture involved in the generalized operators presented, they
remain theoretical and would benefit from experimental val-
idation. In addition to the previously suggested experimental
approach to corroborate our findings, here, we suggest some
experiments, all conducted using photon-counting methods.

(1) As shown in Eq. (30), at a specific pump frequency
the SHG signal inside the resonator depends on �2 and �3.
For a highly confining resonator, � strongly depends on the
incidence angle due to the spectral shifting of the quasimodes
[38]. The intensity of the SHG signal emerging from that
resonator should also strongly depend on the incidence angle.

(2) We consider a thin nonlinear layer embedded in the
microresonator in the form of a Langmuir-Blodgett monolayer
molecular film [63]. The presence of a highly confining res-
onator modulates the vacuum electric field fluctuations as a
sine function of its position inside the resonator. Because the
SHG signal scales as the square of the pump field, at a constant

pumping level the SHG threshold should also be modulated
as a function of the location of the thin layer along the cavity
axis.

(3) Because the vacuum field fluctuations are present at all
frequencies and are assumed to be in a steady-state condition
inside all resonators, using a step-function shape pumping, no
SHG signal should emerge from the microresonator before a
certain time delay, that is, before the number of real photons
inside the microcavity has time to overcome � (due to the
resonator time constant). This delay to detect the SHG signal
should depend on R.

(4) Using picosecond-duration light pulses and envisioning
a long enough microresonator so that the pulse inside the
resonator never overlaps with itself or with other pulses al-
ready inside a suitably sized resonator, the SHG signal should
depend on the pulse intensity.

(5) In order to avoid the use of delicate photon-counting
methods, it would be interesting to resort to recent advances in
very high efficiency SHG microring resonators [64,65], which
intrinsically reach among the greatest quality factors. The only
theoretical requirement is to evaluate � inside a toroid cavity,
instead of the current Gires-Tournois cavity. Fortunately, �E

can always be determined from classical electromagnetism,
eventually through numerical methods. On the experimental
side, it should suffice to reduce the pump power sufficiently
and work as suggested in point 3.
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