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Bound states in the continuum in a two-channel Fano-Anderson model
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1Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110 V, Valparaiso, Chile
2Departamento de Física, Universidad de Antofagasta, Avenida Angamos 601, Casilla 170, Antofagasta, Chile

3Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden

(Received 11 January 2022; accepted 7 July 2022; published 28 July 2022)

In this article, we study the formation of the bound states in the continuum (BICs) in a two-channel
Fano-Anderson model. We employ the Green’s function formalism, together with the equation of motion
method, to analyze the relevant observables, such as the transmission coefficient and the density of states. Most
importantly, our results show that the system hosts true BICs for the case of a symmetric configuration with
degenerate impurity levels, and a complete transmission channel is then suppressed. Finally, we argue that the
proposed mechanism could be relevant for the realization of BICs in electronic and photonic systems.
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I. INTRODUCTION

The bound states in the continuum (BICs) represent ex-
otic quantum states that coexist with a continuous band of
states and, in spite of this, remain localized. As such, the
BICs can be considered as zero-width resonances with in-
finite lifetimes coexisting with extended states. The interest
in this class of states dates back to the early days of quan-
tum mechanics, when von Neumann and Wigner predicted
their formation with energies above the barrier of a par-
ticular type of spatially oscillating potential [1]. The most
important mechanism for the formation of the BICs are the
interference phenomena, which are particularly operative in
electronic, photonic, and phononic systems at the nanoscale
[2–25]. Furthermore, the BICs have recently attracted in-
creasing attention, being experimentally observed in several
different setups, such as an optical waveguide array structure
[26,27], a nonlinear photonic system through a multiphoton
scattering mechanism [28], a patterned dielectric slab [29],
dielectric gratings and cylinders [2], electromagnetic radia-
tion [30], and an array of nanoresonators [31]. They have
also been discussed in the context of topological phases of
matter [29,32–34]. On the other hand, it was demonstrated
that sound confinement with an arbitrarily high quality fac-
tor can provide a possible realization of a Friedrich-Wintgen
quasi-BIC [14], while a close connection between Fano res-
onances and quasi-BICs was recently shown experimentally
in Ref. [15]. In addition, the BICs have generated a great
deal of attention since they provide new mechanisms to
confine radiation, crucial for fundamental and technological
applications. For example, the new lasers have been de-
signed using BICs, which may be applicable in different
contexts, such as optics, biological detection, and quantum
information [31].

In the experimental and theoretical developments men-
tioned above there are some common features, such as the
coupling between an excitation bath and a smaller subsys-

tem, that eventually lead to the formation of BICs regardless
of the system’s details. This therefore motivates the quest
for a rather simple (minimal) model featuring BICs. In this
article, we provide a possible answer to this question by
presenting a generic setup for obtaining BICs based on a
two-channel Fano-Anderson model. Various other incarna-
tions of Fano-Anderson models can also host BICs [35,36],
with the mechanisms for their realization being different from
the one we put forward here. In this model, we include both
intra- and interchannel couplings between the left and right
baths of (bosonic or fermionic) excitations, and the two-
level impurity, as also illustrated in Fig. 1. We describe the
system analytically by employing a low-energy Hamiltonian
within the Green’s function formalism and using explicitly the
equations of motion procedure. Our results show that the
quantum interference between the two levels in the impurity,
mediated through the bath degrees of freedom (e.g., optical

FIG. 1. Schematic view of the setup: a two-channel impurity
coupled to left (L) and right (R) baths of excitations (bosonic or
fermionic), each one featuring two degrees of freedom labeled by
1 and 2. The baths could be realized, for instance, as optical fibers
or metallic leads, depending on the nature of the system considered.
The parameter V (blue dashed line) denotes the intrachannel cou-
pling while the parameter W (red dotted line) corresponds to the
interchannel coupling.
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FIG. 2. Transmission coefficient T as function of energy ε for
different values of the interchannel coupling λ, as given by Eq. (11).
(a) λ = 0.0; (b) λ = 0.5; (c) λ = 0.8; and (d) λ = 0.99 (solid black
line), λ = 1.0 (dashed red line). Notice that the maximum value
of the transmission coefficient is equal to 2 since two transmission
channels are considered.

fiber modes or conduction electrons), produce a state strongly
coupled to the baths and another one that is, in contrast,
weakly coupled to them. Most importantly, in the limiting
case, when the inter- and intrachannel couplings are equal,
a true BIC is formed at the impurity that, as it turns out, cor-
responds to the antisymmetric impurity state. This manifests
in the sharp peaks in the transmission coefficient (Figs. 2 and
3) and the density of states (Figs. 4 and 5). In general, when
the two channels feature different energies and are coupled, an
antiresonance is obtained due to the destructive interference,
as shown in Figs. 6 and 7. We also analyze the time evolution
of the impurity states using different initial conditions, as
shown in Fig. 8. Finally, we briefly discuss the possible re-
alizations and the relevance of the BICs featured in the model
in photonic and electronic systems.

The rest of the paper is organized as follows. In Sec. II
we describe the model and outline the method employed.
The results are presented in Sec. III. Final remarks are
given in Sec. IV. Some technical details are relegated to the
Appendix.

FIG. 3. Map of transmission coefficient T as function of the
energy ε and the parameter λ, which is given by Eq. (11). The
section represented by the cyan dashed horizontal line for λ = 0.5
(λ = 0.8) corresponds to the plot in Fig. 2(b) [Fig. 2(c)].

II. MODEL AND METHOD

The system is described through a two-channel
Fano-Anderson model, as shown schematically in Fig. 1.
The corresponding low-energy Hamiltonian takes the form

H = Himp + HB + Himp-B + HR. (1)

Here, the impurity Hamiltonian is given by

Himp =
∑

ν

ενd†
ν dν, (2)

where d†
ν (dν ) is a creation (annihilation) operator correspond-

ing to the level ν with energy εν (ν = 1, 2). The Hamiltonian
of the bath degrees of freedom, HB, is given by

HB =
∑
k,ν,α

εk,ν,αc†
k,ν,αck,ν,α, (3)

where c†
k,ν,α (ck,ν,α ) creates (annihilates) a particle with mo-

mentum k and energy εk,ν,α in the bath α = L, R. The terms
Himp-B and HR describe the couplings between the impurity
levels and the bath quasiparticles, and explicitly read

Himp-B =
∑
k,ν,α

(V ∗c†
k,ν,αdν + V d†

ν ck,ν,α ), (4)

HR =
∑

k,ν,ν ′,α

[W d†
ν ′ck,ν,α + W ∗c†

k,ν,αdν ′ ]σ x
νν ′ , (5)

where V and W are the couplings between the ν channel of the
bath α with the impurity channel ν and ν ′( �= ν), respectively.

We employ the standard Green’s function (GF) formalism
to address the transport properties of the system. The ele-
ments of the retarded GF, Gr , obtained from the corresponding
equation of motions, are given in the time domain by

Gr
i, j (t ) = − i

h̄
�(t )〈[di(t ), d†

j (0)]+(−)〉, (6)

where [. . . , . . . ]+(−) denotes the anticommutator
(commutator).
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FIG. 4. Density of states ρ as function of energy ε, as given by
Eq. (12). (a) λ = 0.0; (b) λ = 0.5; (c) λ = 0.8; and (d) λ = 1.0. In
all panels, the gray dotted lines represent the value πγρ = 2.

We focus on the transmission coefficient (T ) across the sec-
tions and the impurity density of states (ρ). In terms of the
GFs, these can be, respectively, expressed as

T (ε) = Tr{Ga(ε)�RGr (ε)�L} (7)

and

ρ(ε) = − 1

π
Tr{Im[Gr (ε)]}, (8)

where Ga(ε) = [Gr (ε)]† is the advanced GF and �α is the
energy-independent matrix coupling between the bath α and
the impurity. Note that Eqs. (7) and (8) contain the retarded
GF in energy domain. The explicit form of the GF matrix
elements is given in the Appendix, Eqs. (A2)–(A4).

Throughout this paper we use the wide-band approxima-
tion to treat the intrachannel coupling, i.e., γ = 2πρ0|V |2,
with ρ0 as the bath’s density of states. Within this framework,
we consider a coupling between the impurity and the center of
the bath’s bands that takes an approximately constant value,
leading to an energy-independent γ . In turn, this allows for a
clear analytical explanation of the mechanism leading to the
emergence of BICs and their features. We also set W = λV ,
with λ being a dimensionless parameter, and parametrize ε1 =
εd + δ/2, ε2 = εd − δ/2, and ε̃ = ε − εd , with the parameter
δ as the energy difference between the impurity channels.
Consequently, the transmission coefficient and the impurity
density of states, respectively, are expressed as

T (ε̃) = 8γ 2 4(λ2 − 1)4γ 2 + (λ2 − 1)2δ2 + 4(1 + 6λ2 + λ4)ε̃2

[4(λ2 − 1)2γ 2 + δ2]2 + 8[4γ 2(1 + 6λ2 + λ4) − δ2]ε̃2 + 16ε̃4
, (9)

ρ(ε̃) = 8(λ2 + 1)γ [4(λ2 − 1)2γ 2 + δ2 + 4ε̃2]

π{[4(λ2 − 1)2γ 2 + δ2]2 + 8[4γ 2(1 + 6λ2 + λ4) − δ2]ε̃2 + 16ε̃4} . (10)

III. RESULTS

A. Stationary states: Energy domain

First we consider the case of an impurity with a symmet-
ric spectrum by fixing ε1 = ε2 = 0, i.e., εd = δ = 0, which
implies that ε̃ = ε in this case. We also fix the energy scale
γ = 1. Figure 2 displays the transmission coefficient as a
function of the energy of the incident particle for different
values of the parameter λ. We can observe that as λ increases
the transmission coefficient evolves from the regular reso-
nance shape [Fig. 2(a)] to the superposition of both broad
and thin resonances [Figs. 2(b) and 2(c)]. This effect is due
to the quantum interference between the paths available for
the particle to cross the impurity. Interestingly, as λ → 1,
the central resonance becomes narrower, showing the broad
resonance solely when λ = 1. Furthermore, the color map
in Fig. 3 displays the profile of the transmission coefficient
in terms of energy ε and the parameter λ. According to the

above, the behavior of the transmission coefficient can be
treated analytically as the superposition of two Breit-Wigner
line shapes as

T (ε) = γ 2(λ − 1)4

ε2 + γ 2(λ − 1)4
+ γ 2(λ + 1)4

ε2 + γ 2(λ + 1)4
, (11)

where the first (second) term on the right-hand side corre-
sponds to the thin (broad) resonance. From Eq. (11) we can
directly read off the width of the broad resonance as propor-
tional to γ+ = γ (λ + 1)2, while for the thin resonance it is
proportional to γ− = γ (λ − 1)2.

The obtained profile of the transmission coefficient is a di-
rect consequence of the form of the impurity density of states
which we analyze in the following. In Fig. 4 we show it as a
function of the incident particle’s energy. For the considered
symmetric case, the shape of the zero energy state gradually
transforms to a δ-like function as λ increases, reaching a van-
ishing width when λ → 1. Hence, we can express the density
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FIG. 5. Map of the density of states ρ as a function of the energy
ε and the parameter λ, which is given by Eq. (12). The section de-
picted by the cyan dashed horizontal line for λ = 0.5 (λ = 0.8)
corresponds to the plot in Fig. 4(b) [Fig. 4(c)]. The white zone
observed at ε = 0 for λ → 1 corresponds to higher values than the
color scale used.

of states as

ρ(ε) = 1

π

[
γ−

ε2 + γ 2−
+ γ+

ε2 + γ 2+

]
. (12)

From Eq. (12), we can therefore conclude that in the limit
λ → 1, γ− → 0, the density of states reads

ρ(ε) = δ(ε) + 1

π

[
γ+

ε2 + γ 2+

]
. (13)

Thus, the zero-energy state becomes a BIC and the related
resonance in transmission is completely suppressed. This fea-
ture can be explicitly seen in Fig. 4 as the density of states
evolves from a single broad state to the superposition of both
broad and δ-like (BIC) states in the limit λ → 1. This behavior
is also displayed in the color map in Fig. 5, where the BIC
corresponds to the brightest area in the plot.

We here notice that the quasi-BIC states are always im-
printed in the transmission spectrum as a Fano profile in a
single-channel model. However, in the present two-channel
model, the quasi-BIC state is not necessarily reflected in the
transmission as a Fano line shape because of the degeneracy of
the impurity states. Thus the different virtual paths of the par-
ticle through the two levels of the impurity are equivalent to
each other. As such, the destructive interference, characteristic
of the Fano effect, does not occur in this case. However, if we
lift the degeneracy of the levels in the impurity by introducing
a parameter δ, a symmetric Fano line shape appears in the
transmission when λ = 1, as we can see in Fig. 6.

Our analysis so far concerns the case of the degenerate
impurity states, with δ = 0, and shows that the system then
behaves as two effective transmission channels, the symmetric
and the antisymmetric one, labeled by + and −, respectively.
The former supports the broad resonance, while the latter
hosts the sharp resonance. We now lift this degeneracy by
considering the energy splitting δ �= 0 [see also the discussion
before Eqs. (9) and (10) for the definition of the parameter δ],
and moreover allows for their mixing by means of a nonvan-

FIG. 6. Transmission coefficient T , given by Eq. (9), as a func-
tion of the energy ε for fixed λ = 1.0 and different values of the
parameter δ: (a) δ = 0.0, (b) δ = 0.5, (c) δ = 1.0, (d) δ = 2.0.

ishing effective coupling γ̃ . As it turns out, an anti-resonance
then arises due to the destructive interference phenomena, as
shown in Fig. 6. In contrast, for fixed δ = 0 and λ → 1, as we
have already seen, we find that γ̃ = 0 and γ− = 0, implying
that the antisymmetric channel is entirely decoupled and, most
importantly, a BIC emerges. These features are summarized
in Fig. 7.

B. Time-dependent analysis

We now move on to analyze the time evolution of the states
in the impurity using the time-dependent Green’s function
(TDGF). The TDGF is given by

Gr
i, j (t ) = 1

2π

∫ ∞

−∞
Gr

i, j (ε)e−iεt dε. (14)

The explicit computation of this integral is carried out in
the Appendix, and the final result reads

Gr
1,1(t ) = −i

2

[(
 + δ

2

)
e−t/τ+ +

(
 − δ

2

)
et/τ−

]
,

Gr
2,2(t ) = −i

2

[(
 − δ

2

)
e−t/τ+ +

(
 + δ

2

)
et/τ−

]
,

Gr
1,2(t ) = Gr

2,1(t ) = −γ λe−tγ (1+λ2 )


(e−it − eit). (15)
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FIG. 7. Schematic representation of the symmetric (+) and anti-
symmetric (−) channels: (a) the generic case; (b) the limiting case for
δ = 0 and λ → 1; (c) the shape of the resonances in the symmetric
and antisymmetric channels.

Here,  =
√

δ2/4 − 4γ 2λ2, and we have defined

1

τ±
= γ (1 + λ2) ∓ i. (16)

If we denote the initial state by |ψ (0)〉, then the time evolution
of the state will be given by

|ψ (t )〉 = Ĝr (t ) |ψ (0)〉 , (17)

where Ĝr (t ) is the retarded GF in time domain. We here use
| j, ν〉 as a basis, where | j = 0, ν〉 is the state in the impurity
in the ν level. Projecting the state onto the subspace spanned
by |0, μ〉 and inserting a complete set, we obtain the wave
function of the impurity state corresponding to the level εμ

(μ = 1, 2),

ψ
μ
0 (t ) =

∑
j,ν

Gr
μ,ν (t, 0, j) 〈 j, ν|ψ (0)〉 , (18)

where ψ
μ
0 (t ) = 〈0, μ|ψ (t )〉, Gr

μ,ν (t, 0, j) ≡ 〈0, μ| Ĝr (t )
| j, ν〉, and Gr

μ,ν (t, 0, 0) ≡ Gr
μ,ν (t ) are the functions given in

Eq. (15). The probability of finding the particle in the level
εμ of the impurity is Pμ = |ψμ

0 (t )|2. Figure 8 displays the
probability Pμ for fixed δ = 0 and for the following initial
conditions: ψ1

0 (0) = 1 and ψ2
0 (0) = 0, i.e., the state 1 is fully

occupied and 2 is empty. In Fig. 8(a), we can clearly observe
that the time evolution of the probability is governed by two
characteristic times:

τ± = τ0

(1 ± λ)2
, (19)

with the timescale τ0 = h̄/γ . Here, τ+(−) corresponds to the
lifetime of the symmetric (antisymmectric) resonance dis-
played in Fig. 7. In the limit λ → 1, we find that τ+ = τ0/4
and τ− → ∞. In this case, the BIC is formed in the anti-
symmetric state, and the probability first decreases quickly,
while for t > τ0/2 tends to 1/4. The latter is expected based
on the value of the total probability being one half and the
fact that a half of it leaks through the symmetric state. In
contrast, the remaining half of the total probability, which

FIG. 8. Probability function to find the particle in the level (a) ε1

or (b) ε2 of the impurity given that in t = 0 the particle is in ε1.
In both panels δ = 0, and the probability function is obtained from
Eq. (18), together with Eq. (15). The green dashed and yellow
dashed-dotted lines represent the values of τ+ and τ− as a function of
λ, respectively.

corresponds to the antisymmetric state, is trapped at the im-
purity and is distributed evenly over the two available states 1
and 2. As the parameter λ decreases, the antisymmetric state
then couples to the continuum of the states, and the proba-
bility decreases with time. In contrast, for λ = 0, we obtain
τ+ = τ− = τ0. In fact, as we can see, for t > τ0 and λ = 0 the
probability almost vanishes. For intermediate values of λ, for
instance λ = 1/2, we find that τ+ = 4τ0/9 and τ− = 4τ0. On
the other hand, the probability of finding the particle in the
state 2, presented in Fig. 8(b), remains low (<0.05) for rather
small values of the coupling λ, such as λ < 0.2. However, as
the value of this parameter increases, the probability increases
and tends to 1/4 in the limit λ → 1. Note that the sum of prob-
abilities 1 and 2 tends to 1/2 as λ → 1, which corresponds to
the probability for the occupation of the antisymmetric state.
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In fact, the above behavior of the probabilities can be
analytically captured by the following expressions:

P1 = 1
4 [e−t/τ+ + e−t/τ− ]2,

P2 = 1
4 [e−t/τ+ − e−t/τ− ]2, (20)

which are obtained using Eqs. (15) and (18). The total proba-
bility for finding the particle at the impurity is then given by

P = P1 + P2 = 1
2 [e−2t/τ+ + e−2t/τ− ]. (21)

These expressions show an exponential decay of the proba-
bilities in the generic electronic or photonic model that we
consider. We note that a nonexponential decay of a BIC was
reported in a linear semi-infinite chain coupled to an impurity
[37], which arises due to a peculiar dependence of the surface
Green’s function on the energy, the form of the impurity-chain
coupling, and the initial condition involving the occupation of
a state orthogonal to the BIC.

Finally, we briefly discuss the possible physical realiza-
tions of the generic model given by the Hamiltonian in Eq. (1).
In the electronic case, the model setup can be applied to the
system consisting of a single quantum dot (e.g., made of InAs)
coupled with leads, with a direct diagonal coupling in spin and
another one that flips the spin (W ), which can be understood as
a Rashba spin-orbit coupling. Besides, in quantum dots, where
the Coulomb interaction can be significant, it is expected that
the BICs may be pushed to higher energies. On the other hand,
in the context of photonic systems, our model setup can be
applied to the propagating photons in two waveguides that
can be mixed, for instance, in a scattering region made of a
whispering gallery resonator (WGR) [38].

IV. SUMMARY

In this work, we investigated the formation of BICs by us-
ing a two-channel Fano-Anderson Hamiltonian. To resolve the
problem, we employed both the Green’s function formalism
and the method based on the equations of motion. We calcu-
lated the transmission and density of states as a function of the
energy for different parameters of the system, and an analysis
in the time domain was performed. Our results show that if
the impurity levels are degenerate and form the symmetric
configuration, the system supports BICs. In the BIC regime,
a complete transmission channel is fully suppressed. Further-
more, the time-dependent evolution of the density of states
show that it is characterized by two characteristic lifetime
scales, one of which is associated with the quasi-BIC state.
Finally, we discuss the physical realizations of this model in
the electronic and photonic platforms.
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FIG. 9. Integration contour in the ε-complex plane used to com-
pute the integral in Eq. (A1).

APPENDIX: TIME-DEPENDENT GREEN’S FUNCTION:
INTEGRAL IN EQ. (14)

In this Appendix we show the steps used to com-
pute the integral in Eq. (14), which we here rewrite for
completeness:

Gr
i, j (t ) = 1

2π

∫ ∞

−∞
Gr

i, j (ε)e−iεt dε, (A1)

where the matrix elements of the GF read explicitly as

Gr
1,1(ε) = ε − ε2 + iγ (1 + λ2)

K (ε)
, (A2)

Gr
2,2(ε) = ε − ε2 + iγ (1 + λ2)

K (ε)
, (A3)

Gr
1,2(ε) = Gr

2,1(ε) = −2iγ h

K (ε)
. (A4)

We here defined the function

K (ε) = [ε − ε1 + iγ (1 + λ2)][ε − ε2 + iγ (1 + λ2)]

+ 4γ 2λ2. (A5)

We use the Cauchy residue theorem with the contour dis-
played in Fig. 9. The two poles lying on the imaginary axis
are enclosed by the red dashed line contour oriented in the
anticlockwise direction. The poles of both GFs in the energy
domain, Gr

1,1(ε) and Gr
2,2(ε), given in Eqs. (A2) and (A3),

in the ε-complex plane can be found from the function K (ε)
given by Eq. (A5), and using that ε1,2 = ±δ/2 in the case of
the two impurity states symmetrically split about zero energy:

[ε − δ/2 + iγ (1 + λ2)][ε + δ/2 + iγ (1 + λ2)] + 4γ 2h2 = 0.

(A6)

Consequently, this quadratic equation gives the form of the
poles

ε± = −iγ (1 + λ2) ∓
√

δ2/4 − 4γ 2λ2. (A7)

As it turns out, they are always located under the real axis (re-
gardless of the sign of the expression under the square root),
which is a necessary condition for Gr

i,i(ε) to be a retarded GF.
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For t > 0, the integration must be carried out in the lower
half-plane (see Fig. 9). Then the summation of the residues

at the poles given above yields the result shown in Eq. (15) in
the main text, for the symmetric case with δ = 0.
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