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Third-order parametric down-conversion describes a class of nonlinear processes in which a pump photon
can be down-converted into triplets of photons. It has been identified as a source of nonclassical light, with
capabilities beyond those offered by better-established processes such as spontaneous four-wave mixing. Here we
discuss the implementation of third-order parameter down-conversion (TOPDC) in integrated photonic systems.
We derive equations for the rates of TOPDC in a nonresonant (waveguide) and resonant (microring) platform,
such that the scaling with experimental parameters can be plainly seen. We find that generally nonresonant
platforms should be pursued for spontaneous TOPDC (SpTOPDC), whereas resonant platforms are more suitable
for stimulated TOPDC (StTOPDC). We present a sample calculation for TOPDC rates in sample systems with
conservative and accessible parameters. We find that StTOPDC should be observable with the current fabrication
technology, and that with some progress in the design of TOPDC platforms, integrated SpTOPDC too could be
demonstrated in the near term.
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I. INTRODUCTION

Integrated optical structures, with their scalability, stability,
and relative ease of fabrication, are a key tool in the de-
velopment of quantum technology. Due to the interest these
systems have drawn over the past decades, the efficiency of
integrated platforms has improved rapidly. We are now at a
stage where the generation and manipulation of nonclassical
light is commonplace and well understood [1–4].

Parametric nonlinear processes are arguably the most
common sources of nonclassical light. Spontaneous four-
wave mixing (SFWM) and spontaneous parametric down-
conversion (SPDC), in which pairs of photons are generated
by the annihilation of pump photons, are often employed
as sources of photon pairs or squeezed light. One can also
consider other nonlinear processes as sources of nonclassical
light; in this paper we focus on third-order parametric down-
conversion (TOPDC). It consists of the down conversion of
a single pump photon into a triplet of photons. This can be
considered analogous to SPDC, but it relies on a third-order
nonlinearity, like SFWM. Due to the use of a single pump,
and the large frequency spread—which leads to difficulties
with phase matching and a relatively low mode overlap in
integrated structures—TOPDC is relatively inefficient and dif-
ficult to implement.

Unlike SPDC and SFWM, spontaneous TOPDC could be
employed as a source of non-Gaussian states or heralded
photon pairs. These prospects have led to interest in TOPDC
despite the difficulties in implementing it; bulk systems [5],
superconducting systems [6], and optical fibers [7] have been
considered. Stimulated TOPDC is also of interest; this would
be easier to implement in the short term, and it could serve
both as a source of photon pairs [8], and as a means to study
spontaneous TOPDC via stimulated emission tomography [9].
Surprisingly, there has been little discussion of TOPDC in

integrated structures, despite the ongoing improvements in
the performance of these devices. In this paper, we discuss
the implementation of TOPDC in nonresonant and resonant
optical components.

In Sec. II we derive expressions for the rates of sponta-
neous and stimulated TOPDC in a waveguide, which we take
as a representative nonresonant system. In Sec. III, we derive
the analogous expressions for TOPDC in a ring resonator, our
sample resonant system. In Sec. IV we present a sample calcu-
lation, applying our expressions to a silicon nitride waveguide
and ring resonator. We comment on the suitability of non-
resonant vs resonant systems for spontaneous and stimulated
TOPDC, and we identify some parameters that if improved,
could lead to a viable platform for integrated TOPDC. In
Sec. V we draw our conclusions.

II. WAVEGUIDE

We begin by introducing the fields and the Hamiltonian in
a waveguide. In our discussion of TOPDC, we will refer to a
number of different frequency ranges: For example, we will
distinguish the range of frequencies of the pump field, and
the range of frequencies in which photons are generated. As
well, we will deal with modes of different transverse spatial
profiles. It is thus useful to divide the field into different
“bands” J , where J labels both a spatial profile and a range
of frequencies centered at ωJ with wave number kJ . With this
division, the displacement field bound to a waveguide running
in the z direction can be written as

D(r) =
∑

J

∫
dk

√
h̄ωJk

4π
aJ (k)dJk (x, y)eikzdk + H.c. (1)

The aJ (k) are the mode operators that satisfy the usual bosonic
commutation relations, ωJk is the frequency of a field compo-
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nent in band J at k, and expanding about kJ we can write

ωJk = ωJ + vJ (k − kJ ) + 1

2

∂2ωJk

∂k2
(k − kJ )2 + · · · , (2)

where vJ = ∂ωJk/∂k denotes the group velocity, and the
derivatives are evaluated at k = kJ . The mode profiles
dJk (x, y) are normalized according to∫∫

d∗
Jk (x, y) · dJk (x, y)

ε0ε1(x, y; ωJk )

vp(x, y; ωJk )

vg(x, y; ωJk )
dxdy = 1, (3)

where ε1(x, y; ωJk ) is the relative dielectric constant, and
vp(x, y; ωJk ) and vg(x, y; ωJk ) are the local phase and group
velocities, respectively. This normalization condition ac-
counts for material dispersion in the waveguide [1]; the
normalization in the absence of dispersion is recovered by
ignoring any dependence of the quantities on ωJk and setting
the local phase and group velocities equal.

The linear Hamiltonian for the fields in the isolated waveg-
uide is simply

HL =
∑

J

∫
dkh̄ωJka†

J (k)aJ (k), (4)

and we assume that the waveguide is short enough that
scattering losses can be excluded from our model. We fur-
ther specialize to the case where the bands are narrow
enough in frequency that to good approximation we can write
dJk (x, y) ≈ dJ (x, y), where the latter is dJk (x, y) evaluated at
kJ , and that in the prefactor of (1) we can approximate ωJk as
the center frequency ωJ . Under these conditions we have

D(r) =
∑

J

√
h̄ωJ

2
dJ (x, y)ψJ (z)eikJ z + H.c., (5)

where

ψJ (z) =
∫

dk√
2π

aJ (k)ei(k−kJ )z. (6)

Using (4) and (6), the linear Hamiltonian can be rewritten
in terms of the field operators ψJ (z). Using the dispersion
relation (2) we find

HL =
∑

J

h̄ωJ

∫
ψ

†
J (z)ψJ (z)dz − 1

2
ih̄vJ

×
∫ (

ψ
†
J (z)

∂ψJ (z)

∂z
− ∂ψ

†
J (z)

∂z
ψJ (z)

)
dz + · · · , (7)

where the ellipses denote higher-order dispersion terms .
Having established the waveguide’s linear Hamiltonian, we

now address the nonlinear behavior. For a χ3 nonlinearity, the
nonlinear Hamiltonian is

HNL = − 1

4ε0

∫
	i jkl (r; {ωJ})Di

J1(r)D j
J2(r)Dk

J3(r)Dl
J4(r)dr,

(8)

where the subscripts label the different modes involved in the
interaction, and the lowercase superscripts denote Cartesian
components of the field. We use {ωJ} to denote the frequencies
of the four modes involved in the nonlinear interaction; that
is, 	i jkl (r; {ωJ}) should be read as 	i jkl (r; ωJ1, ωJ2, ωJ3, ωJ4).

We take

	
i jkl
3 (r; {ωJ}) = χ

i jkl
3 (r; {ωJ})

ε2
0ε1(r; ωJ1)ε1(r; ωJ2)ε1(r; ωJ3)ε1(r; ωJ4)

,

(9)

where we have neglected any contribution to 	
i jkl
3 (r; {ωJ})

due to any χ (2) in the system; this contribution could be
included as done in other work [1]. We introduce a general
nonlinear parameter

γJ1,J2,J3,J4 = 3(ωJ1ωJ2ωJ3ωJ4)1/4χ̄3

4ε0(n̄J1n̄J2n̄J3n̄J4)1/2c2

ei�J1,J2,J3,J4

AJ1,J2,J3,J4
, (10)

where χ̄3 and n̄ are nominal values of χ
i jkl
3 (r; {ωJ}) and

the index of refraction, which have spatial and frequency
dependence in general. The parameter AJ1,J2,J3,J4 is an ef-
fective area for the process. Its magnitude is determined by
the overlap between the interacting modes and the material’s
nonlinearity; the precise definition of AJ1,J2,J3,J4 is given in
Appendix D. The factor ei�J1,J2,J3,J4 is introduced to ensure that
the effective area is a real number, since the mode overlap is
in general complex.

A. Self- and cross-phase modulation

With currently available integrated photonic structures, a
practical TOPDC system will require the use of a strong pump
field due the weak nonlinearity. The self- and cross-phase
modulation (SPM and XPM) due to the pump field cannot be
neglected; here we discuss these effects in the waveguide. We
assume that any stimulating fields are weak compared with the
pump, such that phase modulation effects due to their presence
are negligible.

We start by considering SPM on the pump field. Into
Eq. (8) we substitute (1), where the displacement field has
a term associated with each of the four modes, namely, the
pump which we label with P, and the three generated modes
G1, G2, and G3. Expanding the displacement fields in (8) and
collecting the terms responsible for SPM on the pump, we find

HSPM = −γSPM
h̄2ωPv2

P

2

∫
dzψ†

P(z)ψ†
P(z)ψP(z)ψP(z), (11)

where γSPM is defined in the usual way [1], such that γSPM =
γPPPP with the latter defined according to (10). To obtain the
nonlinear phase shift associated with SPM, we consider the
evolution of the pump field operator ψP(z, t ) due to HL +
HSPM. In the Heisenberg picture we have

ih̄
∂ψP(z, t )

∂t

= h̄ωPψP(z, t ) − ih̄vP
∂ψP(z, t )

∂z

− γSPMh̄2ωPv2
Pψ

†
P(z, t )ψP(z, t )ψP(z, t ), (12)

neglecting group velocity dispersion and higher-order disper-
sion terms in HL. Then taking the classical limit for this strong
field [ψP(z, t ) → φP(z, t )] and seeking a solution with the
form φ(z, t ) = φ(z) exp(−iωPt ), we find

∂φP(z)

∂z
= iγSPMPP(z)φP(z), (13)
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where

PP(z) = h̄ωPvP|φP(z)|2 (14)

is the power in the pump field [1]. For a cw pump, this is
constant over z and the solution in the nonlinear region is

φ(z, t ) = φPeiγSPMPP (z+L/2)e−iωPt , (15)

where we have taken the nonlinear region to span from z =
−L/2 to z = L/2. Putting (15) into (5), we find the pump field
under HL + HSPM to be

DP(r, t ) =
√

h̄ωP

2
dP(x, y)φ̄Peik̄Pze−iωPt + c.c., (16)

where k̄P = kP + γSPMPP, and φ̄P = φPei(k̄P−kP )L/2. One can
see that the effect of SPM on the pump is to take kP → k̄P;
we have recovered the expected nonlinear phase shift, which
is set by the pump power PP and the nonlinear parameter γSPM.

We apply a similar approach to account for the generated
modes’ phase shifts due to XPM by the pump. We again
expand (8) using the full displacement field, now collecting
terms associated with XPM of mode G by the pump. Taking
the pump to be a classical, cw field, we have

HXPM = −2γXPMPPh̄vG

∫
ψ

†
G(z)ψG(z)dz, (17)

where γXPM is defined in the usual way [1]; we have

γXPM =
√

ωG

ωP
γPGPG, (18)

with γPGPG defined according to (10).
When treating XPM in modes where we consider the gen-

eration of photons, we must account for dispersion, since
photons can be generated over a range of wave numbers. To do
this, we keep higher-order terms in (7); the equation of motion
for field G under HL + HXPM is then

ih̄
∂ψG(z, t )

∂t
= − 2γXPMPPh̄vGψG(z, t ) + h̄ωGψG(z, t )

− ih̄vG
∂ψG(z, t )

∂z
+ · · · , (19)

where the ellipses denote terms arising from terms of the
second order and higher in the dispersion relation (2). In
the absence of a nonlinearity, the solution to the Heisenberg
equation has the form

ψG(z, t ) =
∫

dk√
2π

aG(k)ei(k−kG )ze−iωGkt . (20)

Inside the nonlinear region, which spans from z = −L/2 to
z = L/2, we seek a solution of the form

ψG(z, t ) =
∫

dk√
2π

āG(k)ei(k̄−kG )ze−iωGkt , (21)

where āG(k) and k̄ are to be determined. The displacement
field in the nonlinear medium is then

DG(r, t ) =
√

h̄ωG

4π
dG(x, y)

∫
dkāG(k)eik̄ze−iωGkt + H.c.

(22)

Taking ψG(z, t ) for z > L/2 as defined by (20) and im-
posing continuity for the field at z = L/2, we immediately
see that āG(k) = aG(k)ei(k−k̄)L/2. Putting (21) into the full
Heisenberg equation (19), we have

ωGk = −2γXPMvGPP + ωG + ∂ωGk

∂ k̄
(k̄ − kG) + · · · , (23)

where again the ellipses denote higher-order derivatives, sim-
ilar to those in (2). Taking this with (2), and neglecting what
we find to be the small difference between ∂ωGk/∂ k̄ and
∂ωGk/∂k, we have

k̄ = k + 2γXPMPP + · · · . (24)

Introducing the shifted reference wave vector k̄G ≡ k̄(ωG), we
also have

k̄G = kG + 2γXPMPP + · · · . (25)

With this we have specified the form of the generated fields
under HL + HSPM + HXPM.

When discussing StTOPDC configurations, we will neglect
the generation of photons in the seeded mode G ≡ S, instead
simply treating these modes as classical. Furthermore, we will
work with cw fields such that dispersion terms in the general
expression (22) can be ignored. Equation (22) then reduces to

DS (r, t ) =
√

h̄ωS

2
dS (x, y)φ̄Seik̄Sze−iωSt + c.c., (26)

with k̄S = kS + 2γXPMPP and φ̄S = φSei(k̄S−kS )L/2. Here again
we recover the expected phase shift due to XPM on the seed.

Having treated the effects of SPM and XPM in the steady-
state limit, and we can now study TOPDC for a cw pump with
these effects taken into account. A more careful treatment
would be required to model account for SPM and XPM in
pulsed-pump TOPDC, but we defer this problem to future
work, specializing here to the cw case.

B. Nonresonant triplet generation

We now begin our discussion of TOPDC efficiency in
a waveguide. TOPDC consists of the downconversion of a
pump photon into a triplet of photons in modes G1, G2,
and G3; we label the interaction Hamiltonian describing this
HG1G2G3 . We adopt an interaction picture such that the full
Hamiltonian is split up as H = H0 + HG1G2G3 , where H0 =
HL + HSPM + HXPM. Then the ket |
(t )〉 evolves according to

ih̄
d

dt
|
(t )〉 = H (I )

G1G2G3
(t )|
(t )〉, (27)

and HI
G1G2G3

(t ) = eiH0t/h̄HG1G2G3 e−iH0t/h̄. Similarly to
Sec. II A, we write HG1G2G3 by expanding (8) with the
full waveguide displacement fields, and here collecting
terms involving one lowering operator for the pump,
and three raising operators for the generated modes. To
impose the interaction picture, we simply expand (8) in the
time-dependent displacement fields that evolve under H0; for
a cw pump, these are Eqs. (16), (26), and (22).

The iterative solution of (27) is

|
(t )〉 = |vac〉 − i

h̄

∫ T
2

− T
2

H (I )
G1G2G3

(t )|vac〉dt + · · · , (28)
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FIG. 1. Mode configuration for degenerate spontaneous TOPDC.
Arrows pointing up represent generated modes; the arrow pointing
down represents an input mode. The range over which photons can
be generated around ωP/3 depends on the system; for example, the
range will be tighter in a ring resonator than in a waveguide due to
the narrow resonant linewidth.

so to first order, the probability of a TOPDC interaction oc-
curring within a time T is

P = 1

h̄2

∫ T
2

− T
2

dt
∫ T

2

− T
2

dt ′〈vac|H (I )
G1G2G3

(t ′)H (I )
G1G2G3

(t )|vac〉,
(29)

and the interaction rate is Rint = P/T . We will also refer to
the efficiency Rint/RP, where RP is the rate of incoming pump
photons.

1. Spontaneous triplet generation

We begin by discussing spontaneous TOPDC (SpTOPDC)
(see Fig. 1). We consider the degenerate configuration in
which the three photons are generated in the same mode
(G1 = G2 = G3), from a cw pump at the third harmonic fre-
quency. We expand the general nonlinear Hamiltonian (8)
with the fields (16) and (22). Collecting TOPDC terms where
G1 = G2 = G3 ≡ F , we find the interaction Hamiltonian

H (I )
FFF(t ) = −

∫
dk1dk2dk3MFFF(k1, k2, k3)ā†

F (k1)

× ā†
F (k2)ā†

F (k3)e−i�FFF(k1,k2,k3 )t + H.c., (30)

where

�FFF(k1, k2, k3) = ωP − ωFk1 − ωFk2 − ωFk3 , (31)

and

MFFF(k1, k2, k3) = h̄2L
ωF

3
√

2π
3 φ̄P

√
vT v3

F γFFF

× sinc

(
�k̄FFFL

2

)
. (32)

Here

�k̄FFF = k̄P − k̄1 − k̄2 − k̄3 (33)

is the wave number mismatch, and

γFFF = (ω3
F ωP )1/4

ωF
γFFFP, (34)

where γFFFP is defined according to (10).
Using Eq. (30) with (29), we find

RFFF/RP = (|γFFF|L)2P2
vac, (35)

where we have introduced a characteristic vacuum power; that
is, the power associated with the quantum fluctuations in the
generated mode [10]. This can be generally defined as

Pvac = h̄ω̄

τ
, (36)

where ω̄ is a characteristic frequency set by the product of
the generated modes’ frequencies. For example, in SpTOPDC
we have ω̄ = (ωG1ωG2ωG3 )1/3, which reduces to ω̄ = ωF in
this degenerate configuration. By τ−1 we denote the frequency
bandwidth over which the photons can be generated. This gen-
eration bandwidth depends both on the nonlinear process and
structure under consideration, therefore each case discussed
in this work will have a distinct τ−1. For SpTOPDC in the
waveguide, we find the generation bandwidth to be

τ−2
FFF = v3

F

6π2

∫
dk1dk2dk3δ(�FFF(k1, k2, k3))

× sinc2

(
�k̄FFFL

2

)
. (37)

From Eq. (37) we see that the generation bandwidth is
determined by integrating over the values that the generated
photons’ wave numbers can take, while satisfying energy
conservation and phase matching. The former condition is
imposed in (37) by the Dirac δ function, the latter by the sinc
function. The bandwidth over which these conditions are si-
multaneously satisfied depends on the waveguide’s dispersion
properties. In this case there are three free wave numbers,
corresponding to the three photons generated, and the band-
width over which these wave numbers can vary determines
τ−2 due to the generation rate’s quadratic scaling with vacuum
power. Since the vacuum power scales with the generation
bandwidth, a higher bandwidth can lead to a higher generation
rate in the waveguide. The relationship between the generation
bandwidth and the generation rate is nuanced; for example,
if the length of the waveguide is increased, we will see that
the generation bandwidth decreases, while the overall genera-
tion rate increases because of the quadratic scaling with L in
Eq. (35).

One can consider a simple limit in which (37) can be
evaluated analytically, as described in Appendix A. Assuming
that higher-order dispersion terms are weak, such that we can
work to second order in (2), and assuming phase matching
(k̄P − 3k̄F = 0), we find

τ−2
FFF =

√
3

9|β2|L . (38)

In this limit, the generation bandwidth is set by L and the
group velocity dispersion β2 = ∂2k/∂ω2

Jk . In general, higher-
order dispersion terms may be important and the generation
bandwidth must be computed numerically.

2. Stimulated triplet generation

We now discuss stimulated TOPDC (StTOPDC), where
we seed the process with a classical cw field at ωS . In our
treatment, we neglect the description of stimulated photons
at ωS . One case that arises then is the “singly stimulated”
case, where one photon is generated at ωS with the other
two centered at ωG, such that ωP = ωS + 2ωG, as indicated
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FIG. 2. Sketch of the mode configurations considered in our
discussion of (a) StTOPDC and (b) DStTOPDC. Arrows pointing
up represent generated modes; arrows pointing down represent in-
put modes. The solid and dashed arrows represent pump and seed
fields, respectively. In StTOPDC the range over which pairs can be
generated around depends on the system; in a resonator the pho-
tons’ frequencies are tightly restricted due to the narrow resonances,
whereas in a waveguide the frequencies at which photons are gener-
ated can vary more.

in Fig. 2(a). We also consider the “doubly stimulated” case
in which two photons are generated at ωS with one photon at
ωG, giving ωP = 2ωS + ωG, sketched in Fig. 2(b). The latter
process is in general more efficient, due to the Hamiltonian’s
higher scaling with the seed field’s amplitude. However, one
could suppress this process by tuning ωS; for example, setting
ωS = ωP/2 would make the latter energy conservation condi-
tion impossible to satisfy, allowing only the singly stimulated
process.

We first address the singly stimulated case sketched in
Fig. 2(a), again constructing the interaction Hamiltonian by
collecting the relevant subset of terms in (8); namely, we
keep TOPDC terms with G1 = G2 ≡ G, G3 ≡ S. We treat the
seeded mode classically by taking ā†

S (k) → α∗
S (k). For a cw

seed we have the interaction Hamiltonian

H (I )
GG(S)(t ) = −

∫
dk1dk2MGG(S)(k1, k2)ā†

G(k1)ā†
G(k2)

× e−i�GG(S) (k1,k2 )t + H.c. (39)

Here we have defined

�GG(S)(k1, k2) = ωP − ωS − ωGk1 − ωGk2 , (40)

and

MGG(S)(k1, k2) = Lh̄2√ωGωS
(
ωPωSω

2
G

)1/4 1

2π
φ̄Pφ̄∗

S

×
√

vPvSv
2
GγGG(S)sinc

(
�k̄GG(S)L

2

)
, (41)

with �k̄GG(S) = k̄P − k̄S − k̄1 − k̄2, and

γGG(S) =
(ωP

ωS

)1/4
γGGSP, (42)

again defining γGGSP according to (10).
We now have an effective pair generation Hamiltonian, due

to our classical treatment of the seeded mode. It should be
emphasized that, although our model neglects the generation
of photons in the seeded mode, (39) still describes a TOPDC
process. The energy conservation condition is unchanged, and
the interaction rate computed for this Hamiltonian is in prin-
ciple a triplet generation rate; in our treatment we effectively
trace over the mode S, excluding the photons generated there.
In mode G where two of three photons are emitted, we find
the normalized interaction rate

RGG(S)/RP = (γGG(S)L)2PSPvac, (43)

where Pvac for this process is

Pvac = h̄ωG

τ
, (44)

with the generation bandwidth

τ−1
GG(S) = v2

G

π

∫
dk1dk2δ(�GG(S)(k1, k2))

× sinc2

(
�k̄GG(S)L

2

)
. (45)

This is interpreted in the same way as Eq. (37); it is the
bandwidth over which the two photons can be generated, as
constrained by energy and momentum conservation. In this
case, there are two free wave numbers, corresponding to the
two photons generated. This can be computed analytically if
we assume phase matching (k̄P − k̄S − 2k̄G) and keep terms
up to third order in Eq. (2); a detailed discussion of this case
is given in Appendix A. In this limit, Eq. (45) evaluates to

τGG(S) = 4

3

√
2

π |β2|L , (46)

which has the same scaling with β2 and L as (38). The dis-
crepancy between the constant factors in (46) and (38) is not
surprising. While both expressions define the bandwidth over
which the generated photons’ wave numbers and frequencies
can vary, they are fundamentally different in that τ−1

GG(S) is
defined by considering the possible values that k can take on
in a pair of photons, whereas τ−1

FFF is defined with respect to a
triplet of photons. It is therefore reasonable to expect the same
scaling with the waveguide parameters in both cases, but there
is no reason to expect τ−1

FFF = τ−1
GG(S).

Comparing Eqs. (35) and (43), one can see that the vacuum
power and classical seed power play analogous roles in the
spontaneous and stimulated processes, respectively. Indeed,
the vacuum power is defined as it is so the improvement
to the efficiency with a stimulating field can be estimated
by comparing the vacuum powers and seed power [10]. The
generation rate improves by a factor proportional to PS/Pvac in
the presence of a seed.

To illustrate this further, we turn to the doubly stimulated
TOPDC (DStTOPDC) configuration, sketched in Fig. 2(b), in
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which photons are generated in mode Ḡ. This process can be
considered as classical, in the sense that it is not driven by
vacuum fluctuations and can be described in the framework of
a classical electromagnetic theory. However, DStTOPDC can
also be studied within a quantum theory, as we do here for
a better comparison with SpTOPDC and StTOPDC. Treating
the seeded mode classically, for a cw seed we have the Hamil-
tonian

H (I )
Ḡ(SS)

(t ) = −
∫

dkMḠ(SS)(k)ā†
Ḡ

(k)e−i�Ḡ(SS) (k)t + H.c., (47)

where

�Ḡ(SS)(k) = ωP − 2ωS − ωḠk, (48)

and

MḠ(SS)(k) = Lh̄2ωS
1√
2π

φ̄P(φ̄∗
S )2

√
vPvḠv2

S

× γḠ(SS)sinc

(
�k̄Ḡ(SS)L

2

)
. (49)

The phase mismatch is given by �k̄Ḡ(SS) = k̄P − 2k̄S − k̄, and
we define the nonlinear parameter

γḠ(SS) =
(

ωPωḠ

ω2
S

)1/4

γḠSSP, (50)

where γḠSSP is defined according to (10). With Eq. (29), we
find

RḠ(SS)/RP = 1

2π
(|γḠ(SS)|LPS )2

× sinc2

(
(k̄P − 2k̄S − k̄Ḡ)

L

2

)
. (51)

As expected for a classical nonlinear process [10,11], the
efficiency of DStTOPDC scales only with the power of the
seed field. Comparing (51) to (43), we see the same correspon-
dence between the seeded and unseeded processes discussed
above when comparing (35) and (43): The role played by
the seed power in the stimulated process can be ascribed to
the “vacuum power” in the corresponding unseeded process,
which is driven by vacuum fluctuations and requires a quan-
tum description. The TOPDC generation rate in all three cases
simply scales with a system dependent nonlinear parameter,
(γ L)2, and the power of each classical or quantum field driv-
ing the process. The TOPDC efficiency then improves by a
factor proportional to PS/Pvac with each “order” of seeding.
This is related to earlier work, in which spontaneous pair gen-
eration processes and their seeded counterparts were linked in
the same way [10]. In this case we can consider two distinct
“levels” of seeding, due to the fact the spontaneous process
results in the generation of photon triplets rather than pairs.

III. RING

Having derived the efficiencies for SpTOPDC, StTOPDC,
and DStTOPDC in a waveguide, we will now carry out the
analogous calculation for a resonant system. We choose as
our sample resonant structure a microring resonator coupled
to a bus waveguide, as sketched in Fig. 3. Ring resonators are
ubiquitous in integrated nonlinear optics; they are relatively

FIG. 3. Sketch of the mode profile and coordinate system for a
microring resonator coupled to a bus waveguide (solid blue) and a
phantom waveguide (dashed gray).

easy to implement, and their resonant enhancement enables
the realization of nonlinear processes with relatively high ef-
ficiency [12]. The linear dynamics of the ring-channel system
are modeled by the Hamiltonian

HL = Hring + Hchannel + Hphantom channel

+ Hcoupling + Hphantom coupling, (52)

where Hring and Hchannel capture the free evolution of fields in
the ring and channel; we have

Hring =
∑

J

h̄ωJb†
JbJ , (53)

and Hchannel is given in Eq. (7). We adopt a point coupling
model so that

Hcoupling =
∑

J

h̄γJb†
JψJ (0) + H.c., (54)

where γJ is a complex coupling constant [1,13]. The “phan-
tom channel” terms in Eq. (52) account for scattering losses
from the ring [13]; unlike in the waveguide, scattering losses
here cannot be taken to be negligible because photons dwell in
the ring, rather than passing straight through the system. The
phantom channel terms have the same form as Eqs. (7) and
(54) with a distinct field operator

φJ (z) =
∫

dk√
2π

cJ (k)ei(k−kJ )z, (55)

where the cJ (k) are bosonic annihilation operators. We label
the phantom channel group velocities uJ and the ring-phantom
channel coupling constants μJ . With the coupling to the phys-
ical and phantom channels, we have a total decay constant for
the ring given by

	̄J = |γJ |2
2vJ

+ |μJ |2
2uJ

, (56)

which sets the loaded quality factor QJ = ωJ/2	̄J .
The fields in the bus waveguide are again given by Eq. (1).

Inside the ring, we take the fields to consist of discrete modes,
with the form

D(r, t ) =
∑

J

√
h̄ωJ

2

dJ (r⊥, ζ )√
L

bJ (t )eiκJ ζ + H.c. (57)
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Each mode J is associated with a ring resonance, with the
resonant frequency ωJ and resonant wave number κJ . As
sketched in Fig. 3, we adopt a cylindrical coordinate system in
the ring where ζ is the coordinate in the direction of propaga-
tion around the ring, ranging from 0 to L, so that L is the ring’s
circumference. By r⊥ we denote the pair of coordinates in the
plane perpendicular to the direction indicated by ζ . Unlike
in the waveguide, here the mode amplitudes dJ (r⊥, ζ ) can
depend on ζ because if the field’s polarization has any com-
ponent in the plane of the chip, then the Cartesian components
of dJ (r⊥, ζ ) will vary with ζ [1].

To model nonlinear interactions in the ring, we expand
Eq. (8) with the fields inside the ring; we neglect nonlinear
effects in the bus waveguide because the fields’ intensity in
this region will be much lower than in the ring. We will again
introduce nonlinear parameters γNL as defined in (10); the
effective areas in the ring are defined in Appendix D.

In principle, one can solve the Heisenberg equations of
motion to derive the evolution of the ring and waveguide
fields. However, we instead opt to construct asymptotic field
expansions for the fields throughout the system. This enables
us to “hide” the full linear dynamics in the field expansions,
and proceed with the rest of the TOPDC calculation exactly
as we do in Sec. II.

A. Asymptotic fields

In this approach, we exploit the fact that a generic dis-
placement field can be expressed using an asymptotic-in or
-out expansion [14]. These fields are characterized by their
asymptotic behavior. In the ring-channel system with a phan-
tom channel to model loss, an asymptotic-in wave packet
consists of an incoming wave packet at the bus waveguide’s
input at t → −∞, and outgoing wave packets in both the
bus waveguide and the phantom channel at t → ∞; thus at
negative enough z in the appropriate channel an asymptotic-in
wave packet at t → −∞ will have the form of the field that
would propagate were the ring not present, as in Eq. (1) [15].
Similarly, an asymptotic-out wave packet consists of a single
outgoing wave packet at t → ∞, and fields incoming from
the physical and phantom waveguides at t → −∞; thus at
positive enough z in the appropriate channel an asymptotic-
out wave packet at t → ∞ will have the form of the field that
would propagate in an isolated channel.

Due to this asymptotic behavior, the asymptotic-in expan-
sion is a natural choice for the incoming pump and seed fields,
which are injected in a single waveguide’s input; likewise, the
asymptotic-out expansion is suitable for the generated modes
that we seek at the system’s output.

The general form of the fields using an asymptotic-in (-out)
expansion is

D(r, t ) =
∑

J

∫
dkDasy-in (out)

J (r, k)ain (out)
J (k, t ) + H.c., (58)

where Dasy-in (out)
J (r, k) is a piecewise function of the position

so that the field is defined throughout the entire structure.
The operators ain (out)

J (k, t ) are associated with a mode of the
field defined for the entire structure, and they have the usual
bosonic commutation relations.

The full Dasy-in (out)
J (r, k) for a ring-channel system like

the one considered have been derived earlier [16]. Since we
restrict our description of nonlinear effects to the ring’s coor-
dinates, here we only give the field amplitudes in the ring. The
asymptotic-in field amplitude in the ring is

Dasy-in
J (r, k) = −

√
h̄ωJ0

4π
dJ0(r⊥)eiκJ ζ FJ−(k),

{r⊥, ζ } ∈ ring, (59)

and the asymptotic-out field amplitude is

Dasy-out
J (r, k) = −

√
h̄ωJ0

4π
dJ0(r⊥)eiκJ ζ FJ+(k)

{r⊥, ζ } ∈ ring. (60)

We have introduced

FJ±(k) = 1√
L

(
γ ∗

J

vJ (KJ − k) ± i	̄J

)
, (61)

the Lorentzian field enhancement factor that arises due to the
resonant enhancement in the ring. We use KJ to denote the
channel wave number at the resonant frequency ωJ ; k is a
component wave number in the waveguide band centered at
KJ . In deriving (61), we assume the linewidth 	̄ to be narrow
enough that to good approximation ωk = ωJ + vJ (k − KJ ).
Thus we neglect group velocity dispersion across each ring
resonance, but take it into account between different reso-
nances by leaving unspecified the dependence of KJ on ωJ

across different resonances.

B. Self- and cross-phase modulation

The asymptotic-in and -out fields given above include the
full linear dynamics of the ring-channel system; here we will
show that for a cw pump, it is straightforward to include SPM
and XPM in these field expansions. Having taken nonlinear
effects in the bus waveguide to be negligible, it suffices to
consider the evolution of the ring operators bJ under Hring +
HSPM + HXPM.

For each mode J , the term in the equation of motion due
Hring is

− i

h̄
[bJ (t ), Hring(t )] = −iωJbJ (t ). (62)

For HSPM and HXPM, we expand the general nonlinear
Hamiltonian (8) using (57). We focus first on SPM on the
pump field; collecting the associated terms from the full non-
linear Hamiltonian, we obtain

HSPM = −1

2
h̄2ωP

1

LγSPMv2
Pb†

Pb†
PbPbP. (63)

The nonlinear parameter is defined as in (10), using the
effective area given in (D5). The ring operator associated with
the pump resonance then evolves under HSPM according to

− i

h̄
[bP(t ), HSPM] = ih̄ωP

1

LγSPMv2
Pb†

P(t )bP(t )bP(t ) (64)

= ih̄ωP
1

LγSPMv2
P|βJ |2bP(t ) (65)

= iγSPMvPP′
PbP(t ). (66)
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In (65) we take 〈b†
P(t )bP(t )〉 = |βP(t )|2 and we consider

the steady-state limit where |βP(t )|2 = |βP|2; in (66) we in-
troduce P′

P = h̄ωP
1
LvP|βP|2, the power of the pump field in

the ring.
Comparing (62) and (66), one sees that the effect of SPM

on a cw pump in the steady-state limit is to shift the resonance
frequency ωP to the “hot” resonance frequency ω̃P = ωP −
γSPMvPP′

P. When including HSPM in the asymptotic fields
derivation, this substitution ultimately appears in the pump’s
field enhancement factor:

FP±(k) = 1√
L

(
γ ∗

P

vP(K̃P − k) ± i	̄P

)
, (67)

where we introduce K̃P = KP − γSPMP′
P as the channel wave

number associated with the hot resonance frequency. One
could equally write Eq. (67) in terms of the cold resonance
wave number KP and a shifted wave vector k̄ = k + γSPMP′

P;
then the effect of SPM would be written as a shift on the
channel wave vector k, similar to Eq. (24) for the waveguide.
However, here we opt to treat the effect of SPM as a shift in the
resonance frequency, since nonlinear effects are confined to
the ring, and the bare wave number k in the channel is known.

As the pump power in the ring P′
P builds up, the resonant

wave number shifts proportionally. However, the steady-state
value of P′

P is a function of the cw field’s detuning from the
resonance frequency, with the latter shifting as the field in the
ring builds up. Since we will strictly work in the cw limit in
these calculations, it is sufficient to determine the steady-state
value of P′

P, with SPM taken into account in the classical
equation of motion for βP(t ) [17]. Equation (67) can then
be used in (59) and (60) to define the asymptotic-in and -out
expansions for the cw pump field under HL + HSPM + HXPM,
in the steady-state limit.

We apply the same approach to include XPM on the gen-
erated modes by the cw pump. The nonlinear Hamiltonian
describing this is

HXPM = −2h̄2ωG
1

LγXPMvPvGb†
Pb†

GbPbG, (68)

where G denotes a resonance where photons are generated.
The nonlinear constant γXPM is defined as in (18), now with
the effective area defined in (D5). We consider the evolution
of the ring operator bG under Hring + HXPM, recalling that the
SPM term in the Hamiltonian will be negligible for the weak
generated fields. The free evolution is given by (62), and the
XPM term in the steady state gives

− i

h̄
[bG(t ), HXPM(t )] = 2iγXPMvGP′

PbG(t ). (69)

We then see that the effect of XPM is to shift the resonance
frequencies associated with generation modes from ωG to the
hot resonance frequencies ω̃G = ωG − 2γXPMvGP′

P. The field-
enhancement factor for the generated modes becomes

FG±(k) = 1√
L

(
γ ∗

G

vG(K̃G − k) ± i	̄G

)
, (70)

where we identify K̃G = KG − 2γXPMP′
P as the resonant wave

number for the hot cavity.

C. Resonant triplet generation

With the modified field enhancements factors (67) and
(70), Eqs. (59) and (60) are the asymptotic field amplitudes
arising from H0 = HL + HSPM + HXPM. We can now approach
the TOPDC calculations as we did in Sec. II B. We split the
dynamics up according to H = H0 + HG1G2G3 , so that the in-
teraction picture Hamiltonian H (I )

G1G2G3
(t ) is obtained by using

the asymptotic fields to expand the nonlinear Hamiltonian (8),
from which we collect the terms associated with TOPDC. We
use the asymptotic-in expansion for the pump and seed fields,
and we take these to be classical cw fields so that we have

DJ (r, t ) =−
√

h̄ωJ

2
dJ (r⊥, ζ )eiκJ ζ FJ−(K̃J + δK̃J )

× φJe−i(ω̃J−δω̃J )t + H.c. (71)

Here J = {P, S} labels the two possible input modes, and φJ

is the cw field amplitude in the channel as defined in (15). We
quote the field’s frequency and wave number in terms of the
hot resonance values K̃J and ω̃J ; we use δω̃J and δK̃J to denote
the cw field’s detuning from ω̃J and K̃J . Due to the narrowness
of the resonances, these can be related by δω̃J = vJδK̃J .

We use the asymptotic-out expansion for generated modes,
so that

DG(r, t ) =−
∫

dk

√
h̄ωG

4π
dG(r⊥, ζ )eiκGζ FG+(k)aout

G (k)

× e−iωGkt + H.c. (72)

Only asymptotic-out operators will appear in H (I )
G1G2G3

(t ), due
to our classical treatment of input fields. We will drop the
“out” label from the operators, and it should be understood
that the operators aJ (k) in the ring-channel system denote
asymptotic-out operators. With H (I )

G1G2G3
(t ) defined using these

fields, we can derive TOPDC generation rates in the microring
system to first order, as outlined in Sec. II B

1. Spontaneous triplet generation

We again begin by considering degenerate SpTOPDC with
a cw pump field, which can in general be detuned from res-
onance. In general, there are a number of energy-conserving
configurations in which photons can be generated, but we be-
gin by focusing on the degenerate case, deferring the inclusion
of these additional processes. We put (71) and (72) into (8)
and collect TOPDC terms with G1 = G2 = G3 ≡ F . Then we
have

H (I )
FFF(t ) = −

∫
dk1dk2dk3MFFF(k1, k2, k3)a†

F (k1)

× a†
F (k2)a†

F (k3)e−i�FFF(k1,k2,k3 )t + H.c., (73)

with

�FFF(k1, k2, k3) = (ω̃P + δω̃P ) − ωFk1 − ωFk2 − ωFk3 (74)

and

M̄FFF(k1, k2, k3)

= h̄2ωF
1

3
√

2π
3 φP

√
vPv3

F γFFFL

× FP−(K̃P + δK̃P )F ∗
F+(k1)F ∗

F+(k2)F ∗
F+(k3), (75)
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where γFFF is defined as in (34), with (10) and (D5). Putting
this Hamiltonian into (29) we have

RFFF/RP = (γFFFL)2P2
vac|FF (K̃F )|6|FP(K̃P + δK̃P )|2. (76)

Unlike in the nonresonant waveguide, the efficiency here
scales with the field enhancement factors associated with each
field in the interaction. We also emphasize that the phase
matching condition in this case is contained in the definition
of γFFF, as can be seen in Appendix D. For degenerate Sp-
TOPDC in this microring system, the vacuum power is given
by

Pvac = h̄ωF

τ
, (77)

where the generation bandwidth is given by

τ−2 = 1

2

(
	̄4

F

[(ω̃P + δω̃P ) − 3ω̃F ]2 + 9	̄2
F

)
. (78)

Clearly this is maximized at ω̃P + δω̃P − 3ω̃F = 0, which
corresponds to the three photons being generated on res-
onance with the hot cavity; the three photons’ average
frequency in this case would be ω̃F , and ω̃P + δω̃P = 3ω̃F

would be ensured by energy conservation.
In this case, the expression for the generation bandwidth

reduces to τ−1 = 	̄F /
√

18. This scaling with 	̄F is expected;
	̄F is the parameter limiting the range of frequencies over
which the generated photons can be emitted, since they can
only be emitted within the resonance at the fundamental fre-
quency.

We have a simple expression for τ−1 in the resonant sys-
tem since we neglect group velocity dispersion across each
resonance; we effectively assume that the resonant linewidth
is a tighter constraint than the material’s dispersion properties.
Were this not the case, τ−2 would be defined by an expression
like (37) with Lorentzian envelopes multiplying the integrand.

Unlike in the waveguide, here there is an additional res-
onant effect, thus one has a trade-off between the vacuum
power and the overall field enhancement. The vacuum power
increases if the linewidth 	̄F is increased, but the field en-
hancement factors |FF (K̃F )|2 decrease [recall Eq. (70)]; since
the generation rate has a higher scaling with the field enhance-
ment factors than the vacuum power, a narrow linewidth at ωF

is required to maximize the generation bandwidth, despite this
limiting the vacuum power.

In the ring-channel system, one can also consider nonde-
generate SpTOPDC configurations, where the photon triplet
is distributed among two or three ring resonances. Here we
consider a scheme where G1 = G2 ≡ G, G3 ≡ S, sketched in
Fig. 2(a). For this particular nondegenerate SpTOPDC config-
uration, we have

H (I )
GGS (t ) = −

∫
dk1dk2dk3MGGS (k1, k2, k3)a†

G(k1)

× a†
G(k2)a†

S (k3)e−i�GGS (k1,k2,k3 )t + H.c., (79)

with

�GGS (k1, k2, k3) = (ω̃P + δω̃P ) − ωGk1 − ωGk2 − ωSk3

(80)

and

MGGS (k1, k2, k3)

= h̄2√
(2π )3

(
ω2

GωS
)1/3

φP

√
vPv2

GvS

× γGGSLFP−(K̃P + δK̃P )F ∗
G+(k1)F ∗

G+(k2)F ∗
S+(k3), (81)

where

γGGS =
((

ω2
GωSωP

)1/4

(
ω2

GωS
)1/3

)
γGGSP, (82)

with γGGSP defined according to (10) and (D5). From this we
find the efficiency to be

RGGS/RP = (|γGGS|L)2P2
vac|FG(K̃G)|4|FS (K̃S )|2

× |FP(K̃P + δK̃P )|2. (83)

Here again, δK̃P is the cw pump’s detuning from the hot
cavity’s resonance wave number. For this process, the char-
acteristic vacuum power is given by

Pvac = h̄
(
ω2

GωS
)1/3

τ
,

τ−2 = 1

2

(
	̄2

G	̄S (2	̄G + 	̄S )

[(ω̃P + δω̃P ) − 2ω̃G − ω̃S]2 + (2	̄G + 	̄S )2

)
.

(84)

Aside from the dependence on two distinct linewidths, the
generation bandwidth implied by (84) has the same general
form as (78). If we consider the limit where resonances G
and S are similar in the sense that ωG ≈ ωS and 	̄G ≈ 	̄S , the
generation bandwidth in (84) reduces to

τ−2 = 1

2

(
3	̄4

G

[(ω̃P + δω̃P ) − 3ω̃G]2 + 9	̄2
G

)
, (85)

consistent with (78) up to a factor of three. If the pump’s
detuning is set such that (ω̃T + δω̃T ) − 2ω̃G − ω̃S = 0 so that
(84) is maximized, we have

τ−2 =
(

1

2

	̄2
G	̄S

2	̄G + 	̄S

)
. (86)

Here again the generation bandwidth is clearly limited by the
resonant linewidths for the generated modes.

2. Stimulated triplet generation

We now consider seeding the nondegenerate configuration
in Fig. 2(a) with a classical cw field in mode S. We treat the
seeded mode classically by taking a†

S (k) → α∗
S (k) in Eq. (79).

We assume the pump and seed to be cw fields, again using
δω̃J and δK̃J to denote the input fields’ detuning from their
respective resonant frequencies and wave numbers. We then
have the interaction Hamiltonian

H (I )
GG(S)(t ) = −

∫
dk1dk2MGG(S)(k1, k2)a†

G(k1)a†
G(k2)

× e−i�GG(S) (k1,k2 )t + H.c., (87)
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with

�GG(S)(k1, k2) = (ω̃P + δω̃P ) − (ω̃S + δω̃S ) − ωGk1 − ωGk2

(88)

and

MGG(S)(k1, k2)

= h̄2

2π

√
ωGωSφ

∗
SφPγGG(S)L

√
vPvSv

2
G

× F ∗
S−(K̃S + δK̃S )FP−(K̃P + δK̃P )F ∗

G+(k1)F ∗
G+(k2),

(89)

using the definition for γGG(S) given in Eq. (42). The genera-
tion efficiency in this case is

RGG(S)/RP = (|γGG(S)|L)2PSPvac|FG(K̃G)|4

× |FS (K̃S + δK̃S )|2|FP(K̃P + δK̃P )|2. (90)

Here again the generation rate equation is analogous to
Eq. (43), with field enhancement factors now appearing in the
resonant case. The vacuum power in this case is

Pvac = h̄ωG

τ

τ−1 =
(

2	̄3
G

[(ω̃P + δω̃P ) − (ω̃S + δω̃S ) − 2ω̃G]2 + 4	̄2
G

)
.

(91)

As in SpTOPDC, the generation bandwidth is constrained
by the ring resonance’s linewidth at the frequency ωG. The
resonant SpTOPDC and StTOPDC bandwidths have the same
scaling with system parameters, but different constant factors,
just as we found in the nonresonant case. Comparing (83) and
(90) where δK̃S = 0, we have

RGG(S) = γGG(S)

γGGS

PSPstim
vac(

Pspon
vac

)2 RGGS, (92)

where we explicitly label the vacuum powers associated with
the spontaneous and stimulated processes, since they are dis-
tinct. It is convenient to identify an effective vacuum power

P̄vac ≡ γGGS

γGG(S)

(
Pspon

vac
)2

Pstim
vac

, (93)

so that the improvement in the efficiency due to the seed field
is given by PS/P̄vac. Here we have

P̄vac = h̄ωS

(
[(ω̃P + δω̃P ) − (ω̃S + δω̃S ) − 2ω̃G]2 + 4	̄2

G

[(ω̃P + δω̃P ) − ω̃S − 2ω̃G]2 + (2	̄G + 	̄S )2

)

×
(

	̄S (2	̄G + 	̄S )

4	̄G

)
. (94)

If pump detuning is chosen to satisfy (ω̃P + δω̃P ) − ω̃S −
2ω̃G = 0, and the seed field is on resonance, then the effective
vacuum power reduces to

P̄vac = h̄ωS

(
	̄G	̄S

(2	̄G + 	̄S )

)
, (95)

an easily quantified parameter.

FIG. 4. Plots of the electric field intensity |E(x, y)|2 in the sample
structure for (a) the generated modes and (b) the pump mode. The
rectangle indicates the silicon nitride waveguide; the cladding is
silica.

Finally, we address the doubly stimulated configuration in
Fig. 2(b). The interaction Hamiltonian in the microring system
has the form of Eq. (47), now with

�Ḡ(SS) = (ω̃P + δω̃P ) − 2(ω̃S + δω̃S ) − ωḠk, (96)

MḠ(SS)(k) = h̄2

√
2π

ωS (φ∗
S )2

φPγḠ(SS)L
√

vḠvPv2
S

× [F ∗
S−(K̃S + δK̃S )]2FP−(K̃P + δK̃P )F ∗̄

G+(k),

(97)

with the nonlinear parameter is defined as in Eq. (50) with
Eq. (D6). The generation rate is

RḠ(SS)/RP = (|γḠ(SS)|L)2P2
S |FS (K̃S + δK̃S )|4

× |FP(K̃P + δK̃P )|2|FḠ(K̃Ḡ + δK̃Ḡ)|2, (98)

where K̃Ḡ + δK̃Ḡ is the wave number of the photons generated
in mode Ḡ. The detuning δK̃Ḡ is determined by energy con-
servation; we have δK̃Ḡ = 1

vḠ
δω̃Ḡ, and ω̃Ḡ + δω̃Ḡ = (ω̃P +

δω̃P ) − 2(ω̃S + δω̃S ).
Again we see that the improvement to the efficiency with

respect to StTOPDC is given by PS/Pvac; in this case, the
comparison is simplified by the fact that this is a classical
process, which is not driven by vacuum fluctuations, thus there
is no need to identify an “effective” vacuum power like the one
in Eq. (94).

IV. SAMPLE CALCULATION

We now calculate the different TOPDC generation rates in
two particular sample systems. The sample nonresonant sys-
tem consists of a silica-clad silicon nitride waveguide 1700 nm
wide and 800 nm thick; for the resonant system we assume a
ring resonator with the same cross-sectional dimensions and
the same materials.

Phase matching poses a significant challenge in conceiv-
ing platforms for TOPDC. In this sample calculation, we
use a higher-order spatial mode for the pump, keeping the
fundamental mode for the generated photons; the pump and
generated modes are plotted in Fig. 4 [18].

These plots are generated for λP = 0.57 μm and λF =
1.72 μm, which are the phase matched wavelengths for de-
generate SpTOPDC in the waveguide; the phase-matching
details for all the processes discussed here are in Appendix C.
For the other processes, the phase matched wavelengths are
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slightly different, but they vary so little that the mode profiles
do not change significantly.

With the mode profiles the nonlinear parameter |γG1,G2,G3 |
can be calculated numerically. For each nonresonant TOPDC
process considered, we have |γG1,G2,G3 | = 0.19 (W m)−1; the
nonlinear parameters are all the same because for this waveg-
uide, the mode profiles are essentially unchanged over the
small differences in the modes used in each process.

The value of |γG1,G2,G3 | for a ring resonator can be different
from |γG1,G2,G3 | for the corresponding waveguide, depending
on the polarization of the light in the ring, and on the radius
of curvature of the ring [19]. For this sample calculation,
however, we take the nonlinear parameter in the waveguide
as a good approximation for that in the resonator; we take
|γG1,G2,G3 | = 0.19 (W m)−1 for all the resonant processes.

A. Degenerate spontaneous third-order parametric
down-conversion

We first consider the waveguide, where from (35) the
TOPDC rate can be written in terms of the incoming pump
power PP as

RFFF = (|γFFF|L)2P2
vac

( PP

h̄ωP

)
, (99)

with

Pvac = h̄ωF

τ
, (100)

τ−2
FFF = v3

F

6π2

∫
dk1dk2dk3δ(�FFF(k1, k2, k3))

× sinc2

(
�k̄FFFL

2

)
, (101)

where �k̄FFF is the phase mismatch given in Eq. (33),
and �FFF(k1, k2, k3) is the frequency mismatch defined in
Eq. (31).

For the cross-sectional dimensions described above, we
find that degenerate TOPDC is phase matched at λP =
0.57 μm and λF = 1.72 μm. We take the waveguide’s length
to be 1 cm, and we calculate the bandwidth by evaluating
Eq. (101) numerically: We obtain �k̄ in the integrand by
interpolating simulated dispersion data, and we take the in-
tegrals over finite ranges to account for frequency cutoffs
in the generated modes (see Appendix B). We find τ−1 =
2.9 × 104 GHz, which corresponds to �λ ≈ 290 nm.

The numerical calculation used to obtain this bandwidth
can be compared with the analytic expression (38)

τ−2
FFF =

√
3

9|β2|L , (102)

which is valid if higher-order terms in the dispersion relation
can be neglected, and if there is no frequency cutoff for
the generated modes. From the dispersion data for the sam-
ple waveguide we find |β2| = 3.2 × 10−26 s2/m, and τ−1 =
2.4 × 104 GHz; despite the approximations made in deriving
Eq. (102), the result agrees well with the numerical calcu-
lation. Equation (102) can be used to easily and accurately
estimate the generation bandwidth without the full numerical
calculation described in Appendix B.

In this calculation we have neglected the fact that system
losses and detection efficiency may vary over the large gen-
eration bandwidth. One way to account for this would be
to further restrict the limits of integration in Eq. (101)—for
example, to integrate only over frequencies in a particular
detection bandwidth. If this were done, Eqs. (101) and (102)
would no longer agree since the approximations made in de-
riving Eq. (102) would not apply.

For this sample calculation we simply proceed with τ−1 =
2.9 × 104 GHz, which gives Pvac = 3.3 × 10−6 W. Using this
and assuming the pump power to be 100 mW, from Eq. (99)
we have RFFF ≈ 12 s−1 for the sample waveguide.

For the resonant system, we assume a ring resonator with
a 120 μm radius (L ≈ 750 μm). For the ring’s quality factors
we take QF = 107 and QP = 105; the quality factor at the third
harmonic frequency is taken to be lower due to the use of
a higher-order spatial mode. The phase matching condition
κP − 3κF = 0 is satisfied by the same λP and λF used in the
waveguide calculation.

From (76), the degenerate SpTOPDC rate in the resonator
is given by

RFFF = (γFFFL)2P2
vac|FF (K̃F )|6|FP(K̃P + δK̃P )|2

( PP

h̄ωP

)
,

(103)

where

P2
vac = h̄2ω2

F

1

2

(
	̄4

F

[(ω̃P + δω̃P ) − 3ω̃F ]2 + 9	̄2
F

)
, (104)

|FT (K̃P + δK̃P )|2 = 1

L

( |γP|2
δω̃2

P + 	̄2
P

)
. (105)

In addition to satisfying phase matching, we seek to maximize
the vacuum power and the field enhancement factor for the
pump mode. One approach (see Appendix C) is to set δω̃P

such that ω̃P + δω̃P − 3ω̃F ≈ 0. As discussed in Sec. III, this
ensures that the photons are generated on resonance with the
hot resonator, maximizing the vacuum power; this would re-
quire δω̃P/2π ≈ 30 MHz for the parameters considered here
with PP = 100 mW. The pump field is then detuned from
resonance, but in this case the linewidth for the pump mode
is large enough that the detuning is relatively insignificant,
and to good approximation we can put |FP(K̃P + δK̃P )|2 ≈
|FP(K̃P )|2. Under these conditions, and using 	̄J = ωJ/2QJ ,
Eq. (103) can be rewritten as

RFFF → (γFFFL)2P2
vac|FF (K̃F )|6|FP(K̃P )|2

( PP

h̄ωP

)
. (106)

where

|FJ±(K̃J )|2 → 1

L
|γJ |2
	̄2

J

= 4vJηJQJ

LωJ
, (107)

and

P2
vac = h̄2ω2

F

τ 2
, (108)

τ−2 = 1

18

(
ωF

2QF

)2

. (109)
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For the parameters outlined above, the generation band-
width for the resonator is τ−1 = 1.3 × 10−2 GHz (�λ ≈ 0.1
pm), and Pvac = 1.5 × 10−12 W. The generation bandwidth
here is much smaller than the bandwidth in the waveg-
uide. This is expected, since the frequency range over which
photons can be generated in the resonator is limited by the res-
onance linewidth; this is a tighter constraint than the material’s
dispersion properties, which limits the generation bandwidth
in the waveguide. Since SpTOPDC scales quadratically with
the vacuum power, SpTOPDC in the ring resonator is ineffi-
cient despite the enhanced pump power in the ring. Assuming
again a 100 mW pump in the channel, which corresponds to
1.05 W in the ring, the rate of triplet generation is RFFF =
5.9 × 10−3 s−1, orders of magnitude smaller than the rate
of triplets predicted for the waveguide. Clearly a resonant
structure would not be ideal for SpTOPDC, even with im-
provements in parameters; instead, its implementation in a
waveguide should be prioritized.

B. Stimulated third-order parametric down-conversion

As in Secs. II and III, in our discussion of StTOPDC
we consider the case where the photon triplet is distributed
such that two are emitted in a mode labeled “G,” and one
is emitted in a seeded mode “S” [see Fig. 2(a)]. For our
sample calculation we choose λP = 0.57 μm, λS = 2.3 μm,
and λG = 1.52 μm; these wavelengths are phase matched (see
Appendix C), and they result in photon pairs generated in a
convenient frequency range for detection. From Eq. (43), the
rate of StTOPDC in a waveguide can be written as

RGG(S) = (γGG(S)L)2PSPvac

( PP

h̄ωP

)
, (110)

where

Pvac = h̄ωG

τ
, (111)

τ−1 = v2
G

π

∫
dk1dk2δ(�GG(S)(k1, k2))sinc2

(
�k̄GG(S)L

2

)
.

(112)

Computing the bandwidth numerically, we find τ−1 = 4.0 ×
104 GHz (�λ ≈ 310 nm) and Pvac = 5.3 × 10−6 W; here
again we can compare with the analytic expression

τGG(S) = 4

3

√
2

π |β2|L , (113)

which is obtained by assuming the modes have no frequency
cutoff, and by working up to third order in the dispersion
relation (see Sec. II B 2). The group velocity dispersion here is
slightly different than in SpTOPDC since pairs are generated
at a different frequency; we have |β2| = 5.5 × 10−26 s2/m, so
Eq. (113) predicts τ−1 = 4.5 × 104 GHz, in good agreement
with the numerical result. Keeping PP = 100 mW and setting
PS = 10 mW, we have RGG(S) = 5.7 × 104 s−1.

For the resonator we consider the analogous scenario to
the one described above and in Appendix C: We maximize
the vacuum power by setting δω̃S = 0, and setting the pump
detuning such that ω̃P + δω̃P − 2ω̃G − ω̃S ≈ 0; since ω̃G +

˜2ωS ≈ 3ω̃F , the required pump detuning with PP = 100 mW

is again δω̃P ≈ 30 MHz, which is a negligible detuning from
the pump resonance frequency due to the large linewidth.
From Eq. (90), the rate of StTOPDC in the ring in this limit is
given by

RGG(S) → (|γGG(S)|L)2PSPvac|FG(K̃G)|4

× |FS (K̃S )|2|FP(K̃P )|2
( PP

h̄ωP

)
, (114)

with

Pvac = h̄ωG

τ
,

τ−1 = 	̄G

2
= ωG

4QG
. (115)

We assume that ωS and ωG are sufficiently close to ωF

that we can take QS = QG = QF . The generation bandwidth
then evaluates to τ−1 = 3.1 × 10−2 GHz (�λ ≈ 0.2 pm) and
Pvac = 4.0 × 10−12 W. The generation bandwidth in the res-
onator remains much smaller than in the waveguide. However,
the scaling of RGG(S) with the vacuum power is linear, rather
than quadratic, so the low vacuum power does not affect
the efficiency of the resonator as much. Indeed, the field
enhancement in the resonator makes it more efficient than the
waveguide for StTOPDC: Setting PP = 100 mW and PS =
20 μW, we have RGG(S) = 2.3 × 105 s−1. We have chosen
PS = 20 μW so that the seed power in the ring is ten times
smaller than the pump power in the ring; recall that for this
system QS = 100QP.

C. Doubly stimulated third-order parametric down-conversion

When TOPDC is seeded, alongside StTOPDC there can be
a doubly stimulated process where a light is generated in a
single mode labeled Ḡ. With the pump and seed modes iden-
tified above, this mode’s wavelength must be λḠ = 1.12 μm
to satisfy energy conservation and phase matching. With these
conditions satisfied, from Eq. (51) the rate of DStTOPDC in
the waveguide is given by

RḠ(SS) = 1

2π
(|γḠ(SS)|LPS )2

( PP

h̄ωP

)
. (116)

With PP = 100 mW and PS = 10 mW, we have RḠ(SS) =
1.8 × 107 s−1 for the waveguide.

For the resonator we have

RḠ(SS) = (|γḠ(SS)|L)2P2
S |FS (K̃S + δK̃S )|4

× |FP(K̃P + δK̃P )|2|FḠ(K̃Ḡ + δK̃Ḡ)|2
( PP

h̄ωP

)
,

(117)

with

δK̃Ḡ = 1

vḠ
[(ω̃P + δω̃P ) − 2(ω̃S + δω̃S ) − ω̃Ḡ]. (118)

Keeping the parameters used in the resonant StTOPDC sam-
ple calculation (namely δω̃S = 0 and δω̃P/2π ≈ 30 MHz),
we have vḠδK̃Ḡ 
 	̄Ḡ; the detuning is sufficiently small that
that |FḠ(K̃Ḡ + δK̃Ḡ)|2 ≈ |FḠ(K̃Ḡ)|2 and the DStTOPDC gen-
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TABLE I. Summary of TOPDC rates. We highlight in blue and
gray the quantum (SpTOPDC and StTOPDC) and classical processes
(DStTOPDC) respectively.

Waveguide Resonator

RFFF 12 s−1 5.9 × 10−3 s−1

RGG(S) 5.7 × 104 s−1 2.3 × 105 s−1

RḠ(SS) 1.8 × 107 s−1 1.3 × 1012 s−1

eration rate is to good approximation

RḠ(SS) = (|γḠ(SS)|L)2P2
S |FS (K̃S )|4

× |FP(K̃P )|2|FḠ(K̃Ḡ)|2
( PP

h̄ωP

)
. (119)

Again taking PP = 100 mW and PS = 20 μW, Eq. (119)
predicts RḠ(SS) = 1.3 × 1012 s−1; RḠ(SS) is independent of the
generation bandwidth, so DStTOPDC would be much more
efficient in a ring than in a waveguide due to the field enhance-
ment.

D. Summary and comments on scaling

The TOPDC rates for the sample systems are summarized
in Table I. While these results depend on the specific sets
of parameters under consideration, our results clearly indi-
cate that nonresonant platforms are preferable for SpTOPDC,
whereas resonators perform better in StTOPDC, with an even
larger advantage in DStTOPDC. This is because the efficiency
of each TOPDC process scales differently with the vacuum
power, which depends on the generation bandwidth. In a
resonator, there is a trade-off between the field enhancement
and the vacuum power: A higher ring quality factor entails a
higher field enhancement but a lower vacuum power, since the
generation bandwidth is restricted by the linewidth (see the
discussions in Sec. III C). On the contrary, in a waveguide the
generation bandwidth is determined solely by the waveguide’s
dispersion properties and the phase matching condition (see
Sec. II B).

Since the SpTOPDC rate scales quadratically with vacuum
power, the low vacuum power in the ring affects its per-
formance significantly, despite the field enhancement terms
in Eq. (103). The StTOPDC rate scales only linearly with
vacuum power, so the low vacuum power has less of an effect
on the overall performance of the resonator; the resonator
performs substantially better than the waveguide for the pa-
rameters considered here. Finally, because DStTOPDC is a
classical process, its rate does not depend on the vacuum
power at all, and the ring performs significantly better than the
waveguide because the field enhancement comes at no price.

We emphasize that the parameters used to obtain the rates
in Table I were chosen to be realistic, but arguably conserva-
tive. For example, we have calculated TOPDC rates for pump
and seed powers that are commonly used [20,21]. Obviously,
more optimistic rate estimates are obtained with higher input
powers; in particular, we have left significant room to increase
the seed power in resonant StTOPDC. With higher input pow-
ers one would need to include the effect of SPM and XPM due

TABLE II. Summary of phase-matched TOPDC rates’ scaling
with system parameters. We highlight in blue and gray the quantum
(SpTOPDC and StTOPDC) and classical processes (DStTOPDC),
respectively.

Waveguide parameters RFFF RGG(S) RḠ(SS)

L ∝ L ∝ L3/2 ∝ L2

Ring parameters RFFF RGG(S) RḠ(SS)

Q ∝ QP QF ∝ QP QGQS ∝ QP QḠQ2
S

L ∝ L−2 ∝ L−2 ∝ L−2

to the seed, which can be done by following the approaches in
Secs. II A and III B for including phase modulation due to the
pump. One would especially need to take care in the resonant
case, since here QS > QP so the circulating seed power P′

S can
easily exceed the pump power P′

P for the modes used in this
sample calculation. Once the new shifts to the wave numbers
and resonance frequencies are accounted for, the TOPDC rates
simply scale linearly with each input power.

We have also been conservative in our choice of the waveg-
uide length, so one could realistically envisage using a longer
waveguide. To illustrate the scaling, consider the waveguide
length being increased to L = 10 cm and PP = 500 mW, re-
spectively. We would then have RFFF = 5.9 × 102 s−1; note
that the rate only scales linearly with L, since the vacuum
power scales with L−1/2. We have again used Eq. (99), in
which loss is neglected. For existing low-loss waveguides this
is a good approximation [22], but to realistically model even
longer waveguides, loss would need to be considered. This
scenario may seem unreasonably optimistic, but it illustrates
how, with improvements in certain experimental parameters,
TOPDC generation rates in integrated devices could improve
to the point of becoming experimentally viable.

The scaling of the generation rates with the input powers
is trivial; however, because the vacuum power and field-
enhancement factors both depend on parameters such as
length and quality factors, the scaling with these parameters
is not immediately obvious from the rate expressions as they
are written in Secs. II and III. In Table II we summarize
the scaling of the generation rates with some of the system
parameters. Once the scaling of the resonator rates with the
quality factors is identified, one can easily understand the
results in Table I; the rates of stimulated TOPDC scale more
highly with quality factors, so there is more advantage in using
a resonant system.

While the parameters in Table II impact the TOPDC rates,
the most important parameter is arguably the nonlinear param-
eter γ . The nonlinear γ in this sample system is particularly
small; for comparison, γ ∼ 1 (W m)−1 is typical for spon-
taneous four-wave mixing in comparable systems [23]. The
nonlinear parameter here is small due to the use of a higher-
order spatial mode for the pump, which results in a relatively
small effective area.

The development of platforms in which phase matching
can be achieved, while maintaining a higher mode overlap,
will be instrumental in making integrated TOPDC viable;
there has already been some progress towards this, for exam-
ple exploring the use of birefringence [24]. There has also
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been progress in the search for high nonlinearity systems
[25,26], another route towards improving the nonlinear pa-
rameter. Since the TOPDC rates scale quadratically with γ ,
even a moderate increase in the nonlinearity or the mode
overlap could make integrated TOPDC viable.

V. CONCLUSIONS

We have discussed the implementation of TOPDC in inte-
grated photonic structures. We derive equations for the rates
of spontaneous TOPDC (SpTOPDC) and stimulated TOPDC
(StTOPDC) in a waveguide and a microring resonator, explic-
itly showing the scaling of the rates with system parameters
which continue to improve with progress in the fabrication
and design of integrated photonic platforms.

We have verified that a resonant platform is suitable for
StTOPDC; on the other hand, SpTOPDC benefits from a
platform where the vacuum fluctuations are not limited by
a resonant linewidth, so its implementation in nonresonant
systems should be prioritized. To illustrate this we present
a sample calculation of the TOPDC rates in a silicon ni-
tride waveguide and microring system, assuming conservative
parameters compatible with existing technology. We predict
observable StTOPDC rates even in this sample resonant sys-
tem, which is not optimized for TOPDC. We therefore expect
that the demonstration of integrated StTOPDC should be pos-
sible in the near term.

Our outlook for integrated SpTOPDC is similarly opti-
mistic, despite the relatively low predicted rates in our sample
calculation. There has already been significant progress in the
development of platforms with low losses and high nonlin-
earity [22,25,26], and the issue of phase matching over large
frequency ranges is being addressed [24]. Were a TOPDC
platform designed taking advantage of these advances, it
would be reasonable to expect a TOPDC rate orders of mag-
nitude higher than those predicted in our sample system.
Indeed, with the community’s focus on designing platforms
for TOPDC, integrated SpTOPDC may soon be observable;
in the long term, such progress could lead to SpTOPDC
becoming a viable source of nonclassical light with character-
istics that cannot be achieved with presently available sources
[27–30].
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APPENDIX A: EVALUATING WAVEGUIDE GENERATION
BANDWIDTHS

Here we outline the approach towards evaluating the
SpTOPDC and StTOPDC generation bandwidths in the
waveguide, in the limit where the integrals can be carried out

analytically. We first focus on the SpTOPDC bandwidth given
in Eq. (45).

We begin by moving to frequency variables, using (2) and

dkn = dkn

dωFkn

dωFkn → 1

vF
dωFkn → 1

vF
dωn. (A1)

We then have

τ−2
FFF = 1

6π2

∫
dω1dω2dω3δ(ωP − ω1 − ω2 − ω3)

× sinc2

(
ϒFFF − [�(δω1) + �(δω2) + �(δω3)]L

2

)
,

(A2)

where ϒFFF = (k̄P − 3k̄F ) L
2 , δωn = ωn − ωF , and the inte-

grals over ω1, ω2, ω3 range from 0 to ∞; the dispersion terms
are contained in

�(δωn) = ∂ωn

∂ k̄
(δωn) + 1

2

∂2ωn

∂ k̄2
(δωn)2 + · · · . (A3)

The Dirac δ function now restricts the integration to a plane in
“ω space,” where we introduce three mutually orthogonal unit
vectors 1̂, 2̂, and 3̂ and write

ω = ω11̂ + ω22̂ + ω33̂, (A4)

where we take 1̂ × 2̂ = 3̂, etc. The unit vector orthogonal to
the plane that the Dirac δ function in (A2) specifies is

ẑ = 1√
3

(1̂ + 2̂ + 3̂). (A5)

We construct two other unit vectors x̂ and ŷ mutually orthog-
onal to each other and to ẑ, taking our set to be

x̂ = − 1√
2

2̂ + 1√
2

3̂,

ŷ = 2√
6

1̂ − 1√
6

2̂ − 1√
6

3̂, (A6)

ẑ = 1√
3

1̂ + 1√
3

2̂ + 1√
3

3̂,

such that x̂ × ŷ = ẑ, etc. Then we can write

ω = �1x̂ + �2ŷ + �3ẑ. (A7)

Since ω1 = 1̂ · ω, etc., we have

ω1 = 2√
6
�2 + 1√

3
�3,

ω2 = − 1√
2
�1 − 1√

6
�2 + 1√

3
�3, (A8)

ω3 = 1√
2
�1 − 1√

6
�2 + 1√

3
�3,

and since the Jacobian of the transformation is unity we have

dω1dω2dω3 = d�1d�2d�3. (A9)

Using

δ(ωP − ω1 − ω2 − ω3)

= δ(ωP −
√

3�3) = 1√
3
δ

(
ωP√

3
− �3

)
, (A10)
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and noting that when �3 is restricted to ωP/
√

3 we have

ω1 → 2√
6
�2 + ωP

3
,

ω2 → − 1√
2
�1 − 1√

6
�2 + ωP

3
, (A11)

ω3 → 1√
2
�1 − 1√

6
�2 + ωP

3
,

and so

δω1 → 2√
6
�2, (A12)

δω2 → − 1√
2
�1 − 1√

6
�2,

δω3 → 1√
2
�1 − 1√

6
�2.

We can then write

τ−2
FFF =

√
3

18π2

∫
d�1d�2sinc2

(
ϒFFF −

[
�

(
2√
6
�2

) + �
(− 1√

2
�1 − 1√

6
�2

) + �
(

1√
2
�1 − 1√

6
�2

)]
L

2

)
. (A13)

Here �1 and �2 range over values such that �1, �2, �3 lies on the triangle specified by ω1 + ω2 + ω3 = ωP with all the ωi > 0.
However, for parameters introduced in the text the sinc function restricts the contributing region of integration to near the center
of the triangle specified above, so we can let �1 and �2 range from −∞ to ∞.

Now we introduce new variables � and θ ,

�1 = � sin θ, �2 = � cos θ, (A14)

so that we have

τ−2
FFF =

√
3

18π2

∫ ∞

0
�d�

∫ 2π

0
dθsinc2

×
(

ϒFFF −
[
�

(
2√
6
� cos θ

) + �
(− 1√

2
� sin θ − 1√

6
� cos θ

) + �
(

1√
2
� sin θ − 1√

6
� cos θ

)]
L

2

)
. (A15)

Working up to fourth order in Eq. (A3), and noting δω1 + δω2 + δω3 = 0, we find

�(δω1) + �(δω2) + �(δω3)

= 1

2
β2

(
δω2

1 + δω2
2 + δω2

3

) + 1

6
β3

(
δω3

1 + δω3
2 + δω3

3

) + 1

24
β4

(
δω4

1 + δω4
2 + δω4

3

)
= 1

2
β2�

2 + 1

6
√

6
β3�

3 cos 3θ + 1

48
β4�

4, (A16)

and so

τ−2
FFF =

√
3

18π2

∫ ∞

0
�d�

∫ 2π

0
dθsinc2

(
ϒFFF −

(
1
2β2�

2 + 1
6
√

6
β3�

3 cos 3θ + 1
48β4�

4
)
L

2

)
. (A17)

We can introduce a new variable μ = 3θ which will range from 0 to 6π (i.e. three periods) as θ ranges from 0 to 2π ; however,
dθ = dμ/3, so for the integrand written in terms of μ we can integrate μ from 0 to 2π . Furthermore, we introduce a new variable
y = �2; then �d� = dy/2, and we have

τ−2
FFF =

√
3

36π2

∫ ∞

0
dy

∫ 2π

0
dμ sinc2

(
ϒFFF −

(
1
2β2y + 1

6
√

6
β3y3/2 cos μ + 1

48β4y2
)
L

2

)
. (A18)

In the special case in which we assume phase matching, and
negligible higher-order dispersion terms, this can be evaluated
analytically; we take ϒFFF = 0, β3 = 0, β4 = 0. The depen-
dence in the integrand of (A18) on μ vanishes, and we have

τ−2
FFF =

√
3

18π

∫ ∞

0
dy

(
sin2

(
β2yL

4

)
(

β2yL
4

)2

)

=
√

3

9

1

|β2|L . (A19)

We process τ−1 for StTOPDC in a similar way. Writing
Eq. (45) in terms of frequency, we find

τ−1
GG(S) = 1

π

∫
dω1dω2δ(ωP − ωS − ω1 − ω2)

× sinc2

(
ϒGG(S) − [�(δω1) + �(δω2)]L

2

)
,

(A20)
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where ϒGG(S) = (k̄P − k̄S − 2k̄G) L
2 . We again introduce two

new variables, ωav and �, such that

ω1 = ωav + 1
2�, ω2 = ωav − 1

2�. (A21)

The Jacobian is unity, and the Dirac delta in (A20) here
reduces to

δ(ωT − ωS − 2ωav ) = δ(2ωG − 2ωav ) = 1
2δ(ωav − ωG),

(A22)

and when ωav = ωG we have

δω1 → 1
2�, δω2 → − 1

2�, (A23)

and we have

τ−1
GG(S) = 1

2π

∫ ∞

−∞
d� sinc2

×
(

ϒGG(S) −
[
�

(
1
2�

) + �
(− 1

2�
)]

L

2

)
. (A24)

Using the same strategy as above, this can be reduced to

τ−1
GG(S) = 1

2π

∫ ∞

−∞
d� sinc2

×
(

ϒGG(S) − −1

8
β2L�2 − 1

384
β4L�4

)
. (A25)

In the limit where ϒGG(S) = 0 and β4 = 0 we have

τ−1
GG(S) = 4

3

√
2

π |β2|L . (A26)

APPENDIX B: EVALUATING BANDWIDTHS FOR A
FINITE FREQUENCY RANGE

In Appendix A we considered an analytic limit, where one
works to the first few orders in the dispersion expansion, and
the integrals over �1 and �2 are taken to go from −∞ to
∞. In reality, the integration range for the bandwidth will be
restricted, either because of frequency cutoffs for the modes
associated with the frequency variables, or to account for a
finite detection bandwidth. Here we find the ranges of integra-
tion for �1 and �2 in Eq. (A13).

We use ωmin and ωmax to denote the integration limits in the
original coordinate system, so

ωmin � ωn � ωmax. (B1)

Then with (A8) we have

ωmin � 2√
6
�2 + 1√

3
�3 � ωmax,

ωmin � − 1√
2
�1 − 1√

6
�2 + 1√

3
�3 � ωmax, (B2)

ωmin � 1√
2
�1 − 1√

6
�2 + 1√

3
�3 � ωmax,

and setting �3 = ωP/
√

3 (which is imposed by the δ func-
tion), we have

ωmin � 2√
6
�2 + ωP

3
� ωmax,

ωmin � − 1√
2
�1 − 1√

6
�2 + ωP

3
� ωmax, (B3)

ωmin � 1√
2
�1 − 1√

6
�2 + ωP

3
� ωmax.

We can immediately see that �2 is constrained according
to

√
6

2
ωmin − ωP√

6
� �2 �

√
6

2
ωmax − ωP√

6
. (B4)

From the latter two expressions in Eq. (B3), one can see
that the limits on �1 depend on the particular value of �2.
Introducing �̄2 to explicitly denote a specific value of �2, we
have two sets of inequalities defining �1:

−
√

2

(
ωmin − ωP

3
+ 1√

6
�̄2

)

� �1 � −
√

2

(
ωmax − ωP

3
+ 1√

6
�̄2

)
,

√
2

(
ωmin − ωP

3
+ 1√

6
�̄2

)

� �1 �
√

2

(
ωmax − ωP

3
+ 1√

6
�̄2

)
. (B5)

The range of �1 will be constrained by the tighter bounds; we
can write

�1 � min

{√
2

(
ωmax − ωP

3
+ 1√

6
�̄2

)
,−

√
2

(
ωmin − ωP

3
+ 1√

6
�̄2

)}
, (B6)

�1 � max

{
−

√
2

(
ωmax − ωP

3
+ 1√

6
�̄2

)
,
√

2

(
ωmin − ωP

3
+ 1√

6
�̄2

)}
. (B7)

In summary, the generation bandwidth for a finite frequency range can be written as

τ−2
FFF =

√
3

18π2

∫ �1,max(�2 )

�1,min(�2 )
d�1

∫ �2,max

�2,min

d�2sinc2

(
ϒFFF −

[
�

(
2√
6
�2

) + �
(− 1√

2
�1 − 1√

6
�2

) + �
(

1√
2
�1 − 1√

6
�2

)]
L

2

)
. (B8)
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where

�2,min =
√

6

2
ωmin − ωP√

6
, (B9)

�2,max =
√

6

2
ωmax − ωP√

6
, (B10)

�1,min(�2) = max

{
−

√
2

(
ωmax − ωP

3
+ 1√

6
�2

)
,
√

2

(
ωmin − ωP

3
+ 1√

6
�2

)}
, (B11)

�1,max(�2) = min

{√
2

(
ωmax − ωP

3
+ 1√

6
�2

)
,−

√
2

(
ωmin − ωP

3
+ 1√

6
�2

)}
, (B12)

which can be implemented numerically, as we do in the sam-
ple calculation in Sec. IV.

We approach the StTOPDC calculation similarly. The
bandwidth is given in terms of frequency by Eq. (A20), and
we adopt the transformed variables defined in Eq. (A21).
From Eq. (B1), the values of the new variables � and ωav

are constrained by

ωmin � ωav + 1
2� � ωmax, (B13)

ωmin � ωav − 1
2� � ωmax,

from which we obtain

max
{
ωmin − 1

2�,ωmin + 1
2�

}
� ωav � min

{
ωmax − 1

2�,ωmax + 1
2�

}
. (B14)

It is sufficient to consider the largest possible range for ωav ,
which is

ωmin � ωav � ωmax, (B15)

which occurs when � = 0.
The range of � can be written in terms of a particular value

of ωav as

max{2(ωmin − ωav ),−2(ωmax − ωav )}
� � � min{2(ωmax − ωav ),−2(ωmin − ωav )}. (B16)

As discussed in Appendix A, the δ function in (A20) sets
ωav = ωG, and with the finite integration limits we have a
slight modification to (A24); we have

τ−1
GG(S) = 1

2π

∫ �max

�min

d�sinc2

×
(

ϒGG(S) −
[
�

(
1
2�

) + �
(− 1

2�
)]

L

2

)
, (B17)

where

�max = min{2(ωmax − ωG),−2(ωmin − ωG)}, (B18)

�min = max{2(ωmin − ωG),−2(ωmax − ωG)}, (B19)

which can be computed numerically for a particular set of
frequencies and dispersion data.

APPENDIX C: SAMPLE CALCULATION DETAILS

Material data and waveguide dispersion is obtained by sim-
ulation in Lumerical using the default material properties; for

silicon nitride we use the dataset from Phillip [18]. In Fig. 5
we show the simulated dispersion plots for the fundamental
and third harmonic modes in the sample structure; phase
matching is achieved at λF ≈ 1.72 μm, with λP = λF /3 ≈
0.57 μm.

When seeking phase matched wavelengths for nondegener-
ate TOPDC processes, we simply choose a desired separation
of the generation modes and compute the phase mismatch
for different pump frequencies; we denote this separation
with � in Fig. 2. We find that with � chosen such that
λG ≈ 1.52 μm and λS ≈ 2.3 μm, the change in the pump
frequency is negligible and we can keep λP = 0.57 μm while
satisfying phase matching. For the DStTOPDC calculation,
we keep these values λP and λS , and seek the value of λḠ
which minimizes the phase mismatch; DStTOPDC is phase
matched with λḠ ≈ 1.12 μm.

1. Self- and cross-phase modulation

Here we verify that self- and cross-phase modulation do
not have a significant effect on phase matching. Using the
effective index data shown in Fig. 5 we find the “bare” wave
vectors kP = 3kF = 1.97 × 107 m−1. With cross-phase mod-
ulation, for phase matching we require k̄P = 3k̄F where

k̄P = kP + γSPMPP, (C1)

k̄F = kF + 2γXPMPP. (C2)

FIG. 5. Effective indices for the fundamental (solid blue line)
and third harmonic (dashed orange line) modes used in the degen-
erate SpTOPDC sample calculation. We have used λP = λF /3 to
plot both the fundamental and third harmonic indices against a single
axis.
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Using the simulated mode profiles [18], we calculate
γSPM ≈ 4.3 (W m)−1 and γXPM ≈ 0.8 (W m)−1. For the maxi-
mum pump power considered in this paper, PP = 100 mW, the
shift to the wave vectors is at least seven orders of magnitude
smaller than the wave vectors themselves. Even if the pump
power were increased to 10 W, the shift to the wave vectors
would be small enough that the shift in λP and λF required to
maintain phase matching is be negligible; the phase matched
wavelengths identified above are valid with SPM and XPM
accounted for.

A similar argument applies to the nondegenerate config-
urations; the magnitude of the shifts due to SPM and XPM
remains much smaller than the bare wave vectors, so the effect
of SPM and XPM on the phase matching is negligible.

2. Resonant third-order parametric down-conversion

In the resonant system, the generation rate is affected not
only by the phase mismatch but also by the detuning from
resonance. Here we discuss the maximization of the resonant
TOPDC rates.

a. Spontaneous third-order parametric down-conversion

The TOPDC rate is given by [see Eq. (76)]

RFFF/RP = (γFFFL)2P2
vac|FF (K̃F )|6|FP(K̃P + δK̃P )|2, (C3)

where

P2
vac = h̄2ω2

F

1

2

(
	̄4

F

[(ω̃P + δω̃P ) − 3ω̃F ]2 + 9	̄2
F

)
, (C4)

|FT (K̃P + δK̃P )|2 = 1

L

( |γP|2
δω̃2

P + 	̄2
P

)
. (C5)

We focus first on maximizing the vacuum power. This requires
setting

δω̃P = 3ω̃F − ω̃P (C6)

= 3ωF − ωP − (6γXPMvF − γSPMvP )P′
P (C7)

= −(6γXPMvF − γSPMvP )P′
P, (C8)

where we have verified that ωP = 3ωF for the phase matched
modes. We have γSPM = 4.3 (W m)−1 and γXPM = 0.8
(W m)−1, and the group indices are ng(F ) ≈ 2.1, ng(P) ≈ 2.3
from which we obtain the group velocities [18]. With PP =
100 mW the field enhancement yields P′

P = 1.05 W, and we
require δω̃P/2π ≈ 30 MHz.

Because of the large linewidth of the pump resonance, the
effect of the detuning on the field enhancement factor is negli-
gible; we take QP = 105 which implies 	̄P/2π = 2.6 GHz.
Since the linewidth is orders of magnitude higher than the
detuning, even with the detuning we have |FP(K̃P + δK̃P )|2 ≈
|FP(K̃P )|2, and to good approximation the TOPDC rate can be
written as

RFFF/RP = (γFFFL)2P2
vac|FF (K̃F )|6|FP(K̃P )|2, (C9)

P2
vac = h̄2ω2

F

	̄2
F

18
. (C10)

b. Stimulated third-order parametric down-conversion

For resonant StTOPDC we have [see Eq. (90)]

RGG(S)/RP = (|γGG(S)|L)2PSPvac|FG(K̃G)|4

× |FS (K̃S + δK̃S )|2|FP(K̃P + δK̃P )|2, (C11)

Pvac = h̄ωG

(
2	̄3

G

[(ω̃P + δω̃P ) − (ω̃S + δω̃S ) − 2ω̃G]2 + 4	̄2
G

)
.

(C12)

Here we set δω̃S = 0. For the StTOPDC modes we have
ω̃S + 2ω̃G ≈ 3ω̃F , so here too we can maximize the vacuum
power by setting δω̃P/2π ≈ 30 MHz. As discussed above,
this detuning has a negligible effect on the pump field en-
hancement due to the large linewidth of the pump resonance.
The same approach applies for nondegenerate SpTOPDC [see
(83)].

For DStTOPDC there is no vacuum power to maximize;
we have [see Eq. (98)]

RḠ(SS)/RP = (|γḠ(SS)|L)2P2
S |FS (K̃S + δK̃S )|4

× |FP(K̃P + δK̃P )|2|FḠ(K̃Ḡ + δK̃Ḡ)|2, (C13)

δK̃Ḡ = 1

vḠ
[(ω̃P + δω̃P ) − 2(ω̃S + δω̃S ) − ω̃Ḡ]. (C14)

If the goal is to maximize RḠ(SS), here again we can we set
δω̃S = 0 and put δω̃P/2π ≈ 30 MHz to obtain δK̃Ḡ = 0.

APPENDIX D: EFFECTIVE AREAS

1. Waveguide

For nonlinear processes involving two raising operators
and two lowering operators, we have

ei�J1,J2,J3,J4

AJ1,J2,J3,J4
=

∫
dxdy

(
χ

i jkl
3 (x, y)/χ̄3

)
e∗i

J1(x, y)e∗ j
J2(x, y)ek

J3(x, y)el
J4(x, y)

NJ1NJ2NJ3NJ4
, (D1)

where

ei
J (x, y) = 1

ε0ε1(x, y; ωJ )
di

J (x, y) (D2)

is a component of the electric field mode profile, and the NJ are normalization constants defined as

NJ =
√∫

dxdyeJ (x, y) · eJ (x, y)
n(x, y; ωJ )/n̄J

vg(x, y; ωJ )/vJ
. (D3)
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We use a similar definition for the effective area in processes with three raising operators; in this case we have

ei�J1,J2,J3,J4

AJ1,J2,J3,J4
=

∫
dxdy

(
χ

i jkl
3 /χ̄3

)
e∗i

J1(x, y)e∗ j
J2(x, y)e∗k

J3(x, y)el
J4(x, y)

NJ1NJ2NJ3NJ4
. (D4)

2. Ring resonator

In the ring, the effective area for a process involving two raising operators is

ei�J1,J2,J3,J4

AJ1,J2,J3,J4
= 1

L

∫
dr⊥dζ

(
χ

i jkl
3 (r⊥)/χ̄3

)
e∗i

J1(r⊥, ζ )e∗ j
J2(r⊥, ζ )ek

J3(r⊥, ζ )el
J4(r⊥, ζ )ei�κζ

NJ1NJ2NJ3NJ4
, (D5)

where �κ = κJ1 + κJ2 − κJ3 − κJ4. Unlike in Eq. (D1) for the waveguide, here the phase matching condition is contained
in the effective area, since the mode profiles generally depend on the coordinate ζ along which the field propagates. The
waveguide mode profiles eJ (x, y) do not depend on the direction of propagation, so the integral over z and the ei�kz term can be
separated from the definition of the effective area. The phase matching condition then appears in the sinc terms in the nonlinear
Hamiltonians for the waveguide, rather than in the effective area as we see in the ring system.

For processes involving three raising operators, we have

ei�J1,J2,J3,J4

AJ1,J2,J3,J4
= 1

L

∫
dr⊥dζ

(
χ

i jkl
3 (r⊥)/χ̄3

)
e∗i

J1(r⊥, ζ )e∗ j
J2(r⊥, ζ )e∗k

J3(r⊥, ζ )el
J4(r⊥, ζ )ei�κζ

NJ1NJ2NJ3NJ4
, (D6)

with �κ = κJ1 + κJ2 + κJ3 − κJ4.
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