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We investigate the thermodynamic limit of Dicke superradiance. We find an expression for the system’s density
matrix that we can prove is exact in the limit of large atom numbers N . This is in contrast to previously known
solutions whose accuracy has only been established numerically and that are valid only for a range of times.
We also introduce an asymptotically exact solution when the system is subject to additional incoherent decay of
excitations as this is a common occurrence in experiments.
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I. INTRODUCTION

Superradiance was introduced by Dicke in 1954 [1]. In a
simple model of all-to-all coupled emitters, he showed that
during their decay process, quantum coherence is established
spontaneously and leads to a superradiant burst of photons
in which the maximum decay rate scales as the square of
the number of atoms, �max ∼ γ0N2/4, where γ0 is the decay
rate of an individual atom. Superradiance can be construed
as synchronization of many emitters [2], akin to the onset of
lasing. Moreover, since quantum effects are typically difficult
to observe in large ensembles of atoms, Dicke’s observation
stirred a lot of interest in the 1970s [3–9], as reviewed by
Gross and Haroche [10]. Superradiance was observed exper-
imentally, also in the 1970s [11–14]. A closely related, but
different phenomenon is the Dicke phase transition [15,16],
which we will not consider here.

Recent experimental advances to produce arrays of quan-
tum emitters in optical lattices [17–20] have led to a revival
in interest in their radiation properties [21–33]. This is also
motivated by technological applications of superradiance (and
subradiance) as a way to improve light-matter interfaces,
which play a central role in many quantum technology plat-
forms [34–36]. Several experiments have probed the radiance
in the linear regime [37–43]. Another possibility is raised by
the emergence of waveguide QED [44–47], where quantum
emitters are coupled to one-dimensional optical fields, with
diverse implementations ranging from cold atoms near waveg-
uides [48–52], quantum dots [53,54], or nitrogen-vacancy
centers [55–57]. Strong confinement of light in the waveguide
allows for substantial cooperativities (ratio of waveguide to
free-space decay rates). In the absence of propagation losses,
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the one-dimensional nature of the light field gives rise to
effectively infinite-range dissipative interactions. Moreover,
if the atoms are spaced by the wavelength of their dipole
transition λ (the “atomic-mirror configuration”), their dynam-
ics is described by the original Dicke model. Superradiance
has also been explored for technological applications such as
low-linewidth lasers [58,59], metrology [60], or sensing [61].

In light of these developments, we revisit the theory of
superradiance. Approximate solutions have been derived in a
number of different ways [5–10], but ultimately they all rely
on a continuum limit in which the magnetization can take non-
integer values. This elegant description is, however, incorrect
at short and long times. Additionally, it sensitively depends on
a chosen initial distribution, and thus needs a rigorous justifi-
cation. Since Dicke superradiance is a fundamental model of
quantum optics, it is remarkable that no solution exact in the
limit N → ∞ has been derived so far.

The main contribution of the present work is an explicit
formula for the density matrix as a function of time, alongside
a proof that it is asymptotically exact as N becomes large. In
contrast to previous work, our solution works for all times.
In a second contribution, motivated by experimental realities,
we derive the solution in the presence of incoherent loss (for
example, through decay into free space rather than guided
modes) and show that it is exact as N → ∞.

II. SETUP

We consider the quantum master equation of N two-level
systems (“atoms” or “emitters”) with states |0〉, |1〉 that are
subject to both collective and incoherent decay,

ρ̇(t ) = D[S−]ρ(t ) + γ

N∑
n=1

D[σ−
n ]ρ(t ), (1)

where σ−
n = |0〉n〈1|, S− = ∑

m σ−
m , and D[a]ρ = aρa† −

(1/2)(a†aρ + ρa†a). Note that we have omitted the transition
frequency of the atoms from the description, as it does not
affect the decay dynamics. In Eq. (1), the dimensionless pa-
rameter γ controls the ratio of incoherent to collective decay.
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For γ = 0, the model originally studied by Dicke is recovered
(to be distinguished from the “Dicke model” introduced by
Hepp and Lieb [15]).

Any permutation of the atoms is a symmetry of Eq. (1).
Thus, a permutation-invariant initial state remains so, i.e.,
ρ(t ) = �s[ρ(t )], where � is the permutation operator and
s is any permutation of the atoms. Defining the z compo-
nent of the collective angular momentum Sz = ∑

n σ z
n and

S2 = S+S− + (Sz )2, we can label collective states of N spin-
1/2 particles according to their total angular momentum j
and its z component, m. The Hilbert space of N two-level
systems is then spanned by states {| j, m, α〉}, which obey
S2| j, m, α〉 = j( j + 1)| j, m, α〉 and Sz| j, m, α〉 = m| j, m, α〉,
where 0 � α < d j is an integer accounting for their multiplic-
ity, d j = N!(2 j + 1)/[(N/2 − j)!(N/2 + j + 1)!].

We would like to solve Eq. (1) when the system is initial-
ized in the (permutation-invariant) state corresponding to fully
excited atoms, ρ(0) = |1 · · · 1〉〈1 · · · 1|.

A. Dicke model

The original Dicke model is obtained by setting γ = 0
[1], and we call this situation “pure superradiance.” In this
case, the system explores only the Dicke states with maximum
total spin |n〉 = |N/2,−N/2 + n〉, where n ∈ {0, 1, . . . , N}.
The density matrix of the system is diagonal at all times,
ρ(τ ) = ∑

n Pn(τ )|n〉〈n|, and thus Eq. (1) reduces to a rate
equation,

∂τ Pn(τ ) = −γnPn(τ ) + γn+1Pn+1(τ ). (2)

Here, for convenience, we rescaled time τ = Nt and defined

γn = n(N − n + 1)/N. (3)

The most salient feature of this model is the superradiant
burst that occurs at τ ≈ ln N during which most excitations
are emitted at a rate that scales with N2.

B. Dicke model with incoherent decay

Free-space decay competes with superradiance, as it re-
duces the coherence of the ensemble and allows the system
to explore states with lower total spin. For convenience, we
label these states by their number of “dark” excitations, r =
N/2 − j, which measures by how much the total spin has
been reduced, and the number of collective excitations, n =
N/2 − 2r + m, that can be removed from the state before it
reaches the bottom of the Dicke ladder. In terms of n and r,
the relevant states are projectors into the space of well-defined
n and r,

Pn,r = 1

dr

dr−1∑
α=0

∣∣∣∣N

2
− r, r + n − N

2
, α

〉〈
N

2
− r, r+n − N

2
, α

∣∣∣∣,
(4)

where, in terms of r, the multiplicity reads dr = N!(N − 2r +
1)/[r!(N − r + 1)!]. As before, Eq. (1) reduces to a rate equa-
tion transitioning between these states, and the solution is a
mixture ρ(τ ) = ∑

n,r Pn,r (τ )Pn,r [62], where the probabilities

Pn,r obey

∂τPn,r = −�(1)
n,rPn,r + �

(2)
n+1,rPn+1,r + �

(3)
n+2,r−1Pn+2,r−1

+�
(4)
n,r+1Pn,r+1, (5)

and the rates are given through [63]

�(1)
n,r = n

N
(N − 2r − n + 1) + γ

N
(n + r), (6a)

�(2)
n,r = n

N
(N − 2r − n + 1)

+ γ

N

n(N + 2)(N − 2r − n + 1)

(N − 2r)(N − 2r + 2)
, (6b)

�(3)
n,r = γ

N

n(n − 1)(N − 2r + r + 1)

(N − 2r)(N − 2r + 1)
, (6c)

�(4)
n,r = γ

N

(N − 2r − n + 1)(N − 2r − n + 2)r

(N − 2r + 2)(N − 2r + 1)
. (6d)

Here and in the following, we distinguish distributions in n, r
by using calligraphic font.

Note that collective decay (terms without γ ) cannot change
the total spin j (or r either) and its rate is reduced by the
presence of dark excitations r. All other terms, proportional
to γ , are due to incoherent loss, which can either reduce r
(�(4)), increase r (�(3)), or leave it unchanged (�(2)).

C. Previous work

Several approaches have been used to describe pure Dicke
superradiance. In principle, one can write an exact iterative
solution [64], but it cannot be summed up in closed form to
yield a formula for the magnetization for general N . Approx-
imate solutions for Pn(t ) were derived in different ways by
Degiorgio [5], Degiorgio and Ghielmetti [6], and Haake and
Glauber [7]. All these solutions are equivalent and read

P̄n(τ ) = N2

n2
exp [−τ − e−τ N (N − n + λ)/n], (7)

with λ = 1. Gross and Haroche later provided another deriva-
tion, but quote P̄ with λ = 0 [10]. The choice of λ has little
effect and, in the following, we take λ = 0. All approaches
rely on the continuum limit of Eq. (2) (dropping the 1 in γn to
be consistent with the choice λ = 0),

∂τ P̄n(τ ) = ∂n[n(N − n)P̄n(τ )]/N, (8)

where n is interpreted as a continuous variable n ∈ [0, N].
From Eq. (7), Degiorgio calculated the average magnetiza-
tion μ(τ ) = 1/2 + 〈Sz〉/N and radiance ρ(τ ) = 〈S+S−〉/N2

as functions of time,

μ(τ ) = zezH (z), ρ(τ ) = z(τ ) − [1 + z(τ )]μ(z(τ )), (9a)

H (z) =
∫ ∞

z
[yey]−1dy, z = Ne−τ , (9b)

which predict the maximum average radiance maxτ 〈S+S−〉 =
0.196N2/4 at τmax = ln N + 0.330 [65]. To arrive at Eq. (7),
an initial distribution was chosen by requiring that the initial
radiance distribution follow a Bose-Einstein distribution [5].
Other authors arrive at the same conclusion by matching it
to the corresponding Wigner distribution [7] or to predictions
from the master equation [6,27]. However, the approximation
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through the continuum equation (8) is not valid at short times
and its results have not rigorously been shown to be correct
[66]. As a result, the distribution given by Eq. (7) is incorrect
at short times. While the magnetization given by Eq. (9a)
agrees well with the numerics at finite N , to our knowledge
it has not rigorously been shown that it is valid in the limit
N → ∞, not even at sufficiently long times.

The case of γ 	= 0 has received considerably less attention.
The competition between collective and incoherent decay has
been studied in some detail [67] and a stochastic unravelling
was used to efficiently simulate the system [68], but a com-
plete theory is missing. We note that in the context of the
Dicke phase transition in cavity QED, a number of works have
found a nontrivial interplay between dephasing, incoherent
loss, and collective coupling [69–71].

D. Our contribution

Our first contribution is to derive a solution for pure super-
radiance that we rigorously prove to be correct in the large-N
limit for all times (Theorem 1). This is in contrast to the
previously established solution, given by Eq. (7), which, as
we show, is asymptotically exact only for intermediate times.
Specifically, we show that the one-norm of the difference
between the exact probability vector P∗ and the literature
solution P̄ obeys

lim
N→∞

||P̄(τ ) − P∗(τ )||1 	= 0, τ const, (10)

but

lim
N→∞

||P̄(α ln N ) − P∗(α ln N )||1 = 0, 0 < α < 2. (11)

For α > 2, ||P̄||1 < Nα−2π2/6 → 0 as N → ∞, which im-
plies ||P̄ − P∗|| → 1. Equation 10 follows from the fact that
for constant times, the normalization of P̄ tends to ||P̄||1 →
exp(−τ − λe−τ )/[1 − exp(−e−τ )] 	= 1 (Lemma 2). Since the
exact solution P∗ is normalized, the reverse triangle identity
gives Eq. (10).

Our second contribution is to extend our analysis to γ 	= 0,
where we again provide a solution that is valid for all times
(Theorem 2).

III. LARGE-N LIMIT OF PURE SUPERRADIANCE

Our goal is to find an asymptotically exact solution Rn

in the sense that the one-norm of the difference to the exact
solution P∗ vanishes as N → ∞, like in Eq. (11), but we
require that the solution works for all times. We can prove
that this is fulfilled by R given through

Rn(τ ) =
{

R<
n (τ ), τ � τ1

R>
n (τ ), τ > τ1,

(12)

where τ1 = (1 + δ1) ln N with δ1 = 2/5, and

R<
n (τ ) =

(
N

n

)2

e−τ (1 − e−τ )N (N/n−1), (13a)

R>
n (τ ) =

N∑
m=n

(
m

n

)
e−m(τ−τ1 )(eτ−τ1 − 1)m−nR<

m (τ1). (13b)

There is a slight subtlety since the time the superradiant burst
occurs depends on N , and thus it is not sufficient to prove that
the solution converges at a constant time. Instead, we allow
for general sequences of times that may depend on N .

Theorem 1. Superradiant decay from all-inverted state. For
any sequence of times {τn > 0 : n ∈ N},

lim
N→∞

||P∗(τN ) − R(τN )||1 = 0. (14)

We only sketch the proof here; the full version can be found
in Appendix A. We separately consider short times (up to τ0 =
δ0 ln N , with 0 < δ0 < 1), intermediate times (between τ0 and
τ1 = (1 + δ1) ln N , with 0 < δ1 < 1), and late times (τ > τ1).

At short times, we replace γn → γ 0
n = N − n + 1 in

Eq. (2), which is valid since the probability distribution is
expected to have support only for N − n � N . The resulting
equation is solved by

Qn(τ ) = e−τ (1 − e−τ )N−n
, Qn(0) = δn,N . (15)

Using this solution, we show that the error due to the sub-
stitution γn → γ 0

n vanishes as N → ∞ as long as we only
consider times up to τ0 = δ0 ln N with 0 < δ0 < 1. We then
use Q(τ0) as the initial condition for Eq. (8) and thus obtain
a solution up to τ1. Since Qn(τ0) is sufficiently smooth in n,
we can show that the error incurred by using the continuum
approximation vanishes as N → ∞. A further approximation
of the result yields R< [Eq. (13a)]. For late times, we again
linearize the equations of motion, γn → γ 1

n = n, which is
valid as the probability distribution is expected to concentrate
around n ≈ 0. This yields the solution R> in Eq. (13b). We
can bound the error to show that ||R> − P∗||1 → 0.

A few comments are in order about the solution we pro-
vide. First, for any finite N , R neither exactly fulfills the
equation of motion given by Eq. (2), nor the continuum
equation given by Eq. (8), and its derivative is discontinu-
ous at τ1, although R itself is continuous. Nevertheless, R
describes the correct distribution at all times. Second, as part
of our proof, we show that ||P∗(τ ) − P̄(τ )||1 → 0 as N → ∞,
which proves that the solution found in the literature also con-
verges to the right solution, but only for intermediate times.
Third, a remaining question is whether the magnetization and
radiance (9a) are accurate, since they are calculated by inte-
grating the continuum distribution rather than summing the
(true) discrete distribution. With the following corollary, we
show that both formulas are nevertheless asymptotically exact
for all times.

Corollary 1. Magnetization and radiance. The magnetiza-
tion and radiance (9a) predicted in the continuum limit are
asymptotically correct for any sequence of times {τn > 0 : n ∈
N},

lim
N→∞

μexact (τN ) − μ(τN ) → 0, (16a)

lim
N→∞

ρexact (τN ) − ρ(τN ) → 0. (16b)

One might wonder whether a universal form for the magneti-
zation and radiance can be found that is independent of N and
thus holds in the large-N limit. We can obtain such a form by
using the continuum limit of Eq. (7). Performing a change of
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Time τ/ln(N)

FIG. 1. (a) Magnetization μ (upper blue solid line) and radi-
ance ρ (lower green solid line) as defined in Eq. (18), together
with numerical data for N = 5, 20, 1000 (light to dark) showing
quick convergence. The largest radiance is ρ ≈ 0.196 at T ≈ 1.391,
marked with a red dot. (b) Numerical evaluation of the one-norm
error, given by Eq. (14), which vanishes as N → ∞ by Theorem 1.
The dashed line marks τ1 = 1.6 ln N .

variables to T = eτ /N , we obtain

p(x, T ) = 1

N

1

T x2
exp

(
1 − 1/x

T

)
. (17)

Apart from the normalization 1/N , this expression is inde-
pendent of N . The corresponding magnetization μ = 1/2 +
〈Sz〉/N and radiance ρ = 〈S+S−〉/N2 [plotted in Fig. 1(a)]
read

μ(T ) = e1/T

T
H (1/T ), ρ(T ) = 1

T
− e1/T

T 2
(1 + T )H (1/T ).

(18)
Note that Eqs. (17) and (18) are identical to Eqs. (7) and
(9a) up to the change of variables, but we find it more con-
venient to analyze the behavior at N → ∞ in this form as
they are independent of atom number N , having absorbed
all dependence on N into T . Note that the time variable
T (t ) = exp(Nt )/N starts at T (0) = 1/N and exponentially
quickly moves to infinity. The superradiant pulse occurs close
to T = 1 and, as is evident from Eq. (18), its height scales
with N2. We can determine the maximum radiance numer-
ically and find it is ρ ≈ 0.196 at T ≈ 1.39, at which point
μ ≈ 0.532. In normal units, the time of maximum radiance
is tpulse = ln(N )/N + 0.330/N . At t = 0, we have T = 1/N ,
at which point μ(1/N ) ≈ 1 − 1/N . Thus, the starting point of
the dynamics corresponds to the time at which, on average,
one photon has decayed. Another result from the above anal-
ysis is that in the original time t , the magnetization tends to a
step function μ(t ) → 
[ln(N )/N − tpulse].

IV. SUPERRADIANCE IN THE PRESENCE
OF INCOHERENT LOSS

Since incoherent loss competes with superradiance and
is virtually unavoidable in realistic settings, an important
question is whether it may preclude superradiance in certain
regimes. We answer this question in two parts. First, we derive
the exact solution as N → ∞, which shows that in the large-
N limit, superradiance always persists (Sec. IV A). Second,
the question then arises whether there is a critical emitter
number that is needed to observe superradiance. This is of

experimental relevance particularly in systems in which γ ,
the ratio of free-space decay to waveguide decay, is large.
We answer this by calculating the threshold emitter number N
above which signatures of superradiance emerge as a function
of γ (Sec. IV B). Finally, we also compute how many photons
decay into free space, on average (Sec. IV C).

A. Asymptotically exact solution

The asymptotically exact solution R(τ ) that converges to
the exact solution P∗ of Eq. (5) at all times is given by

Rn,r (τ ) =
{
R<

n,r (τ ), τ � τ1,

R>
n,r (τ ), τ > τ1,

(19)

where τ1 = (1 + δ1) ln N with δ1 = 2/5, and

R<
n,r (τ ) = Rn+2r (τ )Fr (Tn(τ )), (20a)

R>
n,r (τ ) =

N/2∑
r′=r

(
r′

r

)
e−γ r′(τ−τ1 )/N (eγ (τ−τ1 )/N − 1)r′−r

×
N−2r′∑
n′=n

(
n′

n

)
e−n′(τ−τ1 )(eτ−τ1 − 1)n′−nRn′r′ (τ1),

(20b)

where F is a Poissonian distribution,

Fr (τ ) = e−γ τ (γ τ )r

r!
, (21)

and

Tn(τ ) = τ + n

N
− n

n + e−τ (N − n)
+ ln

[
n + e−τ (N − n)

N

]
.

(22)

We are interested in the one-norm of the difference of
R and the exact solution P∗ and again allow for arbitrary
sequences of times.

Theorem 2. Superradiance with incoherent loss. For any
sequence of times {τn > 0 : n ∈ N},

lim
N→∞

||P∗(τN ) − R(τN )||1 = 0. (23)

The proof closely follows the structure of Theorem 1 and
can be found in Appendix B 2. To unpack this result, we
highlight a few important properties of superradiance in the
presence of incoherent loss below.

B. Qualitative behavior at large N and threshold

At large atom numbers N , the average magnetization and
radiance are given by Eq. (9a) up to subleading errors. While
correct, this description misses the fact that some excitations
are transferred into states that do not decay collectively. The
population of such dark (or subradiant) excitations grows
linearly at a rate γ until the superradiant burst, such that
an average of γ ln N dark excitations are produced. Since
they can only decay incoherently, they dominate the late time
behavior with a slow decay at a rate γ /N .

The result that magnetization and radiance behave as in
pure superradiance does not necessarily apply to finite N and,
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in fact, there is a threshold N below which superradiance dis-
appears. One necessary requirement for superradiance is that
the maximum radiance occurs at t > 0. We thus can calculate
the threshold above which this is the case directly from the
quantum master equation (1) by evaluating d2〈μ〉

dt2 |t=0 =
γ 2/2 + γ − N/2 + 1, which implies Nthreshold = γ 2 +
2γ + 2.

C. Number of incoherently decayed photons

Since it is clear that superradiance persists in the limit
N → ∞, we compute the number of photons lost incoherently
during the whole process, Nloss, based on the assumption
that the system undergoes pure superradiant decay, which
becomes exact as N → ∞. Since the incoherent loss occurs
at a rate equal to γ times the number of excitations in the
system, we integrate the solution given by Eq. (18) to obtain

Nloss = γ [γE + ln N + eN H (N )] 
 γ (γE + ln N ), (24)

where γE 
 0.577 is Euler’s constant, and the approxima-
tion becomes very good for N > 10. Note that Sec. III also
applies to Eq. (24) as it is just the integral over μ(τ ). The
leading-order behavior Nloss = γ ln N , valid when ln N �
1 � Nloss/N , can be obtained from the simple observation that
the superradiant burst occurs at t 
 ln N/N and that the emit-
ters are mostly excited before and mostly in the ground state
after. The fact that Nloss ≈ γ ln N implies that as N → ∞,
the fraction of atoms that decay incoherently is vanishingly
small. This is ultimately the reason why in the large-N limit,
the predictions from pure superradiance for magnetization and
radiance also hold in the presence of incoherent loss.

V. OUTLOOK

Our work improves previous solutions to Dicke superra-
diance and puts them on a rigorous footing. There are a
number of other experimentally relevant effects that should
be considered in future work, some of which may fundamen-
tally change the behavior at large N . Typical effects include
disorder in the decay rates of atoms into the collective mode,
inhomogeneous broadening, finite temperature, and, specifi-
cally in the case of waveguide QED, spatial disorder. All of
these distinguish the atoms and therefore make a straightfor-
ward extension of the theory presented here difficult. While
inhomogeneous broadening becomes negligible at large N , it
is not clear at present how the other contributions would affect
our solution.
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APPENDIX A: PROOF OF THEOREM 1

We prove Theorem 1 in a series of lemmas following the
outline given in the main text (see Appendix A 3). First we
establish some definitions and auxiliary results.

1. Definitions

Definition 1. Exact solution P∗. We denote the exact so-
lution by P∗(τ ) = [P∗

0 (τ ), . . . , P∗
N (τ )]. It obeys the equation

∂τ P∗
n (τ ) = −γnP∗

n (τ ) + γn+1P∗
n+1(τ ), (2, restated)

with γn = n(N − n + 1)/N , which can equivalently be written
as the matrix equation

∂τ P∗(τ ) = �P∗(τ ). (A1)

Definition 2. Early solution Q. We denote the solution at
early times by Q(τ ) = [Q0(τ ), . . . , QN (τ )], with components

Qn(τ ) = e−τ (1 − e−τ )N−n
. (15, restated)

Q obeys the equation

Q̇n(τ ) = −γ 0
n Qn(τ ) + γ 0

n+1Qn+1(τ ), (A2)

with γ 0
n = N − n + 1, which can equivalently be written as

the matrix equation

∂τ Q(τ ) = �0Q(τ ). (A3)

Definition 3. Continuum solution P̄. We denote the contin-
uum solution by P̄(τ ) with components

P̄n(τ ) = N2

n2
exp

[
− τ − e−τ N

(
N

n
− 1

)]
, (7, restated)

which, for continuous n ∈ (0, N ), obeys

∂τ P̄n(τ ) = ∂n[n(N − n)P̄n(τ )]/N. (8, restated)

We take P̄ to denote the vector formed by taking integer n,
P̄ = (P̄0, . . . , P̄N ).

Note that Definition 3 is the solution found in the literature.
Definition 4. Our solution R. We use R< = (R<

0 , . . . , R<
N )

to denote our solution,

R<
n (τ ) =

(
N

n

)2

e−τ (1 − e−τ )(N−n)N/n, R<
0 (τ ) = 0.

(12, restated)
A choice of parameters consistent with all constraints is

δ0 = 3/4, τ0 = δ0 ln N, (A4a)

δ1 = 2/5, τ1 = (1 + δ1) ln N, (A4b)

μ = 4/5. (A4c)

2. Additional lemmas

To bound the differences between the various probability
vectors, we need a few additional results. In the following,
|| · || always denotes the one-norm.

First we show that in the limit N → ∞, the probability
mass of the distributions Q(τ ) and R(τ ) in the interval from
n = 0 to N − Nμ vanishes faster than any polynomial of N .
We will use this on many occasions to restrict the range of
sums over n.
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Lemma 1. Vanishing probability mass. If τ < τ0 = δ0 ln N and μ > δ0,

lim
N→∞

N−Nμ∑
n=0

NkQn(τ ) = lim
N→∞

N−Nμ∑
n=0

NkRn(τ ) = 0. (A5)

Proof.

N−Nμ∑
n=0

NkQn(τ ) < Nk (N − Nμ) max
τ∈[0,τ0]

max
n∈[0,N−Nμ]

e−τ (1 − e−τ )N−n < N1+k (e−N−δ0 )Nμ → 0.

To get to the second line, we use that the maximum is obtained at n = N − Nμ and we bound e−τ � 1 and 1 − e−τ � 1 − e−τ0 .
Similarly,

N−Nμ∑
n=0

NkRn(τ ) < (N − Nμ)N2+k max
τ∈[0,τ0]

max
n∈[0,N−Nμ]

e−τ (1 − e−τ )N (N/n−1) < N3+k (e−N−δ0 )Nμ → 0.

�

Lemma 2. Normalization of P̄. For constant times τ , the normalization of P̄ obeys

lim
N→∞

||P̄(τ )||1 = exp(−τ − λe−τ )

1 − exp(−e−τ )
	= 1. (A6)

Proof. We would like to evaluate ||P̄||1 = ∑N
n=0 P̄n for constant τ . First note that if n � N − Nμ for any μ > 0, we have

P̄n < (N2/n2) exp[−e−τ Nμ] → 0 and thus we can restrict attention to n > N − Nμ. We define s = N − n and evaluate

||P̄||1 =
Nμ∑
s=0

(
1 − s

N

)−2
aN[(N+λ)/(N−s)−1] = e−τ aλ[1 + O(Nμ−1)]

Nμ∑
s=0

asaO(s2/N ), (A7)

where a = exp(−e−τ ) is a constant with 0 < a < 1. In the limit N → ∞, the geometric series gives e−τ /(1 − a), which
establishes the result. �

We frequently need to bound sums over P̄ for times in the range τ ∈ [τ0, τ1], τ1 = (1 + δ1) ln N , for which we use the
following definition.

Definition 5.

Ga,b,c = N max
τ∈[τ0,τ1]

max
n

P̄n(τ )n−aNbe−cτ . (A8)

Lemma 3. Bounds on G.

Ga,b,c(τ ) =
{
O(N1+b−a−δ0 (1+c) + Nδ1(1+a−c)+b−a−c) if 1 + a − c > 0
O(N1+b−a−δ0 (1+c) + Nb−c−a) otherwise,

(A9)

where f (N ) = O(g(N )) is standard big-O notation, i.e.,
∃M, N0 > 0 such that | f (N )| � Mg(N ) for all N � N0.

Proof. First, note that we can write

Ga,b,c = max
τ

N3+be−(1+c)τ max
n

exp[−e−τ N (N/n − 1)]

n2+a
.

(A10)
Let us bound τ � ln N and τ > ln N separately. For this, we
define

G<
a,b,c = N max

τ∈[τ0,ln N]
max

n
P̄n(τ )n−aNbe−cτ (A11)

and

G>
a,b,c = N max

τ∈[ln N,τ1]
max

n
P̄n(τ )n−aNbe−cτ . (A12)

For τ1 > τ > ln N , the maximum with respect to n is reached
at

nmax = N2e−τ

2 + a
, (A13)

such that

G>
a,b,c = N3+b max

τ∈[ln N,τ1]
e(1+a−c)τ eNe−τ

(
2 + a

eN2

)(2+a)

=
{
O(N (1+δ1 )(1+a−c)−1+b−2a) if 1 + a − c > 0,

O(Nb−c−a) else.
(A14)

When τ � ln N , the maximum is reached at nmax > N . Since
n can be, at most, equal to N , we instead obtain

G<
abc = max

τ
N1+b−ae−τ (1+c) = N1+b−a−δ0 (1+c). (A15)

Combining these results, we arrive at Eq. (A9). �

3. Main proof

To prove Theorem 1, we prove the statement separately for
short, intermediate, and late times.
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Lemma 4. Q is correct. For any τ < δ0 ln N , where 0 <

δ0 < 1, Q(τ ) converges to the exact solution P∗(τ ),

�1(τ ) = ||Q(τ ) − P∗(τ )||1 −−−→
N→∞

0. (A16)

Proof. Using Eqs. (A1) and, (A3) and defining �1 = �0 −
� with rates γ 1

n = (n/N − 1)(N − n + 1), we have

P∗(τ ) = e�0τ P∗(0) −
∫ τ

0
dτ ′e�(τ−τ ′ )�1e�0τ

′
P∗(0). (A17)

With this expression and Eqs. (A3) and (A16), we obtain

�1(τ ) �
∫ τ

0
dτ ′||e�(τ−τ ′ )�1Q(τ ′)|| �

∫ τ

0
dτ ′||�1Q(τ ′)||,

(A18)
since exp(�τ ) is a stochastic matrix, which does not increase
the norm.

To bound �1, we first evaluate the argument in Eq. (A18)
(note γ 1

N = γ 1
N+1 = 0),

||�1Q(τ )|| =
N−1∑
n=0

∣∣γ 1
n+1Qn+1(τ ) − γ 1

n Qn(τ )
∣∣

=
∑

n

∣∣∣∣e−τ (1−e−τ )N−n(N−n)(N +1 − n−2eτ )

N (eτ − 1)

∣∣∣∣.
(A19)

For a given τ , the term inside the absolute value signs in
Eq. (A19) changes sign at n = N + 1 − 2eτ . Thus we can
split the sum up into two parts: one from n = 0 to n = n̄ =
�N + 1 − 2eτ �, and the other from n = n̄ + 1 to n = N − 1.
�1 obeys the inequality

�1(τ ) � �a + �b, (A20)

where

�x = τ0 max
τ�τ0

∑
n∈Nx

∣∣γ 1
n+1Qn+1(τ ) − γ 1

n Qn(τ )
∣∣, (A21)

with x = a, b, and Na = {0, . . . , n̄} and Nb = {n̄ +
1, . . . , N}. In each part, all terms have the same sign (+1 in
the first, −1 in second), so we can get rid of the magnitude
sign such that only the boundary terms survive.

Considering first �b, we have

�b = τ0 max
τ�τ0

γ 1
n̄+1Qn̄+1(τ )

= τ0 max
τ�τ0

2eτ (1 − e−τ )2eτ

(2eτ − 1)

(eτ − 1)N
. (A22)

The right-hand side of Eq. (A22) is an increasing function of
τ , so we can replace τ by τ0, which yields

�b = τ0

N1−δ0
2(1 − N−δ0 )2Nδ0 2Nδ0 − 1

Nδ0 − 1
<

τ0

N1−δ0
. (A23)

Clearly, this vanishes for N → ∞ for δ0 < 1 [see Eq. (A4)].
Turning to �a, we have

�a = τ0 max
τ�τ0

[
γ 1

n̄+1Qn̄+1(τ ) − γ 1
0 Q0(τ )

]
� �b + τ0N (1 − e−τ0 )N . (A24)

Thus this vanishes as well and, therefore, �1(τ ) → 0. �

Lemma 5. R converges to Q at short times. For any τ <

ln N , R(τ ) converges to the exact solution Q(τ ),

�2(τ ) = ||Q(τ ) − R(τ )||1 −−−→
N→∞

0. (A25)

Proof. Using Eq. (A25) and Definitions 2 and 4, we have

�2 =
∑

n

e−τ (1 − e−τ )N−n

∣∣∣∣1 − N2

n2
(1 − e−τ )(N−n)(N/n−1)

∣∣∣∣.
(A26)

Taking a specific time τ = τ̄ ln N , we can use Lemma 1 to
restrict the sum over n to the range n > N − N τ̄ . Let s = N −
n. Then,

�2 =
N τ̄∑
s=0

e−τ (1 − e−τ )s

∣∣∣∣1 − N2

(N − s)2
(1 − e−τ )

s2

N−s

∣∣∣∣
=

N τ̄∑
s=0

e−τ (1 − e−τ )s

∣∣∣∣1 − [1 + O(s/N )]

×
[

1 + O
(

s2

N − s
e−τ

)]∣∣∣∣
= O

[
max

s∈[0,N τ̃ ]

(
s

N
+ s2

N − s
e−τ

)]
, (A27)

where in the last line we used that the sum over e−τ (1 − e−τ )s

is bounded 1. For shorter times, we can arbitrarily restrict the
sum to s < N0.1 and the bound still works. Thus, �2 → 0 for
all τ < (1 − ε) ln N for any constant ε > 0. �

Lemma 6. Equivalence of R and P̄. If τ > τ0, then

�3(τ ) = ||R(τ ) − P̄(τ )|| −−−→
N→∞

0. (A28)

Proof. Bounding the residue from Taylor’s theorem, we
have exp(−e−τ ) = 1 − e−τ + θ1, with |θ1| < e−2τ , such that

�3(τ ) =
N∑

n=0

P̄n(τ )|(1 + θ1e−τ )N (N/n−1) − 1|

<

N∑
n=0

P̄n(τ )O[θ1e−τ N (N/n − 1)]. (A29)

We distinguish three cases: (i) If τ > (1 + ε) ln N for any
ε > 0, then N2e−2τ → 0 and this expression vanishes. (ii) If
(1 − ε) ln N < τ < (1 + ε) ln, we can use Lemma 3 to bound
Eq. (A29) by N2−3(1−ε), which vanishes. (iii) If τ < (1 −
ε) ln N , we split the sum into two parts: one up to N − Nμ

and the other from N − Nμ to N (for some 0 < μ < 1). For
the first part, we have

N−Nμ∑
n=0

|Rn − P̄n| < N3 max
n�Nμ

e−2τ αn exp (−αn)

< N3−2δ0 Nμ−δ0 exp(−Nμ−δ0 ), (A30)

where, in the first line, we introduced αn = e−τ N (N/n − 1)
and, to go to the second line, we first used that the maximum
with α of αe−α is at α = 1, but that α � Nμ−δ0 to replace α =
Nμ−δ0 , where we also used that e−τ � N−δ0 . Equation (A30)
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vanishes for μ > δ0. For the second part, we have

Nμ∑
s=0

(RN−s − P̄N−s) < N2μ−3δ0 , (A31)

which can be made to vanish, too, by taking μ < 3δ0/2 [con-
sistent with Eq. (A4)]. �

Lemma 7. P̄ is asymptotically correct. For times τ0 < τ <

τ1, P̄ converges to P∗,

�4(τ ) = ||P∗(τ ) − P̄(τ )|| → 0. (A32)

Proof. We establish �4 → 0 by bounding the difference
between the continuum solution (Definition 3) and the dis-
crete exact solution (Definition 1). The exact discrete solution
fulfills Eq. (2), whereas the continuum solution obeys

∂τ P̄n(τ ) = ∂n{[n(N − n)/N]P̄n(τ )}. (8, restated)

We replace the differential by a first-order finite difference
with error U ,

∂n(γnP̄n(τ )) = γn+1P̄n+1(τ ) − γnP̄n(τ ) + Un(τ ). (A33)

By the remainder theorem applied to the variable n, the
residue is bounded by

|Un(τ )| < max
n�m�n+1

( |H2(m, τ )|
2

)
, (A34)

where

H2(m, τ ) = ∂2
m(γmP̄m(τ )). (A35)

We now bound the error E = P∗ − P̄. It is governed by

∂τEn(τ ) = −γnP∗
n (τ ) + γn+1P∗

n+1(τ ) − ∂n{[γn − n/N]P̄n(τ )}
= −γnEn(τ ) + γn+1En+1(τ ) + Un(τ ) + ∂n[nP̄n(τ )]/N

= −γnEn(τ ) + γn+1En+1(τ ) + E in
n (τ ). (A36)

Note that in the last line, we defined

E in
n (τ ) = Un(τ ) + P̄n(τ )/N + n∂nP̄n(τ )/N, (A37)

with E in
0 (τ ) = U0(τ ) = γ1P̄1(τ ). This yields a bound on

E ,

|| �E (τ )|| �
∫ τ

τ0

dτ ′||e�(τ−τ ′ ) �Ein(τ ′)|| �
∫ τ

τ0

dτ ′|| �Ein(τ ′)||

< (τ1 − τ0) max
τ0�τ�τ1

|| �Ein(τ )||. (A38)

We bound the terms in E in individually. The contribution
due to the Taylor residue is

max
τ0�τ�τ1

||U (τ )|| � max
τ

∑
n

max
n�m�n+1

( |H2(m, τ )|
2

)

< N max
τ

max
n

|H2(n, τ )|
2

. (A39)

Considering first the U0 = P̄1(τ ) term, we have

P̄1(τ ) = N2e−τ (1 − e−τ )N (N−1) → 0 if τ < 2 ln N, (A40)

so we can take n � 1 in the following.

To bound H2, we first note

H2(n, τ ) = P̄n(τ )

2

[
2 + 2

N

n
+ N3(N − n + 1)

n3e2τ

+ 2N (n − 2 − 2N )

eτ n2

]
. (A41)

Taking the maximum over n and τ lets us bound the corre-
sponding contribution to Ein in terms of G (see Definition 5),

max
τ

||U || < max
τ

(G1,0,0 + G3,4,2 + G2,3,1 + G1,1,1 + G2,2,1).

(A42)
Using Lemma 3, we find that these terms all vanish as long as
δ1 < 1/2 and δ0 > 2/3 [consistent with Eq. (A4)].

We also have to consider the second part of Ein that stems
from the error introduced in the rate equation. In terms of G,
we have

∫ τ1

τ0

∣∣∣∣
∣∣∣∣∂n

[
n

N
P̄n(τ )

]∣∣∣∣
∣∣∣∣

< ln(N )(G0,−1,0 + G1,0,0 + G2,2,1) → 0, (A43)

again using Lemma 3. Thus, all terms in �Ein vanish, which
implies that || �E || → 0 as N → ∞. �

Lemma 8. R> is asymptotically correct. For times τ > τ1,
R> converges to P∗,

�5(τ ) = ||P∗(τ ) − R>(τ )|| −−−→
N→∞

0. (A44)

Proof. From Lemmas 6 and 7, we know that R<
n (τ1) is

a good approximation with the error vanishing, where τ1 =
(1 + δ1) ln N . Applying now the linearized equations of mo-
tion, we obtain the solution [same as Eq. (13b)]

R>(τ ) = e�S (τ−τ1 )R<(τ1), (A45)

where �S is the same matrix as � but with the replacement
γn → γ S

n = n. The difference between those two matrices,
�1 = �S − �, has rates γ 1

n = n(n − 1)/N . In terms of �1, we
have

e�(τ−τ1 )R<(τ1) = e�S (τ−τ1 )R<(τ1)

−
∫ τ

τ1

dτ ′e�(τ−τ ′ )�1e�Sτ
′
R<(τ1). (A46)

Using (A45) and the definition, we have

�5(τ )�
∫ τ

τ1

dτ ′||e�(τ−τ ′ )�1R>(τ ′)|| =
∫ τ

τ1

dτ ′||�1R>(τ ′)||
(A47)

since exp(�τ ) is a stochastic matrix, and thus it does not
change the norm.
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To bound the integral, we first evaluate the argument

||�1R>(τ )|| =
N−1∑
n=0

n

N
|(n + 1)R>

n+1(τ ) − (n − 1)R>
n (τ )| + (N − 1)R>

N (τ )

=
N−1∑
n=0

∣∣∣∣∣ n

N

N−1∑
m=n

(
m

n

)
(eτ−τ1 − 1)m−ne−m(τ−τ1 )[(m + 1)R<

m+1(τ1) − (n − 1)R<
m (τ1)] − gn

∣∣∣∣∣ + N−δ1 e−N (τ−τ1 ), (A48)

where

gn =
(

N

n

)
n

N
(n − 1)e−N (τ−τ1 )(eτ−τ1 − 1)N−nRN (τ1). (A49)

First, we notice that the term in square brackets in Eq. (A48) is always positive, as we can bound it from below by

(m + 1)R<
m+1(τ1) − (n − 1)R<

m (τ1) � 2Rm+1(τ1) + (n − 1)[Rm+1(τ1) − Rm(τ1)]

= Rm+1(τ1)

{
2 + (n − 1)

[
1 −

(
1 + 1

m

)2

exp

(
− N2e−τ1

m(m + 1)

)]}

� Rm+1(τ1)

{
2 + (n − 1)

[
1 −

(
1 + 1

n

)2]}
= Rm+1(τ1)(1/n + 1/n2) > 0. (A50)

Second, we find

K =
∑

n

gn = (N − 1)eτ1−2τ < N−δ1 . (A51)

Thus we can drop the absolute value signs from Eq. (A48)
(since the difference in square brackets is positive) while
incurring an error of, at most, 2K . The sum over n then reduces
to the boundary term N (N − 1)R>

N (τ ). Thus, we have

||�1R>(τ )|| � (N − 1)R>
N (τ ) + 2K + N−δ1 e−N (τ−τ1 ).

(A52)
The integral∫ τ

τ1

dτ ′||�1R>(τ ′)|| � N − 1

N
e−τ1 (1 − e−N (τ−τ1 ) )

+ N − 1

2
(e−τ1 − eτ1−2τ )

+ N−1−δ1 (1 − e−N (τ−τ1 ) ) < N−δ1

(A53)
vanishes as N → ∞ for any τ > τ1. �

Finally, we prove the corollary that states that the formulas
for magnetization and radiance are correct.

Corollary 1. Magnetization and radiance (restated). The
predicted magnetization and radiance (9a) are asymptotically
correct for any sequence of times {τn > 0 : n ∈ N},

lim
N→∞

μexact (τN ) − μ(τN ) → 0, (A54a)

lim
N→∞

ρexact (τN ) − ρ(τN ) → 0. (A54b)

Proof. At early times (τ < τ0), we can evaluate the magneti-
zation explicitly using the distribution Q (Lemma 4),

N∑
s=0

(N − s)e−τ (1 − e−τ )s = N − eτ + 1 − O[(1 − e−τ )N−1].

(A55)
Expanding H (z) around z = ∞, we find H (z) = e−z(z−1 −
z−2 + 2z−3 + · · · ). Therefore, Eq. (9a) becomes μ(τ ) = 1 −

eτ /N + e2τ /N2 + · · · . Thus, the error in the magnetiza-
tion is O(1/N, e2τ /N2). Clearly, the same is true for the
radiance.

For intermediate times, we bound the difference be-
tween the integral and the sum, E (mag) = ∫ N

0 dn nP̄n(τ ) −∑N
n=0 nP̄n(τ ). Using Taylor’s theorem to bound the residue of

the zeroth-order expansion, we obtain

|E (mag)|
N

�
∑

n

P̄n(τ )

(
1

N
+ e−τ N

n2

)
. (A56)

This vanishes by Lemma 3. The same steps for the radiance
yield the same error bound, but with an additional contribution∑

n(N/n)e−τ P̄n, which also vanishes by Lemma 3.
Finally, to cover late times, we prove that at time τ1, both

the exact magnetization and μ (9a) vanish as N → ∞. Specif-
ically, we show that the probability mass of the solution for
n > Nμ for μ < 1 − δ1 vanishes, even after multiplying it by
Nk with k constant,

N∑
n=Nμ

NkP̄n(τ1) <

N∑
n=Nμ

N1+k exp(−N1−δ1−μ) → 0. (A57)

�
Theorem 1. Superradiant decay from all-inverted state (re-

stated). For any sequence of times {τn > 0 : n ∈ N},
lim

N→∞
||P∗(τN ) − R(τN )||1 = 0. (14, restated)

Proof. Together with the triangle inequality, Lemmas 4 and
5 establish Eq. (14) for times τN < ln N . Similarly, Lemmas
6 and 7 together show that Eq. (14) holds between τ0 and τ1,
and Lemma 8 proves that Eq. (14) is true for τN � τ1. �

APPENDIX B: PROOF OF THEOREM 2

1. Preliminaries

Definition 6. Exact solution P∗. The exact solu-
tion is given by the probability vector P∗

n,r (τ ), where
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r ∈ {0, . . . , �N/2�} and n ∈ {0, . . . , N − 2r}. The probabili-
ties P∗

n,r obey P∗
n,r (0) = δn,Nδr,0 and

∂τP∗
n,r = −�(1)

n,rP∗
n,r + �

(2)
n+1,rP∗

n+1,r + �
(3)
n+2,r−1P∗

n+2,r−1

+�
(4)
n,r+1P∗

n,r+1, (5, restated)

where the rates are given through [63]

�(1)
n,r = 1

N
n(N − 2r − n + 1) + γ

N
(n + r),

�(2)
n,r = 1

N
n(N − 2r − n + 1)

+ γ

N

n(N + 2)(N − 2r − n + 1)

(N − 2r)(N − 2r + 2)
,

�(3)
n,r = γ

N

n(n − 1)(N − 2r + r + 1)

(N − 2r)(N − 2r + 1)
,

�(4)
n,r = γ

N

(N − 2r − n + 1)(N − 2r − n + 2)r

(N − 2r + 2)(N − 2r + 1)
.

(6, restated)

We again define the probability vector P∗ = (P∗
0,0,P∗

1,0, . . . )
and the matrix equation

∂τP∗(τ ) = �P∗(τ ). (B1)

Definition 7. Approximate solution P̃ . We define the ap-
proximate solution P̃ as the solution to Eq. (5) with rates

�̃(1)
n,r = 1

N
n(N − 2r − n + 1) + γ

N
n, (B2a)

�̃(2)
n,r = 1

N
n(N − 2r − n + 1) + γ

N2
n(N − n), (B2b)

�̃(3)
n,r = γ

N2
n2, (B2c)

�̃(4)
n,r = 0. (B2d)

Definition 8. Distribution of dark excitations F . The dis-
tribution in r, corresponding to the total spin j = N/2 − r, is
given by the Poisson distribution

Fr (τ ) = e−γ τ (γ τ )r

r!
. (21, restated)

We will frequently need to use that 〈r〉/N vanishes, for
which we use the following result.

Lemma 9. Vanishing probability mass 2. In the limit N →
∞, the probability mass of the distribution F (τ ) vanishes
faster than any polynomial of N in the interval from r = Nε

to N for any ε > 0 and τ = O(Nδ ) if δ < ε. Specifically,

lim
N→∞

N∑
r=Nε

NkFr (τ ) = 0. (B3)

Proof. Using Eq. (21), we have

lim
N→∞

N∑
r=Nε

NkFr (τ ) < Nk+1N (δ−ε)Nε → 0.

�
At early times (before τ0), we linearize the rates around

s = N − 2r − n ≈ 0, which yields

�(1),lin
n,r = N − 2r − n + 1 + γ , (B4a)

�(2),lin
n,r = N − 2r − n + 1, (B4b)

�(3),lin
n,r = γ , (B4c)

�(4),lin
n,r = 0. (B4d)

Definition 9. Early solution with loss Q. We define Qn,r by

Qn,r (τ ) = e−τ (1 − e−τ )N−2r−ne−γ τ (γ τ )r

r!
= Qn+2r (τ )Fr (τ ),

(B5)
with Qn and Fr defined in Definitions 2 and 8. Qn,r obeys
Eq. (5) with rates in Eq. (B4) and can thus equivalently be
written as

Q(τ ) = e�0τP∗(0), (B6)

where �0 is the same matrix as � in Definition 6, but with
linearized rates given by Eq. (B4).

We solve for the dynamics after the initial phase by mov-
ing to a continuum limit in x = n/N , while retaining r as a
discrete variable. Specifically, we solve

∂τ pn,r (τ ) − ∂n

[
n(N − n)

N
pn,r (τ )

]

= γ n2

N2 [pn,r−1(τ ) − pn,r (τ )]. (B7)

Lemma 10. Continuum solution with loss. Equation (B7),
with the initial data at time τ = τ0 being P̄n+2r (τ0)Fr (τ0), is
solved by

Pcont
n,r (τ ) = P̄n+2r (τ )Fr (T̃n(τ )), (B8)

where

T̃n(τ ) = τ +
{

n

N
− n

n + eτ0−τ (N − n)

+ ln

[
n

N
+ eτ0−τ

(
1 − n

N

)]}
. (B9)

Proof. Proof is by substitution. �
In Theorem 2, we take τ0 → 0 in Eq. (B9) to obtain

Eq. (22). The main reason to do so is for simplicity. As we
prove below, it does not affect the solution. Intuitively, the
continuum solution given by Eq. (B8) can be understood by
going back to Eq. (B7) and realizing that the left-hand side is
the same as Eq. (8). We can think of it as the homogeneous
part of the differential equation, which is solved by P̄. The
right-hand side only acts on the distribution in r and therefore
does not change the distribution in n. Since the right-hand side
increases r at a rate depending on γ n2/N2, the distribution in
r is a Poisson distribution (Definition 8), but with a time that
depends on the dynamics of n, which can in turn be related to
the characteristics of the left-hand side of Eq. (B7).

At late times, we linearize around n = 0 to obtain the rates

�(1),late
n,r = n + γ r/N, (B10a)

�(2),late
n,r = n, (B10b)

�(3),late
n,r = 0, (B10c)

�(4),late
n,r = γ r/N. (B10d)

To extend the solution to all times, we need to keep small con-
tributions of the order of r/N in �(4), as they are responsible
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for the decay of dark excitations at late times. The rates pre-
dict that the remaining collective and dark excitations decay
independently, but their rates have different orders in N . In
the large-N limit, we thus expect first a rapid decay to n = 0,
and subsequently a slow decay of the dark excitations, which
can only decay incoherently, as they are dark with respect to
the collective decay.

Definition 10. Late solution with loss. We define the late
distribution

R>
n,r (τ ) =

N/2∑
r′=r

(
r′

r

)
e−γ r′(τ−τ1 )/N (eγ (τ−τ1 )/N − 1)r′−r

×
N−2r′∑
n′=n

(
n′

n

)
e−n′(τ−τ1 )(eτ−τ1 − 1)n′−nRn′r′ (τ1).

(B11)
It obeys R>(τ1) = R<(τ1) and obeys the equations of motion
given by Eq. (5) with linearized rates given by Eq. (B10).

2. Main proof

The proof of Theorem 2 has the same structure as the one
of Theorem 1. One small difference is that for times shorter
than τ1, we bound the difference to the approximate solution
P̃ instead of the exact solution P∗, as it is simpler. Lemma 15
shows that this is justified because the difference between the
approximate and exact solutions also vanishes for times that
grow only logarithmically.

Theorem 2. Superradiance with incoherent loss (restated).
The difference between the exact solution ρ(τ ) to Eq. (1),
subject to the initial condition ρ(0) = |N〉〈N |, and σ (N )(τ ) =
Rn,r (τ )Pn,r obeys, for any sequence of times {τn > 0 : n ∈
N},

lim
N→∞

||σ (N )(τN ) − ρ(τN )||1 → 0, ∀τ � 0. (23, restated)

Proof. Applying the triangle inequality twice, Lemmas 11,
13, and 15 together establish Eq. (23) for times τN < ln N .
Similarly, Lemmas 12, 14, and 15 show that Eq. (23) holds
between τ0 and τ1, and Lemma 16 proves that Eq. (23) is true
for τN � τ1. �

Lemma 11. Q is correct. For any sequence of times {τN <

ln N : N ∈ N}, Q(τN ) converges to the approximate solution
P̃ (τ ),

�1(τ ) = ||Q(τ ) − P̃ (τ )||1 −−−→
N→∞

0. (B12)

Proof. As in Lemma 4, we define the difference between
the matrices that generate the evolution �1 = �0 − �̃, with
�0 defined in Definition 9 and �̃ defined in Definition 7. This
allows us to bound �1 as Eq. (A18),

�1 � ln N max
τ∈[0,τ0]

||�1Q(τ )||

= ln N
∑
n,r

∣∣ − γ
(1)

1,nrQn,r (τ ) + γ
(2)

1,n+1,rQn+1,r (τ )

+ γ
(3)

1,n+2,r−1Qn+2,r−1(τ )
∣∣, (B13)

where

γ
(1)

1,nr = (N − 2r − n + 1)(1 − n/N ) + γ (1 − n/N ),

(B14a)

γ
(2)

1,nr = (N − 2r − n + 1)(1 − n/N ) − γ n(1 − n/N )/N,

(B14b)

γ
(3)

1,nr = γ (1 − n2/N2). (B14c)

We split the bound into a part independent of γ and one
part proportional to γ , which we will treat separately. The
independent part is

�
(wg)
1 = ln N

N

∑
n,r

|(N − 2r − n + 1)(N − n)Qn(τ )

− (N − 2r − n)(N − n − 1)Qn+1(τ )|Fr (τ ).

(B15)
Due to Lemma 9, we can neglect the contribution from r, such
that Eq. (B15) reduces to Eq. (A19) and thus vanishes. The
part proportional to γ reads

�
(free)
1 = γ ln N

∑
n,r

N − n

N

×
∣∣∣∣ − Qn,r − n

N
Qn+1,r +

(
1 − n

N

)
Qn+2,r−1

∣∣∣∣.
(B16)

Note that the rates inside the absolute value sign are all equal
to or smaller than 1. Using Lemma 1, we can restrict the
sum over to values between N − 2r and N − 2r − Nμ, which
allows us to bound N − n by Nμ (recall that r is, at most,
ln N by Lemma 9). Since Q is normalized, we find �

(free)
1 <

γ (ln N )2Nμ−1, which vanishes as N → ∞. �
Lemma 12. Equivalence of R and Pcont. For τ0 < τ < τ1,

R< [Eq. (20a)] converges to Pcont (Lemma 10),
�3(τ ) = ||R(τ ) − Pcont (τ )|| −−−→

N→∞
0. (B17)

Proof.

�3(τ ) =
∑
n,r

|[Rn+2r (τ ) − P̄n+2r (τ )]Fr (Tn(τ ))

− P̄n+2r (τ )[Fr (Tn(τ )) − Fr (T̃n(τ ))]|. (B18)

The difference in the first line vanishes by Lemmas 6 and 9.
The second line is only nonzero for τ < τ0 = δ0 ln N , where
δ0 < 1 as per Eq. (A4). For those times, we can restrict the
sum over n to values between N − Nμ and N (Lemma 1).
Defining s = N − n and using s < Nμ, we have

Tn(τ ) = τ + 1 − s

N
− 1 − s/N

1 − s(1 − e−τ )/N

+ ln

[
1− s

N
(1 − e−τ )

]
= τ+δτn, |δτn| < Nμ−1.

(B19)

Thus, ∑
n,r

P̄n+2r (τ )[Fr (Tn(τ )) − Fr (T̃n(τ ))]|

<
∑

r

Nμ∑
s=0

P̄N−s(τ )|Fr (τ ) − Fr (τ + Nμ−1)|

�
∑

r

Nμ∑
s=0

Pcont
N−s,r (τ )

rNμ−1

τ
→ 0. (B20)
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This bound does not work for a sequence of times {τn > 0 : n ∈ N}, in which the τN decay as Nμ−1 or faster. However, in this
case, we have Fr�1(τN ) < Nr(μ−1), which means we can replace Fr by δr,0, in which case we can use Lemma 6. �

Lemma 13. R converges to Q at short times. For any τ < ln N , R(τ ) [Eq. (20a)] converges to Q(τ ) (Definition 9),

�2(τ ) = ||Q(τ ) − R(τ )||1 −−−→
N→∞

0. (B21)

Proof. We use Lemma 5 to replace Qn by Rn, and Lemmas 1 and 9 to restrict the range of the sum. Using the same reasoning
as in Eq. (B20),

�2(τ ) →
∑
s,r

RN−s(τ )|Fr (τ ) − Fr (TN−s)| �
∑

r

Nμ∑
s=0

RN−s(τ )Fr (τ )
rNμ−1

τ
→ 0. (B22)

�
Lemma 14. Pcont is asymptotically correct. For times τ0 < τ < τ1, Pcont [Eq. (20a)] converges to P̃ (Definition 7),

�4(τ ) = ||P̃ (τ ) − Pcont (τ )|| → 0. (B23)

Proof. We start by defining the error

En,r = P̃n,r (τ ) − Pcont
n,r (τ ), (B24)

where Pcont solves the continuum equation and has been defined in Lemma 10. We know that the norm ||E || vanishes at τ0 as
N → ∞, as per Lemmas 12 and 13. To bound it for the entire time until τ1, we consider its time evolution,

Ėn,r = − �̃(1)
n,rP̃n,r + �̃

(2)
n+1,rP̃n+1,r + �̃

(3)
n+2,r−1P̃n+2,r−1 − 1

N
∂n

[
n(N − n)Pcont

n,r (τ )
] − γ

n2

N2

[
Pcont

n,r−1(τ ) − Pcont
n,r (τ )

]
= − �̃(1)

n,rEn,r + �̃
(2)
n+1,rEn+1,r + �̃

(3)
n+2,r−1En+2,r−1 + E in

n,r . (B25)

Equation (B25) again allows us to bound the error by the integral over the one-norm of E in, as in Eq. (A38). To establish this,
we need to bound terms of the form

Ak =
∑
n,r

nk

Nk

[
Pcont

n,r (τ ) − Pcont
n−1,r (τ )

]
. (B26)

First note that due to the prefactor, we can neglect the contribution from the sum from n = 0 to n = N1−ε. For the sum from
n = N1−ε to N , we use n � N1−ε and Lemma 9 to write

nk

Nk
� (n + 2r)k

Nk
<

nk

Nk

(
1 + 2k(ln N )2

N1−ε

)
. (B27)

Thus we have

|Ak| <
∑
n,r

nk

Nk
Pcont

n,r (τ )
2k(ln N )2

N1−ε
→ 0. (B28)

With this in mind, we write

E in
n,r =Fr (T̃n)

{
γn+1P̄n+1+2r − γnP̄n+2r − 1

N
∂n[n(N − n)P̄n+2r]

}
+ 2r

n

N

(
Pcont

n−1,r − Pcont
n,r

) + 2r
N Pcont

n+1,r

+ γ n

N

[
Pcont

n+1,r − Pcont
n,r + n2

N2

(
Pcont

n,r − Pcont
n+1,r + Pcont

n+2,r−1 − Pcont
n,r−1

)]
. (B29)

The first line in Eq. (B29) is the same as for pure superradiance, given by Eq. (A36), and thus vanishes. In the second line, the
first term is of the form given by Eq. (B26), but with an r out front. Since by Lemma 9, r grows only logarithmically with N ,
this contribution still vanishes. The second term in the second line vanishes also by Lemma 9. The terms proportional to γ are
all of the form given by Eq. (B26) and vanish also. �

Lemma 15. Approximate solution converges. For any τ < α ln N and some α > 0, P̃ (τ ) (Definition 7) converges to the exact
solution P∗(τ ) (Definition 6) as N → ∞,

||P∗(τ ) − P̃ (τ )||1 −−−→
N→∞

0. (B30)

Proof. Similar to before, we define the error E (τ ) = P∗(τ ) − P̃ (τ ). We bound its norm by

||E (τ )|| < α ln N max
τ∈[0,α ln N]

||�1P̃ (τ )||, (B31)
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where �1 is the difference of the evolution matrices for P∗ (Definition 6) and P̃ (Definition 7). Notably, all rates in �1 are
O(r/N ) and thus can be bounded by Nε−1 for any ε > 0. Thus,

||E (τ )|| < α ln(N )Nε−1 → 0. (B32)

�
Lemma 16. R> is asymptotically correct. For times τ1 < τ , R> [Eq. (13b)] converges to P∗ (Definition 6),

�5(τ ) = ||R>(τ ) − P∗(τ )|| → 0. (B33)

Proof. From the previous sections, we know that Rn,r (τ1) is a good approximation with the error vanishing. As before, we
can bound �5 by

�5(τ ) �
∫ τ

τ1

dτ ′||�1R>(τ ′)||, (B34)

where �1 is the difference between the linearized evolution matrix (Definition 10) and the full evolution (Definition 6).
To bound the integral, we first evaluate the argument

||�1R>(τ )|| =
N/2∑
r=0

N−2r∑
n=0

∣∣∣∣ −
[

n

N
(1 − n − 2r) + γ n

N

]
R>

n,r (τ ) + (n + 1)

[
−n + 2r

N
+ γ (N + 2)(N − 2r − n + 1)

N (N − 2r)N − 2r + 2)

]
R>

n+1,r (τ )

+ γ

N

(n + 2)(n + 1)(N − r + 2)

(N − 2r + 2)(N − 2r + 3)
R>

n+2,r−1 + γ

N
(r + 1)

[
(N − 2r − n − 1)(N − 2r − n)

(N − 2r)(N − 2r − 1)
− 1

]
R>

n,r+1(τ )

∣∣∣∣.
(B35)

First we note that subleading terms can be neglected, as even bounding them individually leads to a vanishing contribution. In
particular, since we can bound terms containing n/N by N−δ1 e−τ−τ1 , all such terms can be neglected. We are left with

||�1R>(τ )|| =
N/2∑
r=0

N−2r−1∑
n=0

∣∣∣∣n(n + 1)

N
R>

n+1,r (τ ) − n2

N
R>

n,r (τ )

∣∣∣∣, (B36)

where we have also dropped the vanishing term

N/2∑
r=0

(N − 2r)2

N
R>

N−2r,r (τ ) → 0. (B37)

Similar to Lemma 8, we can write Eq. (B36) as

||�1R>(τ )|| =
N/2∑
r=0

N−2r−1∑
n=0

n

N

∣∣∣∣∣
N/2∑
q=r

N−2r′−1∑
m=n

(
q

r

)(
m

n

)
e−γ q(τ−τ1 )/N e−m(τ−τ1 )(eγ (τ−τ1 )/N − 1)q−r (eτ−τ1 − 1)m−n

× [(m + 1)Rm+1(τ1)Fq(Tm+1(τ1)) − (n − 1)Rm(τ1)Fq(Tm(τ1))]

∣∣∣∣∣. (B38)

The term in square brackets is again always positive, so we drop the absolute value signs. To show this, consider

(m + 1)Rm+1Fq,m+1 − (n − 1)RmFq,m = Rm+1Fq,m+1

{
2 + (n − 1)

[
1 −

(
1 + 1

m

)
exp

(
− N2e−τ1

m(m + 1)

)(
Tm(τ1)

Tm+1(τ1)

)q]}
. (B39)

In the regime m < Nμ for some μ < δ1/2, the exponential makes the negative term vanish. In contrast, if m > Nμ, the fraction
Tm(τ1)/Tm+1(τ1) is smaller than 1, such that we can bound it by 1 and use the result given by Eq. (A50).

Dropping the absolute value signs in Eq. (B36) means that only the boundary terms survive (up to extra terms that vanish
even faster),

||�1R>(τ )|| =
N/2∑
r=0

(N − 2r)2

N
R>

N−2r,r (τ ) < N−δ1 e−N (τ−τ1 ). (B40)

Integrating this from time τ1 to ∞ yields an upper bound to the error that goes to zero as N → ∞. �
Note that for this to work, it is crucial that we include the decay of r in Eq. (B10). If we had not included this term in the

linearized rates, the distribution in r would remain stationary rather than decay and lead to an error growing in time.
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