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Transfer of angular momentum of guided light to an atom with an electric
quadrupole transition near an optical nanofiber
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We study the transfer of angular momentum of guided photons to a two-level atom with an electric quadrupole
transition near an optical nanofiber. We show that the generation of the axial orbital torque of the driving guided
field on the atom is governed by the internal-state selection rules for the quadrupole transition and by the
angular momentum conservation law with the photon angular momentum given in the Minkowski formulation.
We find that the torque depends on the photon angular momentum, the change in the angular momentum of the
atomic internal state, and the quadrupole-transition Rabi frequency. We calculate numerically the torques for the
quadrupole transitions between the sublevel M = 2 of the hyperfine-structure level 5S1/2F = 2 and the sublevels
M ′ = 0, 1, 2, 3, and 4 of the hyperfine-structure level 4D5/2F ′ = 4 of a 87Rb atom. We show that the absolute
value of the torque for the higher-order mode HE21 is larger than that of the torque for the fundamental mode
HE11 except for the case M ′ − M = 2, where the torque for the mode HE21 is vanishing.
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I. INTRODUCTION

The angular momentum of light and its transfer to mat-
ter have attracted a lot of research attention in recent years
[1,2]. The transfer of angular momentum of a paraxial light
field to particles [3–6], molecules [7,8], atoms [9–12], ensem-
bles of cold atoms [13–16], and Bose-Einstein condensates
[17–20] has been studied in detail. For structured light fields,
the exchange of angular momentum between an atom and a
reflecting surface has been investigated [21] and the optical
torque on a two-level system near a strongly nonreciprocal
medium has been calculated [22]. Recently, the transfer of
angular momentum from a guided light field of an optical
nanofiber [23–26] to an atom with an electric dipole transition
has been investigated theoretically [27].

Excitations of electric quadrupole transitions of atoms us-
ing the guided light fields of optical nanofibers have been
experimentally realized [28]. Unlike electric dipole transi-
tions, electric quadrupole transitions of atoms depend on the
gradient of the field amplitude, which can be steep in the case
of near fields. In addition, the atomic-internal-state selection
rules for quadrupole transitions are more complicated than
those for dipole transitions. Consequently, the exchange of
angular momentum between a nanofiber-guided light field and
an atom with a quadrupole transition is not simple and deeper
insight into the processes involved is desirable. Note that the
transfer of angular momentum of Laguerre-Gaussian [29] and
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Gaussian [30] light beams to atoms via quadrupole transitions
has been already discussed. However, the role of the optical
torque that acts on the center-of-mass motion of the atom was
not taken into account in the previous work [29,30].

The aim of this paper is to study the transfer of angular
momentum of nanofiber-guided photons to a two-level atom
via an electric quadrupole transition. We show that the gen-
eration of the axial orbital torque of the driving guided field
on the atom is governed by the internal-state selection rules
for the quadrupole transition and by the angular momentum
conservation law with the photon angular momentum given in
the Minkowski formulation.

The paper is organized as follows. In Sec. II, we describe
the model of a two-level atom with an electric quadrupole
transition driven by the guided light field of an optical
nanofiber. In Sec. III, we calculate analytically the azimuthal
force and the axial orbital torque of the guided light on the
atom. In Sec. IV, we present the results of numerical calcula-
tions for the torque. Our conclusions are given in Sec. V.

II. MODEL

We consider a two-level atom with an electric quadrupole
transition interacting with the guided light field of an opti-
cal nanofiber (see Fig. 1). We review the descriptions of the
atomic electric quadrupole and the guided light field below.

A. Electric quadrupole transition of the atom

We assume that the atom has a single valence electron.
To describe the electric quadrupole and the internal state
of the atom, we use the local Cartesian coordinate system
{x1, x2, x3}, where the center of mass of the atom is located
at the origin x = 0 [see Fig. 1(a)]. The components Qi j with
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FIG. 1. (a) Atom with the local quantization coordinate system
{x1, x2, x3} in the vicinity of an optical nanofiber with the fiber-based
Cartesian coordinate system {x, y, z} and the corresponding cylindri-
cal coordinate system {r, ϕ, z}. (b) Schematic of a two-level atom
with an electric quadrupole transition. The upper level |n′F ′M ′〉 and
the lower level |nFM〉 of the atom are the magnetic sublevels of an
alkali-metal atom. The transition between the two levels is charac-
terized by the electric quadrupole tensor Qi j with i, j = 1, 2, 3. The
population of the upper level |n′F ′M ′〉 may decay with the total rate
� into the level |nFM〉 and some other levels that are not shown in
the figure.

i, j = 1, 2, 3 of the electric quadrupole moment tensor of the
atom are given as

Qi j = e(3xix j − R2δi j ), (1)

where xi and x j are the ith and jth coordinates of the valence

electron and R =
√

x2
1 + x2

2 + x2
3 is the distance from this elec-

tron to the center of mass of the atom.
Let E be the electric component of the optical driving field.

The energy of the electric quadrupole interaction between
the atom and the field is W = −(1/6)

∑
i j Qi j (∂Ej/∂xi )|x=0,

where the spatial derivatives of the field components Ej with
respect to the coordinates xi are calculated at the position
x = 0 of the center of mass of the atom [31].

We assume that the driving field is near to resonance
with a quadrupole transition between two atomic internal
states, namely, the upper state |e〉 with the energy h̄ωe and
the lower state |g〉 with the energy h̄ωg. To be concrete,
we consider the quadrupole transition between the magnetic
sublevels |e〉 = |n′F ′M ′〉 and |g〉 = |nFM〉 of an alkali-metal
atom [see Fig. 1(b)]. Here, n′ and n denote the principal

quantum numbers and also all additional quantum numbers
not shown explicitly, F ′ and F are the quantum numbers for
the total internal-state angular momenta of the atom, and M ′
and M are the magnetic quantum numbers. The matrix ele-
ments 〈n′F ′M ′|Qi j |nFM〉 of the quadrupole tensor operators
Qi j are [32]

〈n′F ′M ′|Qi j |nFM〉
= 3eu(M ′−M )

i j (−1)F ′−M ′

×
(

F ′ 2 F
−M ′ M ′ − M M

)
〈n′F ′‖T (2)‖nF 〉, (2)

where the matrices u(q)
i j with q = M ′ − M = −2,−1, 0, 1, 2

characterize the tensor structures of the spherical components
of Qi j and are given as

u(2)
i j = 1

2

⎛
⎝ 1 −i 0

−i −1 0
0 0 0

⎞
⎠, u(1)

i j = 1

2

⎛
⎝ 0 0 −1

0 0 i
−1 i 0

⎞
⎠,

u(0)
i j = 1√

6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠, u(−1)

i j = 1

2

⎛
⎝0 0 1

0 0 i
1 i 0

⎞
⎠,

u(−2)
i j = 1

2

⎛
⎝1 i 0

i −1 0
0 0 0

⎞
⎠. (3)

In Eq. (2), the array in the parentheses is a 3 j symbol and the
invariant factor 〈n′F ′‖T (2)‖nF 〉 is the reduced matrix element
of the tensor operators T (2)

q =2(2π/15)1/2R2Y2q(ϑ, φ). Here,
Ylq is a spherical harmonic function of degree l and order q,
and ϑ and φ are spherical angles in the spherical coordinates
{R, ϑ, φ} associated with the local Cartesian coordinates
{x1, x2, x3}. The matrix u(q)

i j represents the tensor structure of
the electric quadrupole operator Qi j for the transition between
the magnetic sublevels |nFM〉 and |n′F ′M ′〉, with M ′−M =q.

We write the electric component of the optical field as E =
(Ee−iωt + E∗eiωt )/2, where E is the field amplitude and ω is
the field frequency. The interaction Hamiltonian of the system
in the interaction picture and the rotating-wave approximation
reads

HI = − h̄

2

e−i(ω−ω0 )tσeg + H.c., (4)

where ω0 = ωe − ωg is the atomic transition frequency, σge =
|g〉〈e| is the atomic transition operator, and


 = 1

6h̄

∑
i j

〈e|Qi j |g〉∂E j

∂xi
(5)

is the Rabi frequency for the quadrupole transition. We insert
Eq. (2) into Eq. (5). Then, we obtain [32]


 = e

2h̄
(−1)F ′−M ′

(
F ′ 2 F

−M ′ M ′ − M M

)

×〈n′F ′‖T (2)‖nF 〉
∑

i j

u(M ′−M )
i j

∂E j

∂xi
. (6)

The electric quadrupole transition selection rules for F
and F ′ and for M and M ′ are |F ′ − F | � 2 � F ′ + F and
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|M ′ − M| � 2. For the quantum numbers J and J ′ of the
total electronic angular momenta, the selection rules are |J ′ −
J| � 2 � J ′ + J . For the quantum numbers L and L′ of the
orbital electronic angular momenta, the selection rules read
|L′ − L| = 0, 2 and L′ + L � 2. Note that the electric dipole
transition selection rule for L and L′ is |L′ − L| = 1. Con-
sequently, when electric quadrupole transitions are allowed,
electric dipole transitions are forbidden. We also note that
the change in the angular momentum of the atomic internal
state due to an upward transition is h̄(M ′ − M ). The selection
rules for the quadrupole transitions do not require the equality
between this change and the angular momentum of the ab-
sorbed photon. For example, a quadrupole transition between
the magnetic sublevels with |M ′ − M| = 2 can be caused by a
linearly polarized plane-wave light field.

B. Guided light of the optical nanofiber

We consider the case where the external field interacting
with the atom is the guided light field of a nearby vacuum-
clad optical nanofiber [see Fig. 1(a)] [23–26]. The fiber is a
dielectric cylinder of radius a and refractive index n1 and is
surrounded by an infinite background medium of refractive
index n2, where n2 < n1. To describe the guided field, we
use Cartesian coordinates {x, y, z}, where z lies along the fiber
axis, and also cylindrical coordinates {r, ϕ, z}, where r and ϕ

are the polar coordinates in the cross-sectional plane xy.
We examine the vacuum-clad nanofiber whose radius is

small enough so that it can support just the fundamental HE11

mode and possibly a few higher-order modes in a finite band-
width around the central frequency ω0 = ωe − ωg of the atom
[23–26]. The theory of guided modes of cylindrical fibers is
described in Ref. [33] and is summarized and analyzed in
detail for nanofibers in Ref. [34].

The field amplitude of a quasicircularly polarized hybrid
mode HElm or EHlm is [33,34]

E = (er r̂ + peϕϕ̂ + f ezẑ)ei f βz+iplϕ. (7)

Here, β with the convention β > 0 is the longitudinal propa-
gation constant determined by the fiber eigenvalue equation,
l = 1, 2, . . . and m = 1, 2, . . . are the azimuthal and radial
mode orders, f = +1 or −1 denotes the forward or backward
propagation direction along the fiber axis z, and p = +1 or
−1 is the polarization circulation direction index. The func-
tions er = er (r), eϕ = eϕ (r), and ez = ez(r) correspond to
the cylindrical components of the quasicircularly polarized
hybrid mode with f = +1 and p = +1 and are given in
Refs. [33,34].

Equation (7) can be used for not only quasicircularly po-
larized hybrid modes but also transverse electric and magnetic
modes. For the transverse electric and magnetic modes TE0m

and TM0m, the azimuthal mode order is l = 0, the mode
polarization is single, and the polarization index p can be
omitted [33,34]. The field amplitude of a mode TE0m is given
by Eq. (7) with l = 0 and er = ez = 0. The field amplitude of
a mode TM0m is given by Eq. (7) with l = 0 and eϕ = 0.

In Eq. (7), the functions er (r), eϕ (r), and ez(r) depend
on r but not on ϕ and z. Note that the basis unit vectors
r̂ = cos ϕ x̂ + sin ϕ ŷ and ϕ̂ = − sin ϕ x̂ + cos ϕ ŷ depend on
ϕ. The phase factor eiplϕ in Eq. (7) and the ϕ dependence of

the basis vectors r̂ and ϕ̂ contribute to the angular momentum
of guided light. This characteristic has been studied in the
Abraham [34–36] and Minkowski [27,35–37] formulations.
It has been shown that the angular momentum per photon in
the canonical Minkowski formulation is h̄pl [27,35–37].

III. AZIMUTHAL FORCE AND AXIAL ORBITAL TORQUE
ON THE ATOM

We assume that the field is in a quasicircularly polarized
hybrid HElm or EHlm mode, a TE0m mode, or a TM0m mode. In
this case, the field amplitude is given by Eq. (7). Let the atom
be at a position {x, y, z} in the fiber-based Cartesian coordi-
nates or {r, ϕ, z} in the corresponding cylindrical coordinates.
For the local coordinate system {x1, x2, x3}, we take x1 ‖ x,
x2 ‖ y, and x3 ‖ z. The relation x3 ‖ z means that we use the
fiber axis z as the quantization axis for the atomic internal
states.

In a semiclassical treatment, the motion of the center of
mass of the atom is governed by the force F = −〈∇HI〉
[38–41] of the driving field. It follows from the interaction
Hamiltonian (4) that the force is

F = h̄

2
(ρge∇
 + ρeg∇
∗). (8)

Here, we have introduced the notations ρi j = 〈i|ρ| j〉 with
i, j = e, g for the matrix elements of the density operator ρ

for the atomic internal state.
The field amplitude E [see Eq. (7)] depends on the az-

imuthal angle ϕ for the position of the atom, and so does
the quadrupole-transition Rabi frequency 
 [see Eq. (6)]. This
dependence leads to the azimuthal component

Fϕ = h̄

2r

(
ρge

∂


∂ϕ
+ ρeg

∂
∗

∂ϕ

)
(9)

of the force F, which is responsible for the rotational motion
of the atom around the fiber axis. The axial component of the
orbital (center-of-mass-motion) torque on the atom is

Tz = rFϕ = h̄

2

(
ρge

∂


∂ϕ
+ ρeg

∂
∗

∂ϕ

)
. (10)

It characterizes the rate of the change of the axial component
of the orbital (center-of-mass-motion) angular momentum of
the atomic system. Note that Tz does not act on the motion of
the electron around the nucleus and hence does not change the
internal state of the atom directly.

Equation (6) indicates that the Rabi frequency 
 de-
pends on the sum

∑
i j u(M ′−M )

i j (∂E j/∂xi ) with M ′ − M = q =
0,±1,±2. With the help of expressions (3) and (7), we find

∑
i j

u(q)
i j

∂E j

∂xi
= Vq(r)ei f βz+i(pl−q)ϕ, (11)

where

V0(r) = − 1√
6

(
e′

r + er

r
+ il

r
eϕ − 2iβez

)
,

V±1(r) = ∓1

2
f
[
iβ(er ∓ ipeϕ ) + e′

z ± pl

r
ez

]
,

V±2(r) = 1

2

[
e′

r ∓ ipe′
ϕ − 1 ∓ pl

r
(er ∓ ipeϕ )

]
. (12)
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Here, the notations e′
r,ϕ,z = ∂er,ϕ,z/∂r have been introduced.

Equations (12) show that the factors Vq(r) depend on r but not
on ϕ and z. Then, it follows from Eq. (11) that the dependence
of the sum

∑
i j u(M ′−M )

i j (∂E j/∂xi ) on ϕ is given by the phase

factor ei(pl−M ′+M )ϕ , and hence so is the dependence of the Rabi
frequency 
 on ϕ [see Eq. (6)]. This leads to

∂


∂ϕ
= i(pl − M ′ + M )
. (13)

Then, Eq. (10) yields

Tz = ih̄

2
(pl − M ′ + M )(ρge
 − ρeg


∗). (14)

Note that the time evolution equation for the population ρee of
the atomic upper state |e〉 reads [38]

ρ̇ee = i

2
(ρge
 − ρeg


∗) − �ρee. (15)

Here, � is the total rate of decay of the excited state |e〉. Hence,
the axial component Tz of the orbital torque of the driving field
on the atom satisfies the equation

Tz = h̄(pl − M ′ + M )(�ρee + ρ̇ee). (16)

Equation (16) is an expression of the angular momentum
conservation law. It governs the exchange of angular momen-
tum between the guided driving field and the two-level atom
with a quadrupole transition. According to this equation, the
magnitude and the sign of the axial torque Tz depend on the
factor h̄(pl − M ′ + M ), where h̄pl stands for the canonical
angular momentum of a photon in the guided driving field
in the Minkowski formulation [27,35–37], and h̄(M ′ − M )
stands for the change of the total internal-state (spin) angular
momentum of the atom due to an upward transition. The factor
�ρee + ρ̇ee on the right-hand side of Eq. (16) is the absorp-
tion rate, where �ρee is the scattering rate and ρ̇ee is the
atomic excitation rate [38]. Equation (16) indicates that the
angular momentum of absorbed guided photons is converted
into the orbital and spin angular momenta of the atomic sys-
tem. In addition, we see that the angular momentum of the
guided photon imparted on an atom near a nanofiber is of
the Minkowski form. This is in agreement with the results of
Refs. [35,42–48].

According to Eqs. (14) and (16), the torque Tz is vanishing
when pl = M ′ − M, that is, when the Minkowski angular
momentum h̄pl of an absorbed guided photon is equal to the
change h̄(M ′ − M ) of the angular momentum of the atomic
internal state. When pl 	= M ′ − M, a nonzero axial torque Tz

can appear. It is interesting to note that Eqs. (14) and (16) are
in agreement with the results for the torque of guided light on
a two-level atom with an electric dipole transition [27].

Equation (14) shows that the torque Tz depends on the
quadrupole-transition Rabi frequency 
 and the atomic co-
herence ρge. The time evolution of ρge is governed by the
equation [38]

ρ̇ge = i

2

∗(ρee − ρgg) − (i� + �/2)ρge, (17)

where � = ω − ω0 is the detuning of the field frequency. In
the weak-field limit, where the condition |
| 
 � is satisfied,
we can use the approximations ρee

∼= 0, ρgg
∼= 1, and ρ̇ge

∼= 0.

In this case, Eq. (17) yields ρge = 
∗/(i� − 2�). Inserting
this expression for ρge into Eq. (14), we obtain

Tz = h̄(pl − M ′ + M )
|
|2

4�2 + �2
�. (18)

It is clear that if 
 	= 0 then we have Tz < 0 or Tz > 0 for
pl < M ′ − M or pl > M ′ − M, respectively.

The condition ρee + ρgg = 1 was not used in deriving
Eq. (18). Consequently, this equation is valid in the weak-field
limit not only for a closed two-level atom but also for an open
two-level atom where the upper state |e〉 can decay not only
into the ground state |g〉 but also into some other lower states.
In the latter case, the total decay rate � of |e〉 includes not
only the rate of decay into |g〉 but also the rate of decay into
the other lower states. This situation is close to the experiment
on the excitation of the electric quadrupole transition between
the ground state 5S1/2 and the excited state 4D3/2 of a 87Rb
atom [28]. In this atom, the decay of the state 4D3/2 is mainly
determined by the electric dipole transitions to the states 5P1/2

and 5P3/2.
Equation (18) is not valid when the weak-field condition

|
| 
 � is not satisfied. However, the validity of Eq. (16)
does not require this condition to be satisfied. In the steady-
state regime, Eq. (16) reduces to Tz = h̄(pl − M ′ + M )�ρee.
In the particular case of a closed two-level atom, the popu-
lation ρee of the excited level |e〉 in the steady-state regime is
given by the expression ρee = |
|2/(4�2 + �2 + 2|
|2) [38],
which leads to

Tz = h̄(pl − M ′ + M )
|
|2

4�2 + �2 + 2|
|2 �. (19)

In the limit of high driving-field powers, we have ρee → 1/2.
Hence, the saturation limiting value of the torque Tz is T ∞

z =
h̄(pl − M ′ + M )�/2.

Like the absorption of light, the scattering of light also
changes the angular momentum of the atom. The description
of the scattering is beyond the framework of the model Hamil-
tonian (4). We briefly discuss here the torque of scattering of
light on a closed two-level atom with a quadrupole transition
near a nanofiber. Similar to the case of atoms with dipole
transitions [27], the axial orbital torque of scattering of light
due to the quadrupole transition between the magnetic levels
M ′ and M of the atom is found to be T (scatt)

z = ρeeT (spon)
z ,

where T (spon)
z is the axial orbital torque due to quadrupole

spontaneous emission and is given as

T (spon)
z = h̄(M ′ − M )�M ′M − h̄

∑
μ0

plγμ0 − h̄
∑
ν0

lγν0 . (20)

In Eq. (20), γμ0 and γν0 are the rates of quadrupole sponta-
neous emission into the resonant guided mode μ0 = (ω0N f p)
and the resonant radiation mode ν0 = (ω0βl p), and �M ′M =∑

μ0
γμ0 + ∑

ν0
γν0 is the total quadrupole decay rate. The in-

dex μ = (ωN f p) labels the guided modes, where N = HElm,
EHlm, TE0m, or TM0m is the mode type. Here, l = 1, 2, . . .

for HE and EH modes or 0 for TE and TM modes and
m = 1, 2, . . . are the azimuthal and radial mode orders [33].
The index ν = (ωβl p) labels the radiation modes, where l =
0,±1,±2, . . . is the mode order and p = + or − is the mode
polarization index [33].

013712-4



TRANSFER OF ANGULAR MOMENTUM OF GUIDED LIGHT … PHYSICAL REVIEW A 106, 013712 (2022)

IV. NUMERICAL RESULTS

In this section, we present the results of numerical calcula-
tions for the axial torque Tz of the guided light field on an atom
with an electric quadrupole transition. As an example, we
study the electric quadrupole transition between the ground
state 5S1/2 and the excited state 4D5/2 of a 87Rb atom. For
this transition, we have L = 0, J = 1/2, L′ = 2, J ′ = 5/2,
and I = 3/2. The wavelength of the transition is λ0 = 516.5
nm. It is known that the experimentally measured oscillator
strength of the quadrupole transition 5S1/2 → 4D5/2 in free
space is f (0)

JJ ′ = 8.06 × 10−7 [49]. The reduced quadrupole
matrix element 〈n′J ′‖T (2)‖nJ〉 is calculated from f (0)

JJ ′ by using
the relation [32,50]

f (0)
JJ ′ = meω

3
0

20h̄c2

|〈n′J ′‖T (2)‖nJ〉|2
2J + 1

, (21)

where me is the mass of an electron. In our numerical calcu-
lations, we assume that the driving field is at exact resonance
with the atom (ω = ω0).

The axial torque Tz depends on the Rabi frequency 
. We
plot in Fig. 2 the absolute value |
| of the Rabi frequency
for the quadrupole transition between the sublevel M = 2 of
the hyperfine-structure (hfs) level 5S1/2F = 2 and a sublevel
M ′ of the hfs level 4D5/2F ′ = 4 as a function of the radial
distance r for different magnetic quantum numbers M ′ = 0,
1, 2, 3, and 4 and different guided mode types HE11, TE01,
TM01, and HE21. Figure 2 shows that |
| decreases almost
exponentially with increasing radial distance r. The steep
slope in the radial dependence of |
| is a consequence of
the evanescent-wave behavior of the guided field outside the
fiber. We observe from Fig. 2 that |
| depends on the type
of the guided mode and the magnetic quantum numbers of
the atomic transition. Note that the dashed green curve in
Fig. 2(c), which stands for the case of the atom with the
levels M ′ = M = 2 interacting with the field in the TE mode,
is zero [51]. This is a consequence of the specific proper-
ties of the TE mode and the quadrupole operator Qi j for
the transition |F = 2, M = 2〉 → |F ′ = 4, M ′ = 2〉 with the
quantization axis x3 ‖ z.

The axial torque Tz also depends on the decay rate � of
the excited state. For the level 4D5/2 of atomic rubidium,
� is mainly determined by the dipole transition from this
level to the level 5P3/2 with the wavelength 1528.95 nm [52].
When the atom is in free space, the decay rate is � = �0 =
1.119 × 107 s−1 [53]. When the atom is in the vicinity of
a nanofiber, � is modified [54]. We use the technique of
Ref. [54] to calculate �. We plot in Fig. 3 the radial depen-
dencies of � for different magnetic sublevels M ′ of the hfs
level 4D5/2F ′ = 4. The figure shows that � is enhanced and
depends on the magnetic sublevel M ′ and the radial distance
r. It is interesting to note that all the curves for different M ′
cross each other at a radial point r/a ∼= 2.12. The reason is
that at this point the fiber-modified decay rates for the σ±
and π transitions are equal to each other and, hence, the
decay rate of the magnetic sublevel M ′ does not depend on
M ′.

We use Eq. (18) to calculate the torque Tz produced by
the quadrupole transition between the sublevel M = 2 of
the hfs level 5S1/2F = 2 and a sublevel M ′ of the hfs level

r/a

| /
 2

  (
k
H

z)

M’=0 (a)

(b)M’=1

(c)M’=2

(d)M’=3

(e)M’=4

HE11
TE01
TM01
HE21

FIG. 2. Absolute value of the Rabi frequency 
 for the
quadrupole transition between the sublevel M = 2 of the hfs level
5S1/2F = 2 and a sublevel M ′ of the hfs level 4D5/2F ′ = 4 of a 87Rb
atom as a function of the radial distance r for different magnetic
quantum numbers M ′ = 0, 1, 2, 3, and 4 and different guided mode
types HE11, TE01, TM01, and HE21. The fiber radius is a = 280 nm.
The wavelength of the atomic transition is λ0 = 516.5 nm. The re-
fractive indices of the fiber and the vacuum cladding are n1 = 1.4615
and n2 = 1, respectively. The power of the guided light field is 1
nW. The field propagates in the +z direction, and the hybrid modes
HE11 and HE21 are counterclockwise quasicircularly polarized. The
quantization axis is x3 ‖ z.

4D5/2F ′ = 4 of a 87Rb atom. We plot in Fig. 4 the torque Tz

as a function of the radial distance r for different magnetic
quantum numbers M ′ = 0, 1, 2, 3, and 4 and different guided
mode types HE11, TE01, TM01, and HE21. We observe that the
torque depends on the atomic transition and the field mode.
The dashed green and dotted blue curves in Fig. 4(c) show that
Tz is vanishing for the TE and TM modes (with l = 0) in the
case M ′ − M = 0. Similarly, the solid red curve in Fig. 4(d)
and the dash-dotted magenta curve in Fig. 4(e) indicate that
Tz = 0 for the HE11 mode (with l = 1) in the case M ′ − M =
1 and for the HE21 mode (with l = 2) in the case M ′ − M = 2.
Such a vanishing of the torque Tz occurs when pl = M ′ − M
[see Eq. (18)], that is, when the angular momentum per photon
is equal to the change in the angular momentum of the atomic
internal state per transition. When pl 	= M ′ − M, the torque Tz

is nonzero and is governed by the conservation law expression
(16). It is interesting to note from Fig. 4 that the sign of Tz can
be positive or negative depending on the sign of the factor
pl − M ′ + M [see Eq. (18)]. Comparison between the solid
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r/a

/
0

2
1

4
3

|M’| = 0

FIG. 3. Dipole decay rate � for a magnetic sublevel M ′ of the
hfs level 4D5/2F ′ = 4 of a 87Rb atom as a function of the radial
distance r for different quantum numbers |M ′| = 0, 1, 2, 3, and 4. The
fiber radius is a = 280 nm. The wavelength of the dipole transition
between the levels 4D5/2 and 5P3/2 is 1528.95 nm. The corresponding
refractive index of the fiber is n1 = 1.4443. The rate is normalized to
the free-space atomic decay rate �0 = 1.119 × 107 s−1.

red and dash-dotted magenta curves of Fig. 4 shows that the
absolute value of the torque for the higher-order mode HE21

(see the dash-dotted magenta curves) is larger than that of
the torque for the fundamental mode HE11 (see the solid red
curves) except for the case of Fig. 4(e), where the torque for
the mode HE21 is vanishing for pl = M ′ − M = 2.

We note that the maximal values of the axial torque Tz

in Fig. 4 are on the order of 0.6 zN nm [see the dot-
ted blue curve in Fig. 4(e)]. The power of 1 nW for the
driving guided field is used in our numerical calculations.
For the radial distance r = 300 nm from the fiber center,
the corresponding azimuthal force Fϕ is on the order of
0.002 zN. Such an optical quadrupole force is significantly
weaker than the typical dipole forces (∼10 zN) on single
atoms in laser cooling and trapping techniques [38]. By
increasing the power of the guided driving field, we can
achieve larger forces and torques on atoms with quadrupole
transitions. Note that the power of a few μW for the
driving guided field was used in the experiment [28]. For
such a power, an azimuthal force on the order of 1 zN
and an axial torque on the order of 1000 zN nm can be
achieved.

We do not calculate numerically the torque of scattering
(re-emission) of light from an atom in a magnetic sublevel
M ′ of the hfs state 4D5/2F ′ = 4. The scattering from this
state is mainly determined by the dipole transition between it
and the state 5P3/2F = 3. The numerical calculations for the
torque produced by this scattering process would involve the
multilevel structure of the atom and are beyond the scope of
this paper. In the framework of the model of a two-level atom
with a dipole transition, the torque of scattering of nanofiber-
guided light has been studied analytically and numerically
[27].

r/a

M’=0 (a)

(b)M’=1

(c)M’=2

(d)M’=3

(e)M’=4

HE11
TE01
TM01
HE21

T z (
zN

 n
m

)

FIG. 4. Torque Tz produced by the quadrupole transition between
the sublevel M = 2 of the hfs level 5S1/2F = 2 and a sublevel M ′ of
the hfs level 4D5/2F ′ = 4 of a 87Rb atom as a function of the radial
distance r for different magnetic quantum numbers M ′ = 0, 1, 2,
3, and 4 and different guided mode types N = HE11, TE01, TM01,
and HE21. The field detuning is � = 0. Other parameters are as for
Figs. 2 and 3.

V. SUMMARY

In conclusion, we have studied the transfer of angular mo-
mentum of guided photons to a two-level atom with an electric
quadrupole transition near an optical nanofiber. We have
shown that the generation of the axial orbital torque of the
driving guided field on the atom is governed by the internal-
state selection rules for the quadrupole transition and by the
angular momentum conservation law with the photon angular
momentum given in the Minkowski formulation. This result
indicates that the external and internal degrees of freedom of
the atom are coupled to each other due to the interaction with
the guided light field. We have found that the torque depends
on the photon angular momentum, the change in the angular
momentum of the atomic internal state, and the quadrupole-
transition Rabi frequency. We have calculated numerically the
torques for the quadrupole transitions between the sublevel
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M = 2 of the hfs level 5S1/2F = 2 and the sublevels M ′ = 0,
1, 2, 3, and 4 of the hfs level 4D5/2F ′ = 4 of a 87Rb atom.
We have shown that the absolute value of the torque for the
higher-order mode HE21 is larger than that of the torque for
the fundamental mode HE11 except for the case M ′ − M = 2,
where the torque for the mode HE21 is vanishing.

Our scheme is based on the model of a two-level emitter
with the energy level structure and parameters of alkali-metal
atoms. Modifications and extensions of the theory are re-
quired for the applications to other types of emitters, such
as ions, molecules, and particles. However, the underlying
physics of angular momentum exchange between an emit-
ter and a photon does not depend on the nature of the
emitter.

Our results could be used to generate, control, and manip-
ulate the rotational motion of atoms, molecules, and particles
using nanofiber guided light. They may have significant influ-
ence on future experiments in nanofiber optics.

ACKNOWLEDGMENTS

The authors are thankful to M. Babiker and J. Everett for
useful discussions. The authors acknowledge support from the
Okinawa Institute of Science and Technology (OIST) Gradu-
ate University and from the Japan Society for the Promotion
of Science (JSPS) Grant-in-Aid for Scientific Research (C)
under Grants No. 19K05316 and No. 20K03795.

[1] Optical Orbital Angular Momentum, edited by S. M. Barnett, M.
Babiker, and M. J. Padgett, Phil. Trans. R. Soc. A 375, theme
issue 2087 (2017).

[2] S. Franke-Arnold, Optical angular momentum and atoms,
Philos. Trans. R. Soc. A 375, 20150435 (2017).

[3] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-
Dunlop, Direct Observation of Transfer of Angular Momentum
to Absorptive Particles from a Laser Beam with a Phase Singu-
larity, Phys. Rev. Lett. 75, 826 (1995).

[4] M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R.
Heckenberg, Optical angular-momentum transfer to trapped ab-
sorbing particles, Phys. Rev. A 54, 1593 (1996).

[5] N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett,
Mechanical equivalence of spin and orbital angular mo-
mentum of light: an optical spanner, Opt. Lett. 22, 52
(1997).

[6] V. Garcés-Chavéz, D. McGloin, M. J. Padgett, W. Dultz, H.
Schmitzer, and K. Dholakia, Observation of the Transfer of
the Local Angular Momentum Density of a Multiringed Light
Beam to an Optically Trapped Particle, Phys. Rev. Lett. 91,
093602 (2003).

[7] M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila
Romero, Orbital Angular Momentum Exchange in the Inter-
action of Twisted Light with Molecules, Phys. Rev. Lett. 89,
143601 (2002).

[8] M. van Veenendaal and I. McNulty, Prediction of Strong
Dichroism Induced by X Rays Carrying Orbital Momentum,
Phys. Rev. Lett. 98, 157401 (2007).

[9] M. Babiker, W. L. Power, and L. Allen, Light-induced Torque
on Moving Atoms, Phys. Rev. Lett. 73, 1239 (1994).

[10] A. Picón, A. Benseny, J. Mompart, J. R. Vázquez de Aldana,
L. Plaja, G. F. Calvo, and L. Roso, Transferring orbital and spin
angular momenta of light to atoms, New J. Phys. 12, 083053
(2010).

[11] A. Afanasev, C. E. Carlson, and A. Mukherjee, Off-axis exci-
tation of hydrogenlike atoms by twisted photons, Phys. Rev. A
88, 033841 (2013).

[12] V. E. Lembessis and M. Babiker, Enhanced Quadrupole Effects
for Atoms in Optical Vortices, Phys. Rev. Lett. 110, 083002
(2013).

[13] R. Inoue, N. Kanai, T. Yonehara, Y. Miyamoto, M. Koashi, and
M. Kozuma, Entanglement of orbital angular momentum states

between an ensemble of cold atoms and a photon, Phys. Rev. A
74, 053809 (2006).

[14] D. Moretti, D. Felinto, and J. W. R. Tabosa, Collapses and
revivals of stored orbital angular momentum of light in a cold-
atom ensemble, Phys. Rev. A 79, 023825 (2009).

[15] A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and
J. Laurat, A quantum memory for orbital angular momentum
photonic qubits, Nat. Photonics 8, 234 (2014).

[16] N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and
S. Franke-Arnold, Spatially Dependent Electromagnetically In-
duced Transparency, Phys. Rev. Lett. 114, 123603 (2015).

[17] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Vortex Formation in a Stirred Bose-Einstein Condensate, Phys.
Rev. Lett. 84, 806 (2000).

[18] M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K.
Helmerson, and W. D. Phillips, Quantized Rotation of Atoms
from Photons with Orbital Angular Momentum, Phys. Rev.
Lett. 97, 170406 (2006).

[19] C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson,
and W. D. Phillips, Observation of Persistent Flow of a Bose-
Einstein Condensate in a Toroidal Trap, Phys. Rev. Lett. 99,
260401 (2007).

[20] K. C. Wright, L. S. Leslie, and N. P. Bigelow, Optical control of
the internal and external angular momentum of a Bose-Einstein
condensate, Phys. Rev. A 77, 041601(R) (2008).

[21] M. Donaire, M. P. Gorza, A. Maury, R. Guérout, and
A. Lambrecht, Casimir–Polder-induced Rabi oscillations,
Europhys. Lett. 109, 24003 (2015).

[22] S. A. Gangaraj, M. G. Silveirinha, G. W. Hanson, M. Antezza,
and F. Monticone, Optical torque on a two-level system near
a strongly nonreciprocal medium, Phys. Rev. B 98, 125146
(2018).

[23] L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I.
Maxwell, and E. Mazur, Subwavelength-diameter silica wires
for low-loss optical wave guiding, Nature (London) 426, 816
(2003).

[24] T. Nieddu, V. Gokhroo, and S. Nic Chormaic, Optical nanofi-
bres and neutral atoms, J. Opt. 18, 053001 (2016).

[25] P. Solano, J. A. Grover, J. E. Homan, S. Ravets, F. K. Fatemi,
L. A. Orozco, and S. L. Rolston, Optical nanofibers: a new
platform for quantum optics, Adv. At., Mol., Opt. Phys. 66, 439
(2017).

013712-7

https://doi.org/10.1098/rsta.2015.0435
https://doi.org/10.1103/PhysRevLett.75.826
https://doi.org/10.1103/PhysRevA.54.1593
https://doi.org/10.1364/OL.22.000052
https://doi.org/10.1103/PhysRevLett.91.093602
https://doi.org/10.1103/PhysRevLett.89.143601
https://doi.org/10.1103/PhysRevLett.98.157401
https://doi.org/10.1103/PhysRevLett.73.1239
https://doi.org/10.1088/1367-2630/12/8/083053
https://doi.org/10.1103/PhysRevA.88.033841
https://doi.org/10.1103/PhysRevLett.110.083002
https://doi.org/10.1103/PhysRevA.74.053809
https://doi.org/10.1103/PhysRevA.79.023825
https://doi.org/10.1038/nphoton.2013.355
https://doi.org/10.1103/PhysRevLett.114.123603
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.97.170406
https://doi.org/10.1103/PhysRevLett.99.260401
https://doi.org/10.1103/PhysRevA.77.041601
https://doi.org/10.1209/0295-5075/109/24003
https://doi.org/10.1103/PhysRevB.98.125146
https://doi.org/10.1038/nature02193
https://doi.org/10.1088/2040-8978/18/5/053001
https://doi.org/10.1016/bs.aamop.2017.02.003


LE KIEN, NIC CHORMAIC, AND BUSCH PHYSICAL REVIEW A 106, 013712 (2022)

[26] K. Nayak, M. Sadgrove, R. Yalla, F. Le Kien, and K.
Hakuta, Nanofiber quantum photonics, J. Opt. 20, 073001
(2018).

[27] F. Le Kien and Th. Busch, Torque of guided light on an
atom near an optical nanofiber, Opt. Express 27, 15046
(2019).

[28] T. Ray, R. K. Gupta, V. Gokhroo, J. L. Everett, T. Nieddu,
K. S. Rajasree, and S. Nic Chormaic, Observation of the
87Rb 5S1/2 to 4D3/2 electric quadrupole transition at 516.6 nm
mediated via an optical nanofibre, New J. Phys. 22, 062001
(2020).

[29] S. Bougouffa and M. Babiker, Quadrupole absorption rate and
orbital angular momentum transfer for atoms in optical vortices,
Phys. Rev. A 102, 063706 (2020).

[30] S. M. Barnett, F. C. Speirits, and M. Babiker, Optical angular
momentum in atomic transitions: a paradox, J. Phys. A: Math.
Theor. 55, 234008 (2022).

[31] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[32] D. F. V. James, Quantum dynamics of cold trapped ions with
application to quantum computation, Appl. Phys. B 66, 181
(1998).

[33] D. Marcuse, Light Transmission Optics (Krieger, Malabar, FL,
1989); A. W. Snyder and J. D. Love, Optical Waveguide Theory
(Chapman & Hall, New York, 1983); K. Okamoto, Fundamen-
tals of Optical Waveguides (Elsevier, New York, 2006).

[34] F. Le Kien, Th. Busch, V. G. Truong, and S. Nic Chormaic,
Higher-order modes of vacuum-clad ultrathin optical fibers,
Phys. Rev. A 96, 023835 (2017).

[35] M. Partanen and J. Tulkki, Light-driven mass density wave
dynamics in optical fibers, Opt. Express 26, 22046 (2018).

[36] F. Le Kien, V. I. Balykin, and K. Hakuta, Angular momentum
of light in an optical nanofiber, Phys. Rev. A 73, 053823 (2006).

[37] M. F. Picardi, K. Y. Bliokh, F. J. Rodríguez-Fortuño, F.
Alpeggiani, and F. Nori, Angular momenta, helicity, and other
properties of dielectric-fiber and metallic-wire modes, Optica 5,
1016 (2018).

[38] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping
(Springer, New York, 1999).

[39] A. P. Kazantsev, G. J. Surdutovich, and V. P. Yakovlev, Me-
chanical Action of Light on Atoms (World Scientific, Singapore,
1990).

[40] R. Grimm, M. Weidemüller, and Yu. B. Ovchinnikov, Optical
dipole traps for neutral atoms, Adv. At., Mol., Opt. Phys. 42, 95
(2000).

[41] V. I. Balykin, V. G. Minogin, and V. S. Letokhov, Electromag-
netic trapping of cold atoms, Rep. Prog. Phys. 63, 1429 (2000).

[42] R. V. Jones and B. Leslie, The measurement of optical radiation
pressure in dispersive media, Proc. R. Soc. London A 360, 347
(1978).

[43] G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W.
Streed, W. Ketterle, and D. E. Pritchard, Photon Recoil Momen-
tum in Dispersive Media, Phys. Rev. Lett. 94, 170403 (2005).

[44] P. W. Milonni and R. W. Boyd, Recoil and photon momentum
in a dielectric, Laser Phys. 15, 1432 (2005).

[45] D. H. Bradshaw, Z. Shi, R. W. Boyd, and P. W. Milonni, Elec-
tromagnetic momenta and forces in dispersive dielectric media,
Opt. Commun. 283, 650 (2010).

[46] S. A. Hassani Gangaraj, G. W. Hanson, M. Antezza, and M. G.
Silveirinha, Spontaneous lateral atomic recoil force close to
a photonic topological material, Phys. Rev. B 97, 201108(R)
(2018).

[47] M. G. Silveirinha, S. A. H. Gangaraj, G. W. Hanson, and M.
Antezza, Fluctuation-induced forces on an atom near a photonic
topological material, Phys. Rev. A 97, 022509 (2018).

[48] M. Partanen and J. Tulkki, Mass-polariton theory of sharing the
total angular momentum of light between the field and matter,
Phys. Rev. A 98, 033813 (2018).

[49] J. Nilsen and J. Marling, Oscillator strengths of the first forbid-
den lines of rubidium, J. Quant. Spectrosc. Radiat. Transfer 20,
327 (1978).

[50] S. Tojo and M. Hasuo, Oscillator-strength enhancement of
electric-dipole-forbidden transitions in evanescent light at total
reflection, Phys. Rev. A 71, 012508 (2005).

[51] F. Le Kien, T. Ray, T. Nieddu, T. Busch, and S. Nic Chormaic,
Enhancement of the quadrupole interaction of an atom with
the guided light of an ultrathin optical fiber, Phys. Rev. A 97,
013821 (2018).

[52] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team
(2021), NIST Atomic Spectra Database, Version 5.9, available
at https://physics.nist.gov/asd (January 18, 2022), National In-
stitute of Standards and Technology, Gaithersburg, MD, doi:
https://doi.org/10.18434/T4W30F.

[53] M. S. Safronova and U. I. Safronova, Critically evaluated the-
oretical energies, lifetimes, hyperfine constants, and multipole
polarizabilities in 87Rb, Phys. Rev. A 83, 052508 (2011).

[54] F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, Spon-
taneous emission of a cesium atom near a nanofiber: Efficient
coupling of light to guided modes, Phys. Rev. A 72, 032509
(2005).

013712-8

https://doi.org/10.1088/2040-8986/aac35e
https://doi.org/10.1364/OE.27.015046
https://doi.org/10.1088/1367-2630/ab8265
https://doi.org/10.1103/PhysRevA.102.063706
https://doi.org/10.1088/1751-8121/ac6bd1
https://doi.org/10.1007/s003400050373
https://doi.org/10.1103/PhysRevA.96.023835
https://doi.org/10.1364/OE.26.022046
https://doi.org/10.1103/PhysRevA.73.053823
https://doi.org/10.1364/OPTICA.5.001016
https://doi.org/10.1016/S1049-250X(08)60186-X
https://doi.org/10.1088/0034-4885/63/9/202
https://doi.org/10.1098/rspa.1978.0072
https://doi.org/10.1103/PhysRevLett.94.170403
https://doi.org/10.1016/j.optcom.2009.10.056
https://doi.org/10.1103/PhysRevB.97.201108
https://doi.org/10.1103/PhysRevA.97.022509
https://doi.org/10.1103/PhysRevA.98.033813
https://doi.org/10.1016/0022-4073(78)90138-3
https://doi.org/10.1103/PhysRevA.71.012508
https://doi.org/10.1103/PhysRevA.97.013821
https://physics.nist.gov/asd
https://doi.org/10.18434/T4W30F
https://doi.org/10.1103/PhysRevA.83.052508
https://doi.org/10.1103/PhysRevA.72.032509

