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Quantum Fourier transform on photonic qubits using cavity QED
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We propose a quantum Fourier transform on photons in which a single atom-coupled cavity system mediates
the photon-photon interactions. Our protocol utilizes time-delay feedback of photons and requires no active
feedforward control. The time-delay feedback enables a single atom-cavity system to implement a quantum
Fourier transform on an arbitrary number of photonic qubits on-the-fly, while rapid tuning of the atomic transition
implements arbitrary controlled-phase gates. We analyze the performance of the protocol numerically and show
that it can implement quantum Fourier transforms with tens of photons using state-of-the-art cavity quantum
electrodynamics.
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I. INTRODUCTION

The quantum Fourier transform is a powerful tool in
quantum information processing as it plays an essential
role in many quantum algorithms, such as factoring [1]
and phase estimation [2]. Additionally, it has applications
in quantum simulation [3–5], quantum metrology [6–9],
and quantum cryptography [10,11]. Implementing quantum
Fourier transforms was proposed in a variety of physi-
cal systems [12–17], and small-scale implementations were
experimentally demonstrated using trapped ions [18] and nu-
clear magnetic resonance [19–21]. Extending this capability
to photonics could significantly advance photonic quantum
technologies and help take advantage of the photon’s naturally
weak interaction with the environment and facile distribution
over optical fibers.

However, one of the challenges of implementing photonic
quantum Fourier transforms is the lack of photon-photon
interactions. Methods based on linear optics alone were
proposed [7,22–24] and experimentally demonstrated [25].
However, these methods required exponentially increasing
optical components for larger numbers of qubits. Other pro-
posals using nonlinear optics exploited the weak cross-Kerr
nonlinearity [26], or alternately interactions between pho-
tons and two cavities coupled to individual quantum dots
[27]. But they both required measurement and active feed-
forward control in which one must apply unitary operations
on the photons conditioned on the measurement results. Such
feedforward adds significant overhead and typically requires
efficient optical storage, which is challenging [28,29]. As an
alternative, coherent time-delay feedback control can elim-
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inate measurements in the process and avoid introducing
further decoherence [30–48].

In this work, we propose a photon-based quantum Fourier
transform where a single atom-coupled cavity system medi-
ates the photon-photon interactions. Our approach does not
require active feedforward control. Instead, it operates on-
the-fly by taking a stream of sequential input photons and
generating an output stream that contains the transforming
result. The atom-cavity system mediates arbitrary conditional
phase shifts between the photons by tuning the transition
resonance of the atom. We analyze the performance of the
protocol and provide a lower bound of the success probability
using the diamond distance. We show that for the specific case
of a quantum dot-cavity system, we can implement a quantum
Fourier transform on tens of photons using state-of-the-art
cavity quantum electrodynamics (cavity-QED).

II. PROTOCOL

Our protocol implements the standard discrete quantum
Fourier transform [49], which requires a series of quantum
phase gates between qubits. We utilize a single ancilla qubit
to implement these phase gates, as illustrated by the quantum
circuit in Fig. 1. This circuit takes n photonic input qubits and
performs a quantum Fourier transform (QFT)

|x1x2 · · · xn〉 QFT−−→ 1

2n/2

2n−1∑
y=1

ei2π ·x·y/2n |y1y2 · · · yn〉,

where n is the total number of input photons, and x =
x1x2 · · · xn and y = y1y2 · · · yn are the binary representations of
the input and output qubits, respectively. The vertical line with
crossed ends represents a swap gate, which exchanges states
between the atom and photons. The box labeled H represents
a Hadamard gate. The box labeled Rk with the photonic qubit
connected via the vertical line represents a controlled-phase
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FIG. 1. The circuit for the quantum Fourier transform on pho-
tonic qubits.

gate by the matrix

CRk =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei2π/2k

⎞
⎟⎟⎠, (1)

where k = 2, 3, . . . , n. After implementing the transform, we
can drop the first photon because it carries the initial state of
the ancilla.

The circuit in Fig. 1 consists of n subroutines. In the
first subroutine, indicated by the dashed box in the figure,
the circuit implements a swap gate between the ancilla and
the first photon, which subsequently leaves the system. The
ancilla then applies a CRk gate to the remaining photonic
qubits 2 through n. In the second subroutine, we repeat the
procedure for the second photonic qubit, in which we apply
a swap gate and photon 2 leaves the system. The ancilla then
applies a CRk gate to photons 3 to n. We repeat the proce-
dure until all photons have left the system. Once the protocol
completes, the atomic qubit contains the first qubit of the
Fourier transform. We can directly measure it from the atom
or alternately inject another photon into the system and imple-
ment a swap to move the state back to an all-photonic Hilbert
space.

To implement the circuit in Fig. 1, we propose the opti-
cal setup shown in Fig. 2(a). The ancilla qubit is a single
atom coupled to an optical cavity. The cavity mediates strong
interactions with the photons that generate the CRk gates,
as discussed in more detail below. The photons are injected
into the system sequentially, separated by a time delay of
Tcycle (operation cycle). To implement the sequence of sub-
routines, we utilize two time-delay feedback loops and two
switches. Delay line 1 generates a delay of τ1 > nTcycle.
This delay stores the remaining qubits after the execution of
each subroutine, which will be used in the next subroutine.
Delay line 2 generates a delay of τ2 � Tcycle. This short
delay enables a single photon to interact with the atomic
qubit multiple times, which is necessary to create a swap
gate.

The protocol starts by injecting all n photons at the input.
To implement the swap gate, we relay and reflect photon 1
off the cavity three times through delay line 2. Each reflection
implements a CR1 gate between the photon and the atom. The
three CR1 gates combined with the Hadamard gates imple-
ment the swap gate between the photon and the atom as given

(a)

(b)

(c)

FIG. 2. (a) The schematic setup for a photonic quantum Fourier
transform. (b) The atom-coupled single-sided cavity system. (c) The
level structure of the atom-cavity system.

by the identity

SWAP = Ha,p · CR1 · Ha,p · CR1 · Ha,p · CR1, (2)

where Ha,p = Ha ⊗ Hp represents a Hadamard gate both on
the atom [50,51] and photon [52]. After the reflections, pho-
ton 1 exits the system from the output. The remaining n − 1
photons then sequentially reflect off the cavity, which imple-
ment the controlled-phase gates, and enter delay line 1, which
transmits them back to the input for the second subroutine. We
repeat the procedure until all photons leave the system.

We next describe how the atom-cavity system implements
the CRk gates. We consider an atom in a single-sided cav-
ity, as shown in Fig. 2(b). This system is already known
to generate the controlled-phase flip (CR1) gate between the
atomic and photonic qubits using cavity-mediated interactions
[53]. Furthermore, we will propose a method to fast apply
any CRk gates on sequential photons by active phase tuning.
This method also solves the problem of requiring extremely
high magnetic field to implement the CR1 gate in experiments
[45,54].

The system features a level structure as shown in Fig. 2(c).
The atom possesses two ground states (| ↑〉, | ↓〉) and two
excited states (| ⇑〉, | ⇓〉), in which the quantization axis is
along the direction of an externally applied magnetic field
that breaks the degeneracy of the levels. The cavity only sup-
ports a linear polarization mode along the quantization axis,
which couples to the transition between | ↑〉 and | ⇑〉, and the
transition between | ↓〉 and | ⇓〉. We define this mode as the
vertical polarization mode and its orthogonal polarization as
the horizontal polarization mode. We denote the frequency of
the cavity mode as ωc, the spin-up atomic transition frequency
as ω↑, and the spin-down atomic transition frequency as ω↓.
We also denote the detuning between the atomic transition and
the cavity mode as �↑,↓ = ω↑,↓ − ωc.
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The Hamiltonian of the atom-cavity system is given by

H/h̄ = ωcâ†â + ω↑σ⇑⇑ + ω↓σ⇓⇓

+ ig
(
σ⇑↑â − σ↑⇑â† + σ⇓↓â − σ↓⇓â†

)
, (3)

where â is the operator for the cavity mode in vertical po-
larization, σ is the atomic operator, and g is the atom-cavity
coupling strength. The atomic state space is reducible into two
uncoupled subspaces {| ↑〉, | ⇑〉} and {| ↓〉, | ⇓〉}. In either
subspace, we can write the Heisenberg equations of motion
for the atom-cavity system and the external field as [55]

dâ

dt
= −

[
i(ωc − ω) + γ

2

]
â − gσ− − √

γ âin,

dσ−
dt

= −
[
i(ω↑,↓ − ω) + κ

2

]
σ− − gσzâ,

âout = âin + √
γ â, (4)

where âin and âout are the input and output field operators
(probe beam), respectively, and ω is the frequency of the
probe beam, which we set as ω = ωc. The parameter κ is
the atom dipole decay rate and γ is the cavity decay rate. We
can solve the equation of motion for a single-photon input in
the quasi-monochromatic limit. The probe beam experiences
a state-dependent phase shift. When the probe beam is in the
horizontal polarization (H), it does not couple to the cavity but
reflects from a mirror and acquires no phase shift. However,
when the probe beam is in the vertical polarization (V ), it
reflects off the cavity, where the reflection coefficient is given
by

r↑.↓ = C↑,↓ − 1

C↑,↓ + 1
. (5)

In the above equation C↑,↓ = 4g2

γ (κ+i2�↑,↓ ) is the spin-dependent

cooperativity. We define on-resonant cooperativity C = 4g2

γ κ

such that the relation between the on-resonant and spin-
dependent cooperativities is given by C↑,↓ = C

1+2i�↑,↓/κ
. In the

high cooperativity of C � 1, the reflection coefficient is given
by r↑,↓ = eiθ↑,↓ , where

θ↑,↓ = Im

{
ln

1 − i2�↑,↓/κC

1 + i2�↑,↓/κC

}
, (6)

which is continuously tunable from 0 to 2π by changing the
detuning �↑,↓ [56]. After the reflection, we apply a single-

qubit phase gate of (
1 0
0 e−iθ↑ ) on the photon. The reflection

and the photonic phase gate implement a controlled-phase
shift gate on the photon and atom given by

Ucp =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei�θ

⎞
⎟⎟⎠, (7)

where �θ = θ↓ − θ↑ is the relative phase shift. In the above
operators, we denote the state of the input photon as |H〉 ≡
|0〉p for the horizontal polarization and |V 〉 ≡ |1〉p for the
vertical polarization, the atomic state as | ↑〉 ≡ |0〉a and | ↓
〉 ≡ |1〉a, and the composite state space as |x〉p ⊗ |y〉a.

FIG. 3. The controlled-phase shift �θ as a function of the Stark
shift �S .

The setup illustrated in Fig. 2(a) requires the ability to
apply different CRk gates to sequentially reflected photons.
To do so requires the ability to modulate the detunings �↑
and �↓ rapidly. These detunings are given by �↑ = ω↑ − ωc

and �↓ = �↑ + �Z , where �Z is the Zeeman splitting of the
spin transitions. The Zeeman splitting is strictly determined
by the applied magnetic field, which is difficult to modulate
rapidly. Alternatively, we apply a constant Zeeman splitting
and focus on the active tuning of the atomic transition ω↑. In
particular, both the quantum-confined Stark effect [57,58] and
AC Stark shift [59] can modulate the detuning on nanosecond
timescales, which allows us to change the phase of the CRk

gates quickly.

III. ACTIVE PHASE GATE TUNING

To calculate the achievable phase shifts by tuning the
atomic transition, we consider the specific case of a charged
quantum dot coupled to a nanophotonic cavity [51,56,60,61].
We denote the spin-dependent detuning as �↑ = �S + �0

and �↓ = �S + �Z + �0 under the Stark shift and Zeeman
splitting, where �S is the Stark shift and �0 is an off-
set. We set �0 = κ

2

√
C2 − 1 and �Z = −2�0, such that the

controlled-phase shift �θ = π when �S = 0. The Zeeman
splitting is determined by the magnetic field, as �Z = (ge +
gh)μBB/h̄, where ge and gh are Landé factors for the electron
and hole, μB is the Bohr magneton, and B is the applied
magnetic field. For this quantum dot-cavity system, we can
achieve the parameters: ge = 0.43, gh = 0.21, g = 11 GHz,
κ = 0.3 GHz, and γ = 28 GHz [54].

Figure 3 shows the controlled-phase shift �θ as a function
of the Stark shift �S . We set the offset detuning to �0 =
8.64 GHz and apply a magnetic field of B = 1.93 T. The red
marks indicate the specific Stark shift used to implement CRk

gates for k = 1, 2, . . . , 10. Given large k, the corresponding

Stark shift scales as �S ∼ κC
√

2k

2π
. Therefore, implementing

a small phase shift of 2π
2k requires a high detuning, which may

go beyond practical values. But we can discard the CRk gates
when k is larger than some cutoff K in the Fourier transform
circuit. Those gates are close to an identity operation expo-
nentially, so discarding them would raise little error [62]. The
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state-of-the-art Stark shift is achievable at ∼1000 GHz for
quantum dots [63]. This tuning enables the CRk gates with
a maximum k of 14, which is sufficiently large for a highly
precise quantum Fourier transform.

IV. ANALYSIS

To analyze the performance of the protocol under realistic
conditions, we use the diamond distance [64–67]. The dia-
mond distance between two quantum channels E and F on an
n-dimensional state space is defined as

d�(E,F ) = 1
2 max

ρ
‖(E ⊗ I )ρ − (F ⊗ I )ρ‖1, (8)

where ‖ · ‖1 denotes the trace norm, I represents an identity
channel on the auxiliary space, and ρ is a quantum state on
the extended space. One property of the diamond distance is
chaining

d�(E2 ◦ E1,F2 ◦ F1) � d�(E1,F1) + d�(E2,F2), (9)

where E2 ◦ E1 represents a process of E1 followed by E2.
Using the chaining property, we can calculate the distance of a
whole process by summing the distance of its individual steps.
To characterize the error of the photonic quantum Fourier
transform, we can calculate the diamond distance between the
nonideal version implemented in Fig. 2 and the ideal circuit.
The diamond distance gives an upper bound probability of
error of the output [65]. We define the success probability as

Ps = 1 − D, (10)

where D is the diamond distance between the implemented
and ideal transforms. Ps gives a lower bound probability of
the correct output.

Using the chaining property, we can express the diamond
distance as

D = N2dp + 2NdH + 3Nd1 +
K∑

k=2

(N − k + 1)dk

+
N∑

k=K+1

(N − k + 1)d�
k , (11)

where N is the number of photonic qubits. Each term rep-
resents the diamond distance of different channels whose
coefficient counts the implementation of the channel in the
circuit. The term dp is the distance between the atomic qubit
dephasing channel and identity channels in one operation
cycle Tcycle; dH is the distance between the imperfect and ideal
atomic Hadamard gates; K is the cutoff for k as discussed in
Sec. III; dk is the distance between the operation of reflecting
a photon off the atom-coupled cavity and an ideal CRk gate;
d�

k is the distance between the CRk and identity gates. We can
calculate each term through convex optimization [66], which
leads to the expressions

dp = 1
2 (1 − e−Tcycle/T2 ),

dH = p,

d�
k = 1

2

∣∣1 − ei2π/2k ∣∣. (12)

In the above equations, T2 is the characteristic dephasing time
of the atom, p is the error probability of atomic Hadamard
gate.

The one distance which involves subtleties is dk , the
distance between the nonideal CRk , implemented by the atom-
cavity system, and the ideal CRK gate. This channel features
a state-dependent photon loss which is not a trace-preserving
operation. To properly define the distance, we can model the
imperfect reflection as an ideal CRk gate followed by the
measurement and postselection operation

M(ρ) = MρM†

Tr[MρM†]
, (13)

where M is a measurement operator as

M =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 |r↑| 0
0 0 0 |r↓|

⎞
⎟⎠. (14)

Thus, dk is given by the distance between the postselec-
tion operation and the identity channel. Unfortunately, the
postselection channel applies a nonlinear transform on the
photon-atom state so that we cannot calculate its distance
by convex optimization. In the Appendix, we show that, in
this postselected case, we can calculate the distance using the
maximum and minimum eigenvalues of M, such that

dk = 1 − min (|r↑|, |r↓|)
1 + min (|r↑|, |r↓|) . (15)

It approximates 1
2C2+8�2/κ2 for the atom-coupled cavity sys-

tem, where � = min (�↑,�↓).
State-independent photon loss is another type of error that

can occur in optical systems during the process of optical
transmission and detection. Such loss decreases the overall
success probability but does not affect the fidelity of the
postselected output states. A particular source of loss is the
delay in the protocol. The kth photon passes a total delay
length of (k − 1)cNTcycle in the quantum Fourier transform of
N photons, where c is the speed of light. We can beat photon
loss by repeating the protocols and postselection or by using
redundant encoding [68–70]. In the following simulation, we
calculate the postselected success probability (a measure of
fidelity) of the protocol.

Having attained an expression for all terms in the diamond
distance, we can now analyze a photonic quantum Fourier
transform under realistic experimental conditions. We use the
same parameters as those in Sec. III for a charged quantum
dot in a cavity and set an operation cycle of Tcycle = 5 ns. Fig-
ure 4 shows the success probability Ps as a function of photon
number N , where we assume a spin characteristic dephasing
time of 20 μs and a spin Hadamard gate error rate of 0.001.
The curves indicated by markers show the success probability
under finite cooperativities, where we set K = 10 in Eq. (11)
as the largest implemented CRk gates. The dashed black line
shows the success probability for an ideal CRk gate for com-
parison. The success probability decreases quadratically as a
function of the photon number for all cooperativities. Higher
cooperativity can increase Ps, but this improvement becomes
marginal when the cooperativity exceeds 400. In this limit,
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FIG. 4. The success probability Ps as a function of photon num-
ber under different cooperativities.

Ps is mainly determined by the spin error. A valid threshold
for Ps depends on the application of the quantum Fourier
transform. For example, in the case of factoring [1], which is
a verifiable algorithm, any nonzero Ps can guarantee the effec-
tiveness of the transform. We must repeat the experiment for
O(1/Ps) times before we can get a correct result. Thus, we can
achieve tens of photonic qubits quantum Fourier transform
using state-of-the-art devices of ∼200 cooperativity. However,
other applications in the quantum information process may
require a higher success probability.

To investigate the effect of spin errors, we calculate the
success probability under different dephasing time T2, as
shown in Fig. 5(a), where we assume ideal CRk gates and
set p = 0.001. We define the maximum number of photons
that the protocol can process as the highest value for N for
which our bound is nonzero. For T2 = 1 μs, the protocol
can process about 20 photons. Increasing the dephasing time
from 1 μs to 100 μs can improve the success probability.
However, as T2 ranges from 100 μs to infinity, increasing T2

hardly changes Ps for the quantum Fourier transform of tens of
photons.

Figure 5(b) shows the success probability under different
spin Hadamard gate error rates, assuming the dephasing time
T2 = 20 μs and ideal CRk gates. When p = 0.05, the pro-
tocol can process a very limited number of photons before
the bound of the success probability goes to zero. Otherwise,
when p = 0.001, the success probability is largely improved.
Considering a spin qubit in a quantum dot with a dephasing
time of microseconds is currently achievable [50], the bot-
tleneck of experimentally implementing the quantum Fourier
transform within tens of photons is the optimization of the
quantum control of the spin rotation. This parameter is ulti-
mately the main limitation for the current implementation of
the protocol.

A related protocol [27] also implements quantum Fourier
transform via quantum dot-coupled cavities, which applies a
controlled-phase gate by three reflections without dynamic
tuning of the quantum dot but requires two measurements
and feed-forward operations. It is a total of 3

2 N (N − 1) re-
flections and N (N − 1) measurement-based operations for
an N-qubit Fourier transform. In comparison, our protocol

(a)

(b)

FIG. 5. The success probability Ps as a function of photon num-
ber (a) under different spin dephasing time T2 assuming the spin
Hadamard gate error rate of 0.001 and ideal CRk gates, (b) under
different spin Hadamard gate error rates assuming T2 = 20 μs and
ideal CRk gates.

uses 1
2 N (N + 5) reflections, which relaxes the requirement for

the quantum dot-cavity cooperativity and removes the need
for the challenging measurement and feed-forward control
[28,29]. In addition, the measurement-based control is no
faster than active phase tuning in our protocol in terms of
processing time. For example, measuring a spin qubit in a
quantum dot takes 3.4 ns on average [50], and the succeeding
classical control requires additional time.

V. CONCLUSION

We propose a photonic quantum Fourier transform pro-
tocol, which uses a single atom-coupled cavity system to
implement photon-photon interactions and requires no ac-
tive feedforward control. We show that a quantum Fourier
transform with tens of photons may be possible with state-
of-the-art cavity-QED systems. For future study, we expect
to implement other quantum algorithms, such as the varia-
tional quantum eigensolver [71], using the same on-the-fly
system. Ultimately, the proposed quantum Fourier transform
could enable fast on-the-fly photonic quantum information
processing, which may be particularly useful in compact
quantum photonic circuits where active feedforward is
challenging.
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APPENDIX: DISTANCE FOR THE MEASUREMENT AND
POSTSELECTION OPERATION

We calculate the diamond distance between the measure-
ment and postselection operation and the identity channel, as

d (I,M) = 1

2
max

ρ

∥∥∥∥ρ − MρM†

Tr[MρM†]

∥∥∥∥
1

, (A1)

where M is a nonnegative diagonal matrix. Readers can re-
fer to [67] for a more detailed discussion, which considers
the distance for any non-trace-preserving operations. The
distance is maximized on a pure state ψ . Thus, we can cal-
culate it by minimizing cos θ = |〈ψ |φ〉| and using the identity
1
2‖ψψ† − φφ†‖1 =

√
1 − |〈ψ |φ〉|2, where |φ〉 = M|ψ〉

|M|ψ〉| is the
normalized state after measurement.

To calculate cos θ , we consider a diagonal matrix Mn in an
n-dimensional state space, where Mn = diag(λ1, λ2, . . . , λn)
and λ1 � λ2 � · · · λn � 0. We denote a unit vector |u〉 =√

x|n〉 + √
1 − x|v〉, where x ∈ [0, 1], |n〉 is the basis corre-

sponding to the eigenvalue λn, and |v〉 is a unit vector in the
(n − 1)-dimensional subspace orthogonal to |n〉. The assump-
tion of positive coefficients loses no generality because we can
always redefine the basis with a phase factor. Applying Mn

to |u〉 gives

Mn|u〉 = λn
√

x|n〉 + √
1 − xMn−1|v〉, (A2)

where Mn−1 is a diagonal matrix in the subspace. Applying
Mn−1 to |v〉 will transform the vector as

Mn−1|v〉 = rn−1 cos θn−1|v〉 + rn−1 sin θn−1|v⊥〉, (A3)

where rn−1 and θn−1 are the contracting factor and rotation
angle, and |v⊥〉 is a unit vector orthogonal to |v〉. A spe-
cific rotating axis does not affect the following calculation
because the axis is always orthogonal to |n〉. We calculate
the contracting factor rn = √|〈u|M2

n |u〉| and the rotating angle
cos θn = 〈u|Mn|u〉/rn for applying Mn to |u〉 and get

r2
n = xλ2

n + (1 − x)r2
n−1,

rn cos θn = xλn + (1 − x)rn−1 cos θn−1, (A4)

i.e., the feasible point (r2
n , rn cos θn) is a convex combination

of (λ2
n, λn) and (r2

n−1, rn−1 cos θn−1). By induction, we can
compute the feasible points of (r2, r cos θ ) for applying M to
a pure state, as

r2 =
∑

i

piλ
2
i ,

r cos θ =
∑

i

piλi, (A5)

where
∑

i pi = 1. The minimum of cos θ is on the boundary

of the feasible domain and equals 2
√

λ1λn

λ1+λn
, where λ1 and λn are

the maximum and minimum eigenvalues of M. Therefore, the
distance between a measurement channel M and an identity
channel is given by

d (I,M) = λ1 − λn

λ1 + λn
. (A6)
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