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Visualizing the breakdown of quantum multimodality in coherently driven light-matter interaction
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We show that the saturation of a multiphoton transition is accompanied by a gradual collapse of quantum
multimodality in the strong-coupling limit of the weakly driven Jaynes-Cummings (JC) model. By means
of a perturbative method, we illustrate the prominent role of quantum fluctuations by focusing on the two-
and three-photon resonance operation in a regime where the steady-state average photon number is below or
marginally above unity. We also reveal two coexistent quantum beats in the intensity correlation function of the
forwards scattered photons. These beats, originating from the states mediating the cascaded decay, arise as a
direct consequence of the distinct JC spectrum. Their interference coordinates with the alternation of positive
and negative values of the Wigner function around the phase-space origin in the transient conditioned on a
photodetection.
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I. INTRODUCTION

The response of fluctuating nonlinear oscillators with
no analog in thermal equilibrium systems has guided the
development of several branches in modern physics, from
the manifestation of collective dynamical phenomena in
coupled mechanical resonators [1,2] to the investigation of
dissipative quantum phase transitions in zero dimensions in
circuit quantum electrodynamics (circuit QED) [3]. A pivotal
direction among these ramifications is enabled by current
experimental advancements in quantum optics focusing on
operating regimes where the treatment of fluctuations can
no longer rely on concepts adapted to the small-noise limit
[4]. A characteristic example in this direction is provided by
the occurrence photon blockade as a dynamical phenomenon
in driven systems with an anharmonic spectrum [5–7]; the
absorption of n photons establishes an effective two-level
structure which blocks the absorption of an additional
incoming n + 1 photon. This effect is naturally linked to
photon antibunching and sub-Poissonian statistics [8–13],
arising as distinct quantum features.

Not only is the photon blockade dynamical, but also its
breakdown, relying in a fundamental way on the open char-
acter of the system, as does the occurrence of single-atom
bistability (the mechanism by means of which photon block-
ade breaks down) first reported in 1988 [14] and subsequently
demonstrated in an experiment by Kerckhoff and coworkers
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[15] in the presence of detuning, using a homodyne measure-
ment scheme. Photon blockade breakdown, alongside its link
to spontaneous symmetry breaking in a second-order quantum
phase transition with critical scaling on resonance [16–18]
(anticipated by the collapse of the quasienergy spectrum at
threshold [19]) explicitly uncovers the role of one, two, three,
or more quanta in producing energy level shifts and mul-
tiphoton transitions that are missed from the semiclassical
nonlinear response in the presence of detuning. It is this very
regime which is subject to a strong-coupling “thermodynamic
limit” where quantum fluctuations persist and multipho-
ton resonances of higher order appear, turning increasingly
sharper as the associated system-size parameter (scaling with
the square of the ratio between the light-matter interaction
strength and the cavity decay rate) tends to infinity [20].

The two-photon resonance for a single atom trapped in a
high-finesse optical cavity was studied in 2008 at the focus
of an experiment that “enters a new regime, with nonlinear
quantum optics at the level of individual atomic and photonic
quanta” [21]. In this report, the authors commented that
“according to bistability theory, we are operating on the
lower branch, where the corresponding nonlinear response
is small...Indeed, the reported nonlinearity occurs with an
occupation probability of the atomic excited state of at most
0.07. This is what makes it radically different from and
dominant over the standard saturation nonlinearity for a
two-state atom.” Shortly after this demonstration, Bishop and
collaborators [22] provided direct evidence on the extended
Jaynes-Cummings (JC) energy spectrum in one of the most
characteristic experiments of circuit QED (see also the pre-
ceding experimental evidence of the

√
n JC nonlinearity [23]),

and built upon the early concepts of photon blockade [4,24]
to interpret vacuum Rabi splitting, five years after the vacuum
Rabi frequency was shown to exceed the qubit and cavity
damping rates [25]. In the quest of light sources producing
bound states of multiple photons [26], the nonclassical prop-
erties evinced by third- and fourth-order correlation functions
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FIG. 1. From tri to quadmodality across adjacent resonances. Average photon number in the steady state, 〈n〉ss, obtained from the solution of
the master equation for the driven and damped JC model, as a function of the dimensionless drive detuning �ωd/g for εd/g = 0.05, 0.06, 0.07,
and 0.09 in frames (a)–(d), respectively. The left (right) peak in each panel corresponds to the three (four) photon resonance, while the left
(right) inset depicts a schematic contour plot of the Wigner distribution for the steady-state intracavity field at the peak location of the three
(four) photon resonance. We take g/γ = 500 and γ /(2κ ) = 1.

were used to assess the multiphoton states of light emanating
from a photonic crystal nanocavity strongly coupled to a
quantum dot [27–29]. As well as appealing to higher-order
correlations, the first experimental observation of the
two-photon blockade for a single 87Rb atom interacting with
a resonant mode of a high-finesse Fabry-Pérot cavity [6] came
with the violation of the Cauchy-Schwarz inequality as the
intensity correlation function falls below its zero-delay value.

From the above background, it becomes clear that some
key pieces are missing to complete the puzzle of what lies
behind a multiphoton resonance established in a quantum non-
linear oscillator with light-matter coupling. Prompted by the
explanation in the above paragraph provided by Schuster and
collaborators in [21], as well as by the recent demonstration of
bimodality in the JC two-photon resonance [30] and some of
the multimodal profiles presented in [31] when asymptotically
assessing the strong-coupling limit of light-matter interac-
tion, we may ask again what is the place of multistability
in what appears to be the saturation of an effective two-level
transition? How are we to understand the nonclassical nature
of such an output photon stream from the visualization of
fluctuations within the quantum-classical correspondence in
the language of quasiprobability distributions [4,32]? To set
the scene, Fig. 1 depicts the collapse of trimodality in favor
of a developing quadmodality for increasing drive strength,
exposing a background of nonlinearity which deviates sub-
stantially from the predictions of mean-field theory.

In this article, we delve into the phase-space representation
of the electromagnetic field in the open driven JC model deep
into the strong-coupling limit. We will find that the saturation
of a multiphoton resonance comes along with the collapse of
multimodality in a region where quantum fluctuations leave
an indelible mark. This mark is also imprinted on the second-
order coherence of the emitted radiation. After formulating
the secular approximation in the dressed-state basis in Sec. II,
we derive the rate equations for the matrix elements of the
system density operator in Sec. III. These results are used
for the determination of the quasiprobability distribution of
the intracavity field in Sec. IV, and subsequently for the

calculation of the intensity correlation function for the for-
wards scattered photons in Sec. V. Our main findings are
discussed in light of their experimental verification in current
setups of multiphoton quantum nonlinear optics, before being
briefly summarized in the Conclusion.

II. MASTER EQUATION IN THE DRESSED-STATE BASIS

Within the standard description, the system density matrix
ρ obeys the Lindblad master equation (ME)

dρ

dt
=Lρ ≡ −i[ω0(σ+σ− + a†a) + g(aσ+ + a†σ−), ρ]

− i[(ε∗
daeiωd t + εd a†e−iωd t ), ρ]

+ κ (2aρa† − a†aρ − ρa†a)

+ γ

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (1)

where a and a† are the annihilation and creation operators for
the cavity photons, σ+ and σ− are the raising and lowering
operators for the two-level atom, g is the dipole coupling
strength, 2κ is the rate at which photons are lost from the
cavity, and γ is the spontaneous emission rate for the atom
to modes other than the privileged cavity mode. The cavity
is coherently driven with a field of amplitude εd (assumed to
be real, without loss of generality) and frequency ωd defining
the detuning �ωd ≡ ωd − ω0. Hereinafter, we operate in the
strong-coupling limit with g/κ = 103 in keeping with [22,33],
while we select γ /(2κ ) = 1 as an impedance matching condi-
tion, which considerably simplifies the analysis (see [4,33]).

In the strong-coupling limit (g � κ, γ /2) the problem re-
duces to a minimal model accounting for the multiphoton
transition, which is resonantly excited in the weak excitation
regime. Such a perturbative treatment, formally developed
under the guidance of [34], was derived in [33] on the basis
of adiabatic elimination of intermediate states to assess the
first- and second-order coherence of the forwards scattered
light for the two-photon resonance in one-atom cavity QED,
essentially employs an expansion in powers of εd/g � 1. Our
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FIG. 2. Schematic representation of the effective model display-
ing six shifted dressed-state levels. The three-photon Rabi frequency
is denoted by 	 while the displayed levels are shifted energy lev-
els (see the Appendix). The intermediate levels |ξ1〉, |ξ2〉, |ξ3〉, |ξ4〉,
marked by dashed lines, are occupied via the cascaded decay and
are responsible for the formation of the two quantum beats of partial
visibility.

interest here is primarily with the three-photon resonance for
which we employ the model depicted in Fig. 2. The first six
JC dressed states between which transitions are constrained to
occur, starting from the ground state, are denoted by

|ξ0〉 ≡ |0,−〉, (2a)

|ξ1〉 ≡ 1√
2

(|1,−〉 − |0,+〉), (2b)

|ξ2〉 ≡ 1√
2

(|1,−〉 + |0,+〉), (2c)

|ξ3〉 ≡ 1√
2

(|2,−〉 − |1,+〉), (2d)

|ξ4〉 ≡ 1√
2

(|2,−〉 + |1,+〉), (2e)

|ξ5〉 ≡ 1√
2

(|3,−〉 − |2,+〉), (2f)

where |n,±〉 ≡ |n〉 ⊗ |±〉, |n〉 is the Fock state of the cavity
field, while |+〉, |−〉 are the upper and lower states of the two-
level atom, respectively. We now proceed to make the secular
approximation [4,35] leading to the following effective ME in
the laboratory frame (see [36], Eq. (18) of [33] and Eq. (16)
of [37]):

dρ

dt
= − i[H̃eff , ρ] + �54D[|ξ4〉〈ξ5|](ρ)

+ �53D[|ξ3〉〈ξ5|](ρ) + �42D[|ξ2〉〈ξ4|](ρ)

+ �41D[|ξ1〉〈ξ4|](ρ) + �32D[|ξ2〉〈ξ3|](ρ)

+ �31D[|ξ1〉〈ξ3|](ρ) + �20D[|ξ0〉〈ξ2|](ρ)

+ �10D[|ξ0〉〈ξ1|](ρ), (3)

where the effective Hamiltonian governing the coherent dy-
namical evolution is

H̃eff ≡
5∑

k=0

Ẽk|ξk〉〈ξk| + h̄	(e3iωd t |ξ0〉〈ξ5| + e−3iωd t |ξ5〉〈ξ0|),

(4)

with Ẽk = Ek + h̄δk (εd ) (k = 0, 1, . . . , 5) the JC
eigenenergies dressed by the interaction with the drive.
In the effective ME of Eq. (3), we define as usual
D[X ](ρ) ≡ XρX † − (1/2){X †X, ρ}. The transition rates
between the dressed states, within the secular approximation,
read

�10 = �20 = 1
2γ + κ, (5a)

�31 = �42 = 1
4γ + 1

2κ (
√

2 + 1)2, (5b)

�32 = �41 = 1
4γ + 1

2κ (
√

2 − 1)2, (5c)

�53 = 1
4γ + 1

2κ (
√

3 +
√

2)2, (5d)

�54 = 1
4γ + 1

2κ (
√

3 −
√

2)2. (5e)

For the operating conditions we will be working with,
second and third powers of the ratio εd/g may be compa-
rable in size to κ/g or γ /g; this instance justifies keeping
the first-order terms in the dissipation rates that are produced
by superoperators of the Lindblad form. Explicit expressions
for the transition rates between dressed states �i j and the
energy shifts δk are given in Sec. III and the Appendix. The
three-photon Rabi frequency derives from the sum of four
pathways connecting the states |ξ5〉 and |ξ0〉 with nonzero
matrix elements of the perturbation εd (a† + a), yielding 	 ≈
11.7 ε3

d/g2. The three-photon resonance must be excited with
a drive detuning given by �ωd = −g/

√
3 + (1/3)(δ5 − δ0),

which is now an explicit function of the drive strength. To
truncate the ladder of the JC dressed states and form our
minimal model, we also note that the drive frequency for
three-photon absorption ω0 − g/

√
3 is far from resonance for

the occurrence of four-photon absorption, a condition which
requires (4 − 2

√
3)g � √

3(κ, γ /2).

III. RATE EQUATIONS IN THE SECULAR
APPROXIMATION

In this section, we detail the six-level effective model
upon which our perturbative treatment relies. The transition
rates involved in the dynamics are expanded in powers of
εd/g � 1, while we always operate in the strong-coupling
limit with g/κ = 103, within the secular approximation. To
simplify the calculations we consider the special case γ = 2κ ,
for which the frequency of the vacuum Rabi oscillation is
independent of the decoherence rates [4]. We will use our
results to the calculation of the intensity correlation function
for the forwards scattered photons, and the steady-state and
transient Wigner distributions of the intracavity field.

We start with recasting the system operators in the dressed-
state formalism. The annihilation operator in the dressed-state
basis, limited to the minimal set of orthogonal dressed states
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|ξ0〉 − |ξ5〉, is

a ≈ 1√
2
|ξ0〉〈ξ1| + 1√

2
|ξ0〉〈ξ2| +

√
2 + 1

2
|ξ1〉〈ξ3|

+
√

2 − 1

2
|ξ2〉〈ξ3| +

√
2 + 1

2
|ξ2〉〈ξ4| +

√
2 − 1

2
|ξ1〉〈ξ4|

+
√

3 + √
2

2
|ξ3〉〈ξ5| +

√
3 − √

2

2
|ξ4〉〈ξ5|. (6)

Taking the conjugate, we find that the photon-number operator
assumes the form

a†a ≈ (1/2)(|ξ1〉〈ξ1| + |ξ2〉〈ξ2| + |ξ2〉〈ξ1| + |ξ1〉〈ξ2|)
+ (3/2)(|ξ3〉〈ξ3| + |ξ4〉〈ξ4|)
+ (1/2)(|ξ3〉〈ξ4| + |ξ4〉〈ξ3|) + (5/2)|ξ5〉〈ξ5|. (7)

To assess the second-order coherence of the transmitted light
we require the intensity correlation function [4,38] (the steady

state is denoted by the subscript ss),

g(2)
→ (τ ) = 〈a†(0)a†(τ )a(τ )a(0)〉ss

〈a†a〉2
ss

= tr{a†(0)a(0)eLτ [a(0)ρssa†(0)]}
〈a†a〉2

ss

= 〈(a†a)(τ )〉ρ(0)=ρcond

〈a†a〉ss
, (8)

with reference to the ME (1). A photon emitted from the cavity
after the steady state is attained creates the superposition states

|ξ3〉 → |ψsuper, 1〉 =
√

2

3

(√
2 + 1

2
|ξ1〉 +

√
2 − 1

2
|ξ2〉

)
,

|ξ5〉 → |ψsuper, 2〉 =
√

2

5

(√
3 + √

2

2
|ξ3〉 +

√
3 − √

2

2
|ξ4〉

)
,

(9)

and also maps the population of the first-excited couplet to
the ground state. This is how the intermediate states |ξ1〉–|ξ4〉
enter the dynamics in the form of two quantum beats (in other
words, two coherent superpositions) originating from two JC
couplets. Therefore, as a result of conditioning on a photon
emission, the following density operator is prepared:

ρcond = 1

〈a†a〉ss

[
1

2
(p1 + p2)|ξ0〉〈ξ0| + 3

2
(p3 + p4)|ψsuper, 1〉〈ψsuper, 1| + 5

2
p5|ψsuper, 2〉〈ψsuper, 2|

]

= 6

25
|ξ0〉〈ξ0| + 9

25
|ψsuper, 1〉〈ψsuper, 1| + 10

25
|ψsuper, 2〉〈ψsuper, 2|, (10)

where the steady-state occupation probabilities of the six
dressed energy levels denoted by pi ≡ (ρii )ss, i = 0, 1, . . . , 5.
Taking the matrix elements with respect to the dressed-state
basis, we find

g(2)
→ (τ ) = tr{[eLτ ρcond]a†a}

〈a†a〉ss
= 〈(a†a)(τ )〉

〈a†a〉ss

∣∣∣∣∣
ρ(0)=ρcond

. (11)

In terms of the matrix elements in the dressed-state basis

〈(a†a)(τ )〉 = 1
2 [ρ11(τ ) + ρ22(τ ) + ρ12(τ )

+ ρ21(τ ) + ρ34(τ ) + ρ43(τ )]

+ 3
2 [ρ33(τ ) + ρ44(τ )] + 5

2ρ55(τ ).

We will now show that the photon number in the steady
state is

〈a†a〉ss = 1
2 (p1 + p2) + 3

2 (p3 + p4) + 5
2 p5, (12)

where we used Eq. (7). To this end, we determine the transi-
tion rates featuring in Fig. 2. Invoking the principle of detailed
balance (see also Sec. 3.2 of [33]), we obtain

�10 p1 = �31 p3 + �41 p4, (13a)

�20 p2 = �32 p3 + �42 p4, (13b)

�53 p5 = (�31 + �32)p3, (13c)

�54 p5 = (�42 + �41)p4, (13d)

For the special case γ = 2κ , the photon number in the
steady state in terms of p5 is

〈a†a〉ss = 1
2 × 3p5 + 3

2 × 3
2 p5 + 5

2 p5 = 25
4 p5. (14)

The equations of motion for the matrix elements involved read
(the dot means the derivative with respect to τ )

ρ̇00 = �10ρ11 + �20ρ22 − i	(ρ50e3iωd τ − ρ05e−3iωd τ ), (15a)

ρ̇11 = −�10ρ11 + �31ρ33 + �41ρ44, (15b)

ρ̇22 = −�20ρ22 + �32ρ33 + �42ρ44, (15c)

ρ̇33 = −(�31 + �32)ρ33 + �53ρ55, (15d)

ρ̇44 = −(�42 + �41)ρ44 + �54ρ55, (15e)

ρ̇55 = −(�53 + �54)ρ55 − i	(ρ05e−3iωd τ − ρ50e3iωd τ ), (15f)

ρ̇12 = ρ̇∗
21 = −(i/h̄)(Ẽ1 − Ẽ2)ρ12 − �10 + �20

2
ρ12, (15g)

ρ̇34 = ρ̇∗
43 = −(i/h̄)(Ẽ3 − Ẽ4)ρ34

− �31 + �41 + �32 + �42

2
ρ34, (15h)

ρ̇05 = ρ̇∗
50 = −(i/h̄)(Ẽ0 − Ẽ5)ρ05

− i	(ρ55 − ρ00)e3iωd τ − �53 + �54

2
ρ05. (15i)
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We now transform to a frame rotating with the drive via an
appropriate unitary transformation. The drive frequency must
be tuned to the three-photon transition, determined by

3ωd = 3ω0 −
√

3g + (δ5 − δ0), (16)

where the shifts δi (i = 0, 1, . . . , 5) account for the dressing
of the energy levels by the drive; we will calculate them
in the next section. Noting that Ẽ5 − Ẽ0 = h̄[3ω0 − √

3g +
(δ5 − δ0)], the coupled subset of Eqs. (15) is then conveniently
recast in the form [D ≡ Im(ρ05)]

ρ̇00 = γ (ρ11 + ρ22) − 2	D, (17a)

ρ̇11 + ρ̇22 = −γ (ρ11 + ρ22) + 2γ (ρ33 + ρ44), (17b)

ρ̇33 + ρ̇44 = −2γ (ρ33 + ρ44) + 3γ ρ55, (17c)

ρ̇55 = −3γ ρ55 + 2	D, (17d)

Ḋ = −	(ρ55 − ρ00) − 3
2γ D, (17e)

with initial conditions ρ00(0) = 6/25, D(0) = ρ55(0) = 0,
ρ11(0) + ρ22(0) = 9/25, ρ33(0) + ρ44(0) = 10/25. From the
steady-state solution of Eqs. (17), we obtain the excitation
probability

p5 = 4	2

26	2 + 9γ 2
, (18)

with the three-photon Rabi frequency 	 given in Eq. (A2) of
the Appendix. Compare to the corresponding expression for
the two-photon resonance [33,36],

p3 = 	′2

4	′2 + γ 2
, (19)

where the p3 is the steady-state occupation probability of
the upper level (the state |ξ3〉) and 	′ = 2

√
2ε2

d/g. We then
determine the intensity correlation at zero delay as

g(2)
→ (τ = 0) = 〈a†a〉|ρcond (0)

〈a†a〉ss
= 22

25
× 4

25p5
, (20)

with g(2)
→ (τ = 0) → 0.915 for (	/γ )2 � 1. In the opposite

limit, for (	/γ )2 � 1, photon emission is highly bunched,
which is also the case for the two-photon resonance [33].

We now turn to the system of Eqs. (15). The equations in-
volving diagonal matrix elements which are not coupled to the
drive can be readily solved. From Eq. (15g) and the expression
for ρcond(0), it is evident that

ρ12(τ ) = ρ12(0)e−γ τ eiν1τ = 3
50 e−γ τ eiν1τ , (21)

while from Eq. (15h) we obtain

ρ34(τ ) = ρ34(0)e−2γ τ eiν2τ = 1
25 e−2γ τ eiν2τ , (22)

whence the corresponding contributions to the inten-
sity correlation function are [6/(625p5)]e−γ τ cos(ν1τ ), and
[4/(625p5)]e−2γ τ cos(ν2τ ), respectively. The frequencies of
the two quantum beats are given by

ν1 = 2g + δ2 − δ1, (23a)

ν2 = 2
√

2g + δ4 − δ3, (23b)

where the frequency shifts δ1, δ2, δ3, δ4 are calculated in the
Appendix. Both these quantum beats have a partial visibility

since the coefficients in the superposition states (9) are un-
equal. Before we continue our discussion on the second-order
coherence of the forwards scattered photons in Sec. V, let us
now see what our minimal model can tell us for the phase-
space distribution of the intracavity field.

IV. STEADY-STATE AND TRANSIENT DISTRIBUTIONS
OF THE CAVITY FIELD

The Wigner distribution W (α, α∗) (in the complex vari-
able α = x + iy and its conjugate, α∗ = x − iy) of an
electromagnetic-field state ρ is the Fourier transform of the
symmetrically ordered characteristic function [32]

χ
S
(z, z∗) ≡ tr(ρeiz∗a†+iza), (24)

and is defined as

W (α, α∗) ≡ 1

π2

∫
d2z χ

S
(z, z∗) e−iz∗α∗

e−izα

= 1

π2

∫ ∞

−∞
dμ

∫ ∞

−∞
dν χ

S
(μ + iν, μ − iν)

× e−2i(μx−νy). (25)

The reduced density matrix for the cavity field is defined as
ρc ≡ 〈+|ρ|+〉 + 〈−|ρ|−〉. When the steady state is reached
it can be recast in the (truncated) Fock-state basis |n〉 (n =
0, 1, 2, 3) as [note that the matrix elements ρii ≡ pi (i =
0, 1, . . . , 5) are taken with respect to the dressed-state basis
|ξ0〉 − |ξ5〉]

ρc,ss =
[

p0 + 1

2
(p1 + p2)

]
|0〉〈0|

+ 1

2
(p1 + p2 + p3 + p4)|1〉〈1|

+ 1

2
(p3 + p4 + p5)|2〉〈2| + 1

2
p5|2〉〈2|

+ 1√
2

(ρ05|0〉〈3| + ρ∗
05|3〉〈0|). (26)

Expressing the coefficients in terms of the steady-state proba-
bility p5, we then obtain (compare also with Eq. (14) of [30])

Wss(α, α∗) = 2

π
e−2|α|2

{
(1 − 4p5) − 9

4
p5L1(4|α|2)

+ 5

4
p5L2(4|α|2) − 1

2
p5L3(4|α|2)

+ i
2√
3

√
p5(4 − 26p5)[α3 − (α∗)3]

}
, (27)

where Ln is the Laguerre polynomial of degree n. The last
term in the above expression breaks the azimuthal symmetry,
which is asymptotically restored as p5 → 2/13 (its maximum
allowed value). The development of steady-state trimodality
is evidenced in Fig. 3, based on the analytical expression of
Eq. (27); in particular, the term ∝ i[α3 − (α∗)3]e−2|α|2 dictates
the pattern that breaks the azimuthal symmetry of an ini-
tial vacuum-state distribution (a Gaussian). This development
should be paralleled with Fig. 3 of [42] for the three-photon
resonance operation of the driven Kerr oscillator. We note that
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FIG. 3. Development of steady-state trimodality in the minimal six-level model. Wigner function (contour plots) of the intracavity field (in
the panel rotating with the drive), Wss(x + iy), calculated from Eq. (27) for the detuning of Eq. (16). The steady-state excitation probability of
the state |ξ5〉 is p5 = 0.10, 0.12, 0.14, and 0.15 in frames (a)–(d), respectively, while g/γ = 500 and γ = 2κ . All color bars here and henceforth
indicate the values of the Wigner function.

the three peaks are located outside the unit circle in Figs. 3(c)
and 3(d), as does the ring in Fig. 3(e). On the other hand, the
intracavity photon number corresponding to all four distribu-
tions depicted in Fig. 3, equal to (25/4)p5, always remains
less than unity (see Fig. 8 in the Appendix for a comparison
with numerical results).

For the transient distribution (τ > 0) where ρc(τ ) ≡
〈+|ρ(τ )|+〉 + 〈−|ρ(τ )|−〉 evolves from the conditional state
ρcond, the time-varying coefficients of the various Fock-state
contributions, both diagonal and off-diagonal, are (likewise,
the matrix elements ρi j are taken with respect to the dressed-
state basis |ξ0〉 − |ξ5〉)

c0(τ ) = ρ00(τ ) + 1

2
[ρ11(τ ) + ρ22(τ )] − 1

2
[ρ12(τ ) + ρ21(τ )],

(28a)

c1(τ ) = 1

2
[ρ11(τ ) + ρ22(τ ) + ρ33(τ ) + ρ44(τ )]

+1

2
[ρ12(τ ) + ρ21(τ ) − ρ34(τ ) − ρ43(τ )], (28b)

c2(τ ) = 1

2
[ρ33(τ ) + ρ44(τ ) + ρ55(τ )] + 1

2
[ρ34(τ ) + ρ43(τ )],

(28c)

c3(τ ) = 1

2
ρ55(τ ), (28d)

c4(τ ) = 1√
2

Im[ρ05(τ )], (28e)

where the matrix elements corresponding to the two quantum
beats are (τ � 0)

ρ12(τ ) = ρ∗
21(τ ) = 3

50 e−γ τ eiν1τ , (29a)

ρ34(τ ) = ρ∗
43(τ ) = 1

25 e−2γ τ eiν2τ , (29b)

while ρ00(τ ), ρ11(τ ) + ρ22(τ ), ρ33(τ ) + ρ44(τ ), ρ55(τ ) are
obtained by numerically solving the system of Eqs. (17).

Finally, for W ≡ W (x + iy; τ ), we find

W = 2

π
e−2|α|2{c0(τ ) − c1(τ )L1(4|α|2) + c2(τ )L2(4|α|2)

− c3(τ )L3(4|α|2) + i c4(τ )(8/
√

6)[α3 − (α∗)3]}. (30)

We are now in position to address our pivotal question
from the point of view set by the quantum-classical corre-
spondence: How exactly do quantum fluctuations enter the
description of a multiphoton resonance developing along the
rungs of the JC ladder? The initial part of our discussion is
devoted to the numerical solution of the ME (1) for the steady
state of the intracavity field and its phase-space distributions
in the Wigner representation, Wss(x + iy). The first conclusion
to be drawn from the profiles depicted in Fig. 4 is that most of
the variation associated with the saturation of the multiphoton
transition occurs within the unit circle, in line with the ana-
lytical quasidistribution functions of Fig. 3; this is a region
where the intracavity excitation falls below one photon. The
second thing to note is that there is a particular symmetry-
breaking mechanism setting in with stronger driving, unique
to each multiphoton transition. For the case of the two-photon
transition, the initial Gaussian distribution corresponding to
the vacuum state is deformed along the line y = −x, while
for the three-photon transition the probability is distributed
along three lines meeting at the origin of the coordinates.
Equation (27) suggests that those lines form an angle of 2π/3
between each other. However, the numerical solution of ME
(1) produces a deviation from that picture, owing to the limited
applicability of the secular approximation for higher-order
resonances. Subsequently, two and three peaks, respectively,
are being formed signaling the presence of bi and trimodality.
The development of multimodality is seen from the transition
between panels (a) and (b) in the two groups of Fig. 4. For a
further increase of the drive strength, yet still for 〈a†a〉ss � 1,
the multimodal distributions are erased in favor of a single
squeezed state spanning the second and third quadrants in
phase space.
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FIG. 4. Visualizing the breakdown of quantum multimodality in phase space. Wigner function (contour plots) of the steady-state
intracavity field (in the frame rotating with the drive), Wss(x + iy), calculated from the numerical solution of the ME (1), depicted in
group I for the two-photon transition with �ωd/g = −1/

√
2 − √

2(εd/g)2, and in group II for the three-photon transition with �ωd/g =
−1/

√
3 − (

√
3/2)(εd/g)2 + O[(εd/g)4]. In both panels we take g/γ = 500 and γ /(2κ ) = 1. Panels (a)–(d) in panel I correspond to εd/g =

0.02, 0.05, 0.07, and 0.12, respectively, whilepanels (a)–(d) in panel II correspond to εd/g = 0.05, 0.07, 0.09, and 0.125, respectively. The
numerical solution of the ME diagonalizes the Liouvillian L using an exponential series method, for a Hilbert space of 35 Fock states in
MATLAB’s QUANTUM OPTICS TOOLBOX [39].

The two-level character of a multiphoton resonance and the
mapping to resonance fluorescence when driving the lower
vacuum Rabi resonance [24] suggest that the photodetection
and the updating of postdetection states cannot be built on
top of a priori paths in a classical sense [38]. A quantum-
trajectory unraveling of the ME (1) where multimodality
is prominent shows that the average photon number at a
multiphoton resonance follows rather closely a single-peaked
distribution, with its maximum located below the level 〈n〉 =
1. The average values of the two distributions depicted in
Fig. 5 are 〈n〉 = 0.63, 0.92 for the two- and three-photon
resonances depicted in Figs. 5(a) and 5(b), respectively [the
later value is that of the left peak in Fig. 1(c)] independent
of the initial state. These results are in agreement with the
values of 〈a†a〉ss computed from the steady-state solution to
the ME (1) via diagonalization of the Liouvillian, as expected.
More importantly, there is a qualitative difference between the

two- and the three-photon resonance operation, as revealed by
the two insets: the Rabi oscillation at the frequency 2	 ∼ γ

noticeable in the first is visibly distorted in the second in terms
of its frequency and amplitude, even in the very initial stage of
the evolution; despite the fact that the average photon number
is higher, the effective three-photon Rabi frequency is lower
whence the timescale of multistable switching sets in earlier.
Here the quantum beats are absent in the ensemble average
– a consequence of dephasing in high-frequency oscillations
across individual realizations – since the initial condition
(ground state) sets all the corresponding matrix elements to
zero. For the quantum beats to feature in the dynamics pre-
dicted by the master equation, an appropriate conditional state
must be determined by the initial condition; this is indeed the
case when we address second-order coherence in Sec V.

Let us here make a brief detour to revisit the exemplary
Kerr nonlinearity. As we already mentioned above, a trimodal
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FIG. 5. Sample quantum trajectories at bi and trimodality. Histograms of the time-varying average photon number for the operating
conditions used to generate the top-right phase-space profiles in Fig. 4; the panels (b) of groups I and II correspond to (a) and (b), respectively.
The unraveling of the ME (1) is performed via a quantum state diffusion equation, which is numerically solved by means of a Cash-Karp
Runge-Kutta algorithm with adaptive stepsize [40,41]. A total of 1.92 × 104 data points sampling the time-evolving average 〈n(t )〉 in the course
of a single trajectory (spanning a time interval [ts, t f ] with γ ts = 8 and γ t f = 200) are split into 100 bins. The insets depict 〈n(t )〉 = 〈a†a(t )〉
in the initial stage of the evolution, with initial condition 〈n(t = 0)〉 = 0, while the solid lines depict the average photon number obtained from
the perturbative treatment for reference (equivalent to an ensemble average over single trajectories) in the time interval [0, ts ). In panel (b),
the two trajectories A and B correspond to different seeds to the random number generator, and the histogram depicted is extracted from the
dataset for A. The dashed gray line marks the value 〈n〉 = 1 in both histograms.

phase-space profile merging to a single-peaked distribution
can be analytically derived for the driven Kerr oscillator as
an exact steady-state result, using a method based on the
complex P representation [43]. Figure 3 of [42] concentrates
on the small system size of the oscillator where excitations
on the level of one quantum determine its nonlinear response
in two-photon blockade conditions. This can be generalized
to the phase-space profile for n-photon blockade, showing n
peaks and n dips; in Fig. 8 of [44], the deformation of the
peaks is attributed to the interference in phase space. The
master equation of the driven and damped Kerr model in a
frame rotating with the frequency of the drive is [42,43]

dρ

dt
= i�ωd,K[a†a, ρ] − iχ [a†2a2, ρ] + [εd,Ka† − ε∗

d,Ka, ρ]

+ κK(2aρa† − ρa†a − a†aρ), (31)

where �ωd,K ≡ ωd,K − ω0 is the cavity detuning and χ is the
nonlinear coupling strength of self-phase modulation, propor-
tional to the third-order susceptibility of the medium inside
the cavity. A multiphoton resonance requires an integer value
of the detuning �ωd,K/χ , while the system-size parameter is
determined by the ratio κK/χ . In Figs. 6(a) and 6(b) we plot
the steady-state Wigner function of the intracavity field for
�ωd,K/χ = 2 (as is done in Fig. 3 of [42] – see also Sec. II of
[44]) and κK/χ = 10−5, 10−6, respectively. With a decreasing
system-size parameter, the three peaks (positioned outside
the unit circle) merge to an almost azimuthally symmetric
distribution while the dips are displaced towards the origin.
The situation is quite different for the zero system-size limit
(γ /(2κ ) = 0, see [4,20]) of the driven and damped JC model,
when g2/(4κ2) → ∞ (the strong-coupling “thermodynamic
limit”) with εd/g remaining constant. In Figs. 6(c) and 6(d)
we observe that for a decreasing κ/g, multimodality collapses
in the fashion already depicted in group II of Fig. 4, as the

three-photon transition saturates (its remnants are almost in-
discernible). This is in contrast to the analytical prediction of
Eq. (27), produced for a nonzero γ = 2κ (� g), according to
which an azimuthally symmetric distribution asymptotically
emerges as γ /	 → 0 [45]. Finally, we note that the appear-
ance of multistability is a dynamical effect [20]; in Fig. 6(e),
we observe the collapse and revival of trimodality as we track
the three-photon resonance peak through varying the drive-
cavity detuning.

After having met one notable difference between the JC
and Kerr models, both exhibiting multiphoton blockade, we
may ask how does the light-matter coupling further modify the
manifestation of coherence as the intermediate states |ξ1〉–|ξ4〉
in the manifold enter the dynamics? Apart from the deviation
of the peak positions in phase space from the particular struc-
ture dictated by the drive term in the Hamiltonian of Eq. (4),
the answer will be given by bringing into our discussion the
photon correlations, and in particular the second-order corre-
lation function of the transmitted light.

V. SECOND-ORDER COHERENCE OF THE
TRANSMITTED LIGHT

Our analysis has largely relied on the premise that the
two- and three-photon resonances are amenable to an effec-
tive two-level model [24] and the perturbative expansion in
powers of εd/g, the first case more successfully than the
second as the drive detuning to the intermediate transitions
gets smaller. For the two-photon transition, where the minimal
model comprises the first four levels |ξ0〉 − |ξ3〉, the analyti-
cally determined average photon number in the steady state
is 〈a†a〉ss = (5/2)p3, where p3 = 1/[4 + (γ /	′)2] (	′ =
2
√

2ε2
d/g) is the steady-state occupation probability of |ξ3〉

[33]. For the three-photon transition, the corresponding
expression was derived in Sec. III as 〈a†a〉ss = (25/4)p5,
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FIG. 6. Collapse of multimodality in the “thermodynamic limit” at zero system size. Steady-state Wigner distributions (contour plots)
of the intracavity field in the Kerr model, extracted from the numerical solution to Eq. (31) in (a, b) and of the JC model, extracted from the
numerical solution to Eq. (1) in (c,d). In the first example, �ωd,K/χ = 2, |εd,K|/χ = 0.04, and κK/χ = 10−5, 10−6 in (a,b), respectively; in the
second, εd/g = 0.054, κ/g = 10−3, 10−4 in (c,d), respectively, while the cavity detuning is �ωd/g = −1/

√
3 − (

√
3/2)(εd/g)2 + O[(εd/g)4];

still in very good agreement with the position of the peaks numerically determined by plotting 〈n〉ss versus �ωd/g – and γ /(2κ ) = 0. (e)
The three-photon JC resonance peak against the dimensionless detuning �ωd/g for εd/g = 0.054, κ/g = 10−4, and γ /(2κ ) = 0. Schematic
profiles of the Wigner function (contour plots) are plotted for the detunings A, B, C, D, E, as indicated in the plot. A Hilbert space of 35 Fock
states is used for the numerical diagonalization of the corresponding Liouvillian superoperators in the QUANTUM OPTICS TOOLBOX.

where p5 = 4/[26 + 9(γ /	)2] is the steady-state occupation
probability of |ξ5〉. Both results seem to be reasonable judging
from the distributions depicted in Fig. 4 following the nu-
merical solution of the full master equation since 〈a†a〉ss � 1
in the distributions where trimodality is present (see also the
Appendix). They are also in good agreement with the statis-
tical averages obtained from the trajectory-based histograms
we met in Sec. IV. Of course, the average photon number
only provides a limited account on how quantum fluctuations
shape the steady state. Figure 7 presents results illustrating the
application of the method to the intensity correlation function
for the forwards scattered photons, calculated as [4] g(2)

→ (τ ) =
tr{[eLτ ρcond]a†a}/〈a†a〉ss, where ρcond is the conditional state
following the emission of a “first” photon from the cavity
[33], displayed in Eq. (10). For the two-photon resonance we
employ Eqs. (44) to (49) of [33] while for the three-photon
resonance we numerically solve the system of five coupled
equations (17), governing the dynamics of the driven transi-
tion and the cascaded decay.

Let us bring up some additional key results from Sec. III.
When the two-photon transition is excited, the emission of a
photon prepares the superposition state |ξ3〉 → |ψsuper, 1〉 =√

2/3{[(√2 + 1)/2]|ξ1〉 + [(
√

2 − 1)]/2|ξ2〉]}, while for the
three-photon transition an additional state is created: |ξ5〉 →
|ψsuper, 2〉= √

2/5{[(√3 + √
2)/2]|ξ3〉 + [(

√
3 − √

2)/2]|ξ4〉}.
The above states comprise ρcond alongside a contribution
from the vacuum. Evolving in time to determine the intensity
correlation of the light emitted from the three-photon
cascaded process, they lead to the appearance of two quantum
beats b1(τ ) = [6/(625 p5)]e−γ τ cos(ν1τ ) and b2(τ ) =
[4/(625 p5)]e−2γ τ cos(ν2τ ), where ν1 = 2g + O[(εd/g)2]
and ν2 = 2

√
2g + O[(εd/g)2]. These terms are responsible

for the fast oscillation we observe in Figs. 7(a) and 7(b)
(the beat ∝ e−γ τ cos(ν1τ ) also appears for the two-photon
resonance but with a different coefficient [33]) and provide
a direct evidence of the JC spectrum: their frequencies ν1, ν2

are equal to (Ẽ2 − Ẽ1)/h̄ and (Ẽ4 − Ẽ3)/h̄, respectively,
while their coefficients and decay rates show that b1 features
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FIG. 7. Second-order coherence of the transmitted field in multiphoton transitions. The intensity correlation function g(2)
→ (τ ) for the photons

scattered in the forwards direction plotted for the driven two-photon resonance in (a) is calculated from the analytical expression of Eqs. (44) to
(49) in [33], while for the three-photon resonance in (b) it is numerically computed from our effective six-level model. The solid lines average
over the quantum beat(s). The contour plots of the Wigner functions W (x + iy; τmax) in panels (c,d) are determined from the time-varying
density matrix ρc(τ ) [extracted from the partial trace of ρ(τ ) evolving from ρ(0) = ρcond] at the scaled times γ τmax where the two functions
g(2)

→ (τ ) depicted in (a,b), respectively, attain their maximum values. They are obtained from Eq. (30). The dashed contour in panel (c) marks
out the region inside which the Wigner function attains negative values. The insets in (a,b) depict surface plots of the corresponding steady-
state Wigner functions. For both resonances, we take 	/γ = 	′/γ = 5, g/γ = 500, and γ = 2κ . (e) The time-varying Wigner distribution
W (x = y = 0; τ ) (multiplied by a factor of π ) of the field state evolving from ρ(0) = ρcond, evaluated at the origin of the phase space and
calculated from Eq. (32), for the driven two-photon resonance. The two curves correspond to steady-state excitation probabilities pA = 0.247
and pB = 0.249 of the upper level |ξ3〉 (the minimal model comprises the dressed states |ξ0〉–|ξ3〉), as indicated in the plot. (f) Same as in (e),
but for the driven three-photon resonance. The two curves correspond to steady-state excitation probabilities pA = 0.1506 and pB = 0.1528 of
the upper level |ξ5〉 (the minimal model comprises the dressed states |ξ0〉–|ξ5〉).

more prominently in the correlation than b2; this instance is
verified by the Fourier transforms of the intensity correlation
function for the fluorescence emitted from the two-level atom,
depicted in Fig. 5(b) of [36] [results derived from the solution
of the ME (1) with �ωd/g = −1/

√
3]. While the scope of

the secular approximation becomes increasingly limited for

multiphoton resonances with n > 3, we may still state that
the beat at frequency ν1 will outlive higher-order beats since
the coefficients �i j , determining the transition rates between
dressed states scale with the excitation (see Sec. 16.3.3 of [4]).

On the surface, there is no substantial difference between
the intensity correlation functions of Figs. 7(a) and 7(b).
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They both exhibit fast oscillations superimposed on top of a
varying envelope on the scale γ /	. A closer look, however,
reveals that the range over which the intensity fluctuates is
significantly decreased for the three-photon as opposed to
the two-photon resonance, which is, in turn, narrower than
the span of g(2)

→ (τ ) for the driven vacuum Rabi resonance
(mapped to resonance fluorescence [4,13]). There is also a
difference in the maximum amount of photon antibunching,
as predicted by the analytical treatment and verified by the
solution of the ME (1); while for the two-photon transition
we may attain g(2)

→ (0) = 16/25, for the three-photon reso-
nance we obtain g(2)

→ (0) = 572/625, which is much closer to
unity. For 	 = 	′ = 5γ , the intensity correlation function in
Fig. 7(a) has g(2)

→ (0) ≈ 0.65, compared to g(2)
→ (0) ≈ 0.93 in

Fig. 7(b); in fact, for the second case, the exact numerical
results from the ME (1) show weak bunching [g(2)

→ (0) ≈ 1.04]
instead of antibunching. In general, we find no evidence of
photon antibunching associated with the collapse of trimodal-
ity for the three-photon resonance by applying the ME (1),
as opposed to the collapse of bimodality in the two-photon
resonance where values of g(2)

→ (0) below 1 are produced for
a wide range of εd/g. This constitutes further evidence to
the increasingly limited scope of the perturbation theory in
the secular approximation, when the multiphoton resonances
of higher order are reduced to an effective two-state model
description.

Figures 7(c) and 7(d) depict the Wigner function of the
field states at which the corresponding intensity correlation
functions reach their maximum values. Both distributions
show a pronounced dip around the phase-space origin, and for
the two-photon resonance this dip extends to negative values
(for the three-photon resonance it does not due to the beat
interference). Nevertheless, the Wigner function for the three-
photon resonance also turns negative in the region around the
origin for certain time intervals coordinated with the interfer-
ence of the two beats. While the interference of the two beats
is not resolved on the scale of Fig. 7(b), we find that moving
to the immediately adjacent local minimum, occurring 2π/ν1

away from the maximum in Fig. 7(a) [or ∼4π/(ν1 + ν2) in
Fig. 7(b)], the dip is replaced by a ridge joining the peaks [30],
which are themselves barely noticeable as they form part of an
extended ring; there is little resemblance with the steady-state
distributions we met in Fig. 4.

We close this section out by focusing on the markedly
quantum aspect of the above resonances, which is absent
from the steady-state distribution. We here observe an imprint
of the Fock states, dynamically coordinated with the quan-
tum beat(s), as they participate with varying weights in the
transient [note that the term responsible for breaking the sym-
metry of the phase-space distribution, the last term in Eq. (30),
has zero contribution at x = y = 0]. For simplicity, we con-
sider the two-photon resonance where there is only a single
beat. The dynamical evolution is amenable to a four-level
minimal model comprising the dressed states |ξ0〉–|ξ3〉. We
can employ our perturbative method to calculate the Wigner
function at the origin of the phase space as [46]

W (x = y = 0; τ ) = 2

π

2∑
m=0

(−1)m〈m|ρc(τ )|m〉, (32)

where the matrix elements of the reduced density matrix of
the cavity field ρc in the four-level model, taken with respect
to the Fock states |m〉, m = 0, 1, 2, are (omitting the time
argument for brevity)

〈0|ρc|0〉 = ρ00 − Re(ρ12) + 1
2 (ρ11 + ρ22),

〈1|ρc|1〉 = 1
2 (ρ11 + ρ22 + ρ33) + Re(ρ12),

〈2|ρc|2〉 = 1
2ρ33. (33)

Explicit expressions for the matrix elements ρii, i = 0, 1, 2, 3,
taken with respect to the dressed-state basis, can be found
in Sec. III of [30]. Figure 7(e) depicts the variation of the
transient Wigner distribution, evaluated at the phase-space
origin, against the scaled time delay γ τ following detection of
one photon. We observe that the saturation of the two-photon
resonance (as p3 → p3, max = 0.25) is accompanied by the ap-
pearance of negative values of increasingly larger magnitude,
directly coordinated with the quantum beat. Nevertheless, the
attainment of negative values around the origin is limited to
delays shorter than the coherence time 1/γ . The same is true
for the three-photon resonance, as pictured in Fig. 7(f), for
which an analogous formula to Eq. (32) is used, but now also
accounting for the Fock state |3〉. The interference between
the two quantum beats is apparent.

On the experimental front, we look for a connection to be
set up between the photon distributions and correlations re-
ported in [6], and the phase-space representation of the source
field. The scheme devised by Lutterbach and Davidovich in
[47] is well suited for verifying the alternation of positive
and negative values of the Wigner function (more generally
the alternation between a dip and a ridge) close to the origin
of the phase space. In the strong coupling limit and for a
given multiphoton transition, this is due to the presence of
the quantum beats in the photon correlations superimposed on
top of the semiclassical oscillation. The scheme may as well
operate across transitions, where the scale of intensity fluctu-
ations shrinks for increasing order. It presents the additional
advantage of a direct measurement remaining unaffected by
the low detection efficiency, whence it may accurately resolve
the depth of the dip displayed in Figs. 7(c) and 7(d); the
experiment of [46], implementing the above proposal for a
single-photon field, demonstrates the possibility of detect-
ing correlations for low photon averages, namely the regime
we target. In addition, we may remark that quantum state
diffusion, employed for generating the trajectories depicted
in Fig. 5, corresponds to heterodyne detection in particular
because one principle used in its construction is the require-
ment that the added noise terms be independent of phase (see
Ch. 18 of [4]).

VI. CONCLUSION

Bringing now the different pieces together, in this article
we uncovered the special character of quantum coherence in
a multiphoton resonance of the JC model, accompanying the
saturation of a driven transition between the ground and an
excited dressed state in the spectrum (dressed by the drive) for
strong dipole coupling conditions. To that end, we developed
a perturbative method employing the first few dressed energy
levels from the JC ladder to model the saturation of the driven
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transition and analytically produce the associated phase-space
distribution of the source field. We linked the development
of semiclassical Rabi splitting to the collapse of quantum
multimodality in the phase-space representation of the in-
tracavity field. The semiclassical oscillations at the effective
multiphoton Rabi frequencies are noticeable in the transient
of the average photon number. Under operating conditions
allowing for the manifestation of trimodality, this number re-
laxes to a value below or marginally above unity in the steady
state, in a background established by the competition of three
attractors which are not predicted by mean-field theory: more
accurately, by the coexistence of three excitation pathways
followed by intense quantum fluctuations.

Single quantum trajectories, simulating single experi-
mental runs, reveal that the steady-state photon number is
established via the ensemble averaging of gradually distorted
Rabi oscillations when multimodality sets in. For what is
effectively a merge of semiclassical and quantum nonlinear-
ity, the competition of timescales will be determined by the
ratio 	/γ . This process, however, is very sensitive to the
operating conditions; by further increasing the drive strength
multimodality is erased, bringing us closer to a Lorentzian
response with a single peak in phase space. Together with
the Rabi oscillation in the temporal correlation of forwards
scattered photons at the three-photon resonance, we observe
an interference between quantum beats whose frequencies
directly reveal the excited-state doublets in the JC spectrum.
To join the two aspects the manifestation of coherence takes
on, we showed that the phase-space distribution of the in-
tracavity field is dynamically associated with the quantum
beat, or the interference between two quantum beats, in the
transient evolution of the JC model. Finally, despite that
steady-state Wigner functions are everywhere positive for all
drive strengths, according to the perturbative treatment posi-
tive and negative values of the quasiprobability distribution at
the origin alternate in a time window set by the decoherence
rates. This may occur only during the decoherence time of the
transient conditioned on a post-steady-state photodetection.
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APPENDIX: ENERGY SHIFTS AND THREE-PHOTON
RABI FREQUENCY FOLLOWING THE

PERTURBATIVE TREATMENT

In the Appendix we apply the perturbative method for the
determination of the energy shifts arising from the interaction
with the drive, which is treated as a small correction to the

JC light-matter coupling. Following [34], this method was
applied by Lledó to the treatment of the two-photon resonance
in [36]; we extend these results here to account for the three-
photon resonance. To begin, we decompose the Hamiltonian
as H = H0 + εd (a + a†), where

H0 = −�ωd (a†a + σ+σ−) + g(aσ+ + a†σ−), (A1)

for �ωd = −g/
√

3, corresponding to the “bare” (not dressed
by the drive) three-photon resonance. The Hamiltonian H0

defines the so-called zero-energy subspace of the problem,
formed by the states |ξ0〉 and |ξ5〉 (E5 = 3g/

√
3 − √

3g = 0 =
E0), and the orthogonal subspace comprising the rest. Treating
the term εd (a + a†) as a perturbation contributing only small
corrections to the dressed energy levels of the JC interaction
[34], we are led to an expansion for Heff in powers of εd/g
which, to the lowest order, is quadratic in the scaled drive
strength. Transforming back to the laboratory frame we obtain
an expression for H̃eff , which is displayed in Eq. (4).

We first meet a case where we need to carry the calcula-
tion out to higher order than second to obtain the dominant
contribution, in contrast to the two-photon resonance. For the
effective three-photon drive, following the standard procedure
of third-order perturbation theory and summing the contribu-
tions from the four deexcitation pathways depicted in Fig. 2,
we obtain

	 = 〈ξ5|Heff |ξ0〉

= ε3
d

∑
k,l �=(5,0)

1

Ek

1

El
〈ξ5|(a† + a)|k〉

× 〈k|(a† + a)|l〉〈l|(a† + a)|ξ0〉

= ε3
d

1

E4E2
〈ξ5|(a† + a)|ξ4〉〈ξ4|(a† + a)|ξ2〉〈ξ2|(a† + a)|ξ0〉

+ ε3
d

1

E4E1
〈ξ5|(a†+a)|ξ4〉〈ξ4|(a†+a)|ξ1〉〈ξ1|(a† + a)|ξ0〉

+ ε3
d

1

E3E1
〈ξ5|(a†+a)|ξ3〉〈ξ3|(a†+a)|ξ1〉〈ξ1|(a† + a)|ξ0〉

+ ε3
d

1

E3E2
〈ξ5|(a†+a)|ξ3〉〈ξ3|(a†+a)|ξ2〉〈ξ2|(a† + a)|ξ0〉,

(A2)

where E1 = g/
√

3 − g, E2 = g/
√

3 + g, E3 = 2g/
√

3 − √
2g,

E4 = 2g/
√

3 + √
2g. Summing the various contributions

yields

	 = 3

4
√

2

[
(
√

3 − √
2)(1 + √

2)

(2 + √
6)(1 + √

3)
+ (

√
3 − √

2)(
√

2 − 1)

(2 + √
6)(1 − √

3)

+ (
√

3 + √
2)(

√
2 + 1)

(2 − √
6)(1 − √

3)
+ (

√
3 + √

2)(
√

2 − 1)

(2 − √
6)(1 + √

3)

]
ε3

d

g2

≈ 11.69
ε3

d

g2
. (A3)
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We now illustrate the application of the method to the dressing of the JC levels. Here, the dominant-order contributions scale
as ε2

d/g. For the ground state, we find

δ0 = ε2
d

∑
k �=0

1

−Ek
〈ξ0|(a† + a)|k〉〈k|(a† + a)|ξ0〉 = ε2

d

(
− 1

E1
|〈ξ1|(a† + a)|ξ0〉|2 − 1

E2
|〈ξ2|(a† + a)|ξ0〉|2

)

= ε2
d

√
3

2g

(
1√

3 − 1
− 1√

3 + 1

)
=

√
3

2

ε2
d

g
. (A4)

Likewise, for |ξ1〉 we obtain

δ1 = ε2
d

∑
k �=1

1

E1 − Ek
〈ξ1|(a† + a)|k〉〈k|(a† + a)|ξ1〉

= ε2
d

g

[
1

2

√
3

1 − √
3

+
(√

2 + 1

2

)2 √
3√

6 − √
3 − 1

−
(√

2 − 1

2

)2 √
3√

3 + 1 + √
6

]
, (A5)

while for |ξ2〉,

δ2 = ε2
d

∑
k �=2

1

E2 − Ek
〈ξ2|(a† + a)|k〉〈k|(a† + a)|ξ2〉

= ε2
d

g

[
1

2

√
3

1 + √
3

+
(√

2 − 1

2

)2 √
3√

6 + √
3 − 1

+
(√

2 + 1

2

)2 √
3√

3 − 1 − √
6

]
. (A6)

For the second-excited doublet,

δ3 = ε2
d

∑
k �=3

1

E3 − Ek
〈ξ3|(a† + a)|k〉 〈k|(a† + a)|ξ3〉

= ε2
d

g

[(√
3 + √

2

2

)2 √
3

2 − √
6

−
(√

3 − √
2

2

)2 √
3

4 + √
6

+
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2

)2 √
3

1 + √
3 − √

6
+

(√
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2

)2 √
3

1 − √
3 − √

6

]
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(A7)

δ4 = ε2
d

∑
k �=4

1

E4 − Ek
〈ξ4|(a† + a)|k〉〈k|(a† + a)|ξ4〉

= ε2
d

g

[(√
3 − √

2

2

)2 √
3

2 + √
6
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2

2
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6 − 4
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2 + 1

2
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3

1 + √
6 − √

3
+

(√
2 − 1

2

)2 √
3

1 + √
3 + √

6

]
.

(A8)

The second terms in Eqs. (A7) and (A8) originate from
transitions involving the “bare” state |ξ6〉 ≡ (1/

√
2)(|3,−〉 +

|2,+〉), which are assumed to be far from resonance. Finally,

δ5 = ε2
d

∑
k �=5

1

E5 − Ek
〈ξ5|(a† + a)|k〉〈k|(a† + a)|ξ5〉

= ε2
d

g

[(√
3 + √

2

2

)2 √
3√

6 − 2
−

(√
3 − √

2

2

)2 √
3√

6 + 2

+
(

2 + √
3

2

)2 √
3

2
√

3 − 4
−

(
2 − √

3

2

)2 √
3

4 + 2
√

3

]

= −
√

3
ε2

d

g
. (A9)

To improve even further the agreement with the exact nu-
merical results obtained from the solution of the ME (1), the
difference δ5 − δ0 in Eq. (16) could be calculated to higher
order, accounting for the shifts ∼ε2

d/g in the detuning from
intermediate levels. This procedure leaves us with dressed
energy-level shifts δ̃(0,5) satisfying δ̃(0,5) − δ(0,5) ∝ [(δi �=(0,5) −
δ(0,5))/g] (ε2

d/g) ∼ ε4
d/g3, while it generates corrections of or-

der (εd/g)5 to 	/g. As a general rule, for the perturbative
treatment to remain valid, we require that the ratio (δ̃5 −
δ̃0)/	̃ ∼ 1 as well as 	̃/γ ∼ 1, i.e., that the dressed Rabi fre-
quency (	̃), the energy shifts, and the dissipation rates are of
the same order of magnitude. The driving term (perturbation)
together with the form of the “bare” JC states require that the
effective Rabi frequency of the n-photon transition scale as
εn

d/gn−1, while the level shifts always follow ε2
d/g to dominant

order.
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FIG. 8. Saturation of the three-photon resonance. Steady-state photon number 〈n〉ss at the three-photon resonance peak, occurring for
�ωd/g = −1/

√
3 − (

√
3/2)(εd/g)2 + O[(εd/g)4], as a function of the scaled drive strength εd/g. The results obtained from the numerical

solution of the ME (1) (open circles) are plotted against the analytical perturbative expression 〈n〉ss = 25/[26 + 9(γ /	)2], derived from the
six-state model (filled circles). The three-photon Rabi frequency 	 is derived from Eq. (A2) as a perturbative shift to the zero-energy subspace
in the rotated frame. We take g/γ = 500 and γ = 2κ .

A comparison with numerical results shows that the per-
turbative energy shifts featuring in Eq. (16) reproduce very
accurately the peak positions of the three-photon resonance,
even for γ /(2κ ) → 0, while the average photon number
is underestimated past a certain value of εd/g since the
perturbative result is constrained to remain below unity,
bounded by 25/26. Figure 8 depicts the saturation of the
three-photon resonance, comparing the numerical and an-
alytical results. In addition, the numerical results show

that the zero-delay correlation function g(2)
→ (0) never falls

below unity in the drive region used for Fig. 8, in contrast
to the analytical prediction of Eq. (20). According to the
this prediction, photon antibunching in the forwards direction
is expected for 88/625 < p5 < 2/13. Finally, we mention
that the presence of dissipation induces a coupling between
the zero-energy and its orthogonal subspace of dressed JC
states; this coupling is neglected on account of the secular
approximation.
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