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Purcell factors and Förster-resonance energy transfer in proximity to helical structures
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Both spontaneous emission and resonant energy transfer can be enhanced significantly when the emitter is
placed in the vicinity of metallic or crystal structures. This enhancement can be described using the electro-
magnetic Green tensor and is determined by the dominant surface modes of the structure. Here we use the
eigenpermittivity formalism to derive the spontaneous emission and Förster-resonance energy transfer (FRET)
rates in the quasistatic regime in a two-constituent medium with an anisotropic inclusion. We then apply our
results to a helical structure supporting synchronous vibrations and evaluate the contribution of these modes,
which are associated with a strong and delocalized response. We show that this contribution can result in large
Purcell factors and long-range FRET, which oscillates with the helix pitch. These findings may have implications
in understanding and controlling the interactions of molecules close to helical structures such as the microtubules.
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I. INTRODUCTION

Helical structures like alpha helices, DNA, and micro-
tubules have profound importance in biology. Microtubules
(MTs) are composed of identical tubulin-dimer units and
therefore they have a regular helical shape, similarly to car-
bon nanotubes [1]. MTs self-assemble from their constituent
tubulin-protein units and are critical for the development
and maintenance of the cell shape, transport of vesicles, and
other components throughout cells, cell signaling, and mito-
sis. Tubulins have a large dipole moment [2–5] and it was
suggested that MT vibrations could generate an electric field
in its vicinity [6–8], also beyond the typical Coulomb and van
der Waals range.

An optical system can generate a strong electromagnetic
field for certain sets of physical parameters, which are the
resonances of the system. An eigenvalue is a parameter of
the system that corresponds to a resonance, and it can be
obtained by fixing all the other parameters and imposing
outgoing boundary conditions without a source. In electrody-
namics the eigenvalue is usually defined as an eigenfrequency
or eigenpermittivity of one of the constituents [9–11]. In the
eigenfrequency formalism a resonance can be approached
when the real physical frequency is close to the usually
complex eigenfrequency. In the eigenpermittivity formalism
a resonance can be achieved when the physical permittivity
of one of the constituents is equal to a generally complex
eigenpermittivity of that constituent.

For a simple system with two uniform and isotropic con-
stituents as in Fig. 1(a), when the eigenpermittivity ratio
ε1m/ε2 is equal to the physical permittivity ratio ε1/ε2, there
is a strong response of the system. In the quasistatic (QS)
regime, in which the typical length scale is much smaller than
the wavelength, ε1m/ε2 are real and usually negative (see Ap-
pendix 1 and Refs. [12,13]). Hence, resonances can usually be
approached when the permittivity of one of the constituents is

positive and the permittivity of the other is negative, both with
low loss. Examples include silver–polymethyl methacrylate
[11,14], silver-water in the high-visible regime [15], graphene
[16], and SiC [17]. In the full-Maxwell equation analysis,
ε1m/ε2 is usually complex and approaching a resonance re-
quires gain in one of the constituents [9,11].

In electrodynamics an eigenstate is an electric field that
exists without a source and corresponds to an eigenvalue.
Such eigenstates have been used to approximate the field at
a resonance in the eigenfrequency formalism [10] and ex-
pand the scattered field in response to an applied field in
a two-constituent medium in the eigenpermittivity formal-
ism [9–11]. These field approximations and field expansions
have been generalized to a dipole source excitation indepen-
dently [10,11], which is of paramount importance for a variety
of applications. Another approach for such a calculation is
to expand the electric potential of a source in free space
according to the inclusion geometry and impose boundary
conditions for these modes and the scattered electric potential
modes [18].

Recently, we have shown that in the QS regime when one
of the constituents in a two-constituent medium is anisotropic
as in Fig. 1(b) there is an infinite degeneracy of real eigen-
permittivities, similarly to the situation in electrodynamics. In
this case, however, the eigenpermittivities are real, which can
lead to a strong response when an external field is applied.
We then used the corresponding eigenfunctions to expand the
field in such a setup [19].

When the structure is a crystal with a period a as in
Fig. 1(c), one can use an effective ε(k) when λ � a [20].
Assuming that k ≈ 0 and ε(ω), when the physical frequency
is close to a resonant frequency ω ≈ ωT , the physical per-
mittivity diverges to plus and minus infinity [17,21–23].
Thus, it can be equal to an eigenpermittivity and result in
a strong response. This approximation can also be used in
the QS regime when the source-structure distance l , which

2469-9926/2022/106(1)/013708(12) 013708-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.013708&domain=pdf&date_stamp=2022-07-13
https://doi.org/10.1103/PhysRevA.106.013708


ASAF FARHI AND ARISTIDE DOGARIU PHYSICAL REVIEW A 106, 013708 (2022)

FIG. 1. (a) Dielectric cylindrical ε1 structure in an ε2 host
medium. (b) Dielectric cylindrical structure with ε1 in the z direction
and ε2 in the φ and ρ directions, in an ε2 host medium. Note that even
though the permittivity of the inclusion in the φ and ρ directions and
the permittivity of the host are equal, the different axial permittivity
of the inclusion defines an interface. This allows us to model axial
vibrations as will be explained. Periodic longitudinal (c) and helical
(d) arrangements of the constituent units. Panels (c) and (d) are real-
izations of (b) with ε1(k) and their vibrational modes are longitudinal
and helical, respectively [19,21].

is on the order of the effective wavelength [23], satisfies
l � a.

The response of a helical structure of Fig. 1(d) to an incom-
ing electric field due to the vibrational modes was recently
studied in the QS regime. The arrangement of the units in
a helical periodicity enabled us to write an effective per-
mittivity ε1(k). Then, in order to model axial vibrations we
considered an effective permittivity in the axial axis ε1z(k)
and permittivity value in the other axes ε2, the permittiv-
ity of the host medium. In this work we also investigated
the permittivity when k � 2π/a, where a is the helix pitch.
We identified synchronous-vibration modes satisfying k =
mkz, where m and k are the cylindrical-mode indices, and
kz = 2π/a. These modes were shown to have ω(k) that is
close to real, which is associated with a strong response and
delocalization. When the physical frequency ω ≈ ω(k), the
permittivity is expected to span over a large range of values
and give rise to resonances and delocalization [19], similarly
to the scenario in crystals mentioned above. Interestingly,
delocalized phonons were recently observed in DNA under
physiological conditions [24].

The local density of states (LDOS) of the electromagnetic
field is an important quantity since it determines the mag-
nitude of light-matter interactions such as the spontaneous
emission rate. The LDOS is proportional to the imaginary part
of the Green tensor, which depends linearly on the electric

field generated in response to a dipole excitation [25]. Hence,
close to a resonance there is an increase of the scattered field
and therefore in the LDOS, which in turn enhances light-
matter interactions and spontaneous-emission rate [18,26,27].
To quantify this enhancement one can use the Purcell factor
[28], which is defined as spontaneous emission rate in a given
system relative to free space.

Moreover, when two dipoles are located in proximity to
a structure, the Förster-resonance energy transfer (FRET) be-
tween them is also described in terms of the Green tensor [29].
Thus, close to a resonance, we should expect an enhancement
in the FRET between the dipoles as well. In free space, such
a FRET process between two dipoles is very short range, on
the order of 3–4 nm. Thus, if a resonant helical structure can
mediate FRET between dipoles spaced significantly further
apart, it would be of utmost importance in understanding and
controlling molecular interactions in the vicinity of such a
structure.

Here we will first evaluate the LDOS and the FRET
rate between two dipoles in the vicinity of an anisotropic
structure using the eigenpermittivity formalism. We will then
apply the results to the case of a generic helical structure
supporting axial vibrations and discuss the consequences
for strong light-matter interaction, high frequency selectivity,
and structure-mediated long-range energy transfer between
dipoles. Importantly, we will calculate the interaction between
a crystal and a dipole source and between a crystal and electric
field with an effective wavelength on the order of the length
period of the crystal, which in our case is due to the proximity
of the dipole to the structure [30]. For concreteness, we will
consider the microtubule, which also has axial periodicity
[19].

II. CALCULATING THE LDOS AND FRET RATES
IN PROXIMITY TO AN ANISOTROPIC STRUCTURE

We start by expanding the electric field using the eigen-
permittivity formalism in the QS regime for a two-constituent
system comprising an isotropic cylindrical inclusion in a
host medium and a point-dipole source situated in the host
medium. An electric potential expansion and Purcell enhance-
ment for such a setup using mode matching were calculated in
Ref. [18]. The field generated by the dipole at a position r is

Eμ =
∑

m

Lz

2π

∫
dk′ s2

mk′

s − smk′

∇ψ∗
mk′ (r0) · p

〈ψmk′ |ψmk′ 〉 [∇ψmk′ (r)]μ, (1)

where s = ε2
ε2−ε1

, sm = ε2
ε2−ε1m

, p is the dipole moment, r0 is
the dipole location, ψmk′ are the quasielectric potential eigen-
functions, μ is the field direction, 〈ψmk′ |ψmk′ 〉 = ∫

θ1∇ψmk′ ·
∇ψmk′dr, θ1 is a window function that equals 1 inside the
inclusion volume, and Lz is an arbitrary length that cancels out
with Lz in 〈ψmk′ |ψmk′ 〉 [11,12,15,19]. Note that when ε1 ≈ ε1m

there is a large contribution of the corresponding mode in the
field expansion.

This formulation was recently generalized to the case of
an anisotropic inclusion by assigning ε1 to one axis and ε2

to the other two axes to model axial vibrations and we can
proceed accordingly with ε1 → ε1z and the corresponding
eigenfunctions [see Fig. 1(b) and Ref. [19]]. The Green tensor
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is proportional to the electric field generated by a dipole and
can be expressed as [25]

Gμμ′ = Eμepμ′

ω2 p
= Eμepμ′

k2c2 p
, k = 2π

λ
,

and therefore we readily obtain the expression for the Green
function:

Gμμ′ (r, r0)

= 1

ω2

∑
m

Lz

2π

∫
dk′ s2

mk′

s − smk′

∇ψ∗
mk′ (r0) · eμ′

〈ψmk′ |ψmk′ 〉 [∇ψmk′ (r)]μ.

(2)

This expression can then be used to derive the cross density of
states (CDOS) [25]:

ρ(r, r0) = −2ω

π
Im[Gμμ(r, r0)]. (3)

Similarly, the FRET rate between dipoles at rA and rB can be
written as [29]

wa′b
ab′ = 2π

h̄2

(
ωa′a

ε0c2

)2

|pb′b
←→
G (rB, rA, ωa′a)paa′ |2, (4)

and we arrive at

wa′b
ab′ = 2π

h̄2

(
1

ε0c2

)2( 1

ω

Lz

2π

)2
∣∣∣∣∣
∑

m

×
∫

dk′ s2
mk′

s − smk′

∇ψ∗
mk′ (rB) · paa′∇ψmk′ (rA) · pbb′

〈ψmk′ |ψmk′ 〉

∣∣∣∣∣
2

.

(5)

Assuming a sharp resonance and using the identity δ(x) =
limε→0

1
π

ε
x2+ε2 , similarly to the spontaneous-emission rate

calculation in Ref. [27], one can readily solve analytically the
integrals in Eqs. (3) and (5).

The LDOS, which is a particular case of the CDOS for
r = r0, defined as [22,23,30,31]

ρμ(r) = −2ω

π
Im[Gμμ(r, r)], (6)

can also be obtained:

ρμ = − 2

π

1

ω

×
∑

m

∫
dk′ s2

mIm(s∗)

[Re(s) − sm]2 + [Im(s)]2

|∇ψmμ|2
˜〈ψm|ψm〉 . (7)

By expressing the spontaneous emission rate in a general
setup [22]

� = πωegp2

h̄ε0
ρμ(r, ω) ∝ ωegρμ, (8)

inconsistentco-phased

(a)

(b)

(c)
0 1 2 3 4

0

1

2

3

4 1011

FIG. 2. Vibrational-mode analysis for a helical structure. (a) The
illustrations show that k = kzm are allowed when requiring de-
coupling between the axial protofilaments. (b) The structure is
composed of two units denoted by α, β with masses m1, m2 con-
nected with springs k1, k2, k3, k4. (c) ω(k) for the acoustic and
optical m = 1 helix and 1D crystal modes. The microtubule parame-
ters are m1 = m2 = 0.9 × 10−22 (Kg), k1 = 0.8, k2 = 0.1, k3 = k4 =
0.2 (N/m), where k4 is of the order of magnitude of the value in
Ref. [36].

where ωeg is the Bohr frequency between the ground and
excited states, and the corresponding one in vacuum [22]

�vacuum = ω3
eg

3π h̄ε0c3
p2, (9)

we get the following expression for the Purcell factor:

�

�vacuum
= 3π2c3ρe,u(r, ω)

ω2
eg

= −3π
1

k3
2

∑
m

∫
dk′

× s2
mIm(s∗)

{Re[s(k′)]− sm(k′)}2+ [Im(s)]2

|∇ψm,k′μ(r0)|2
˜〈ψm|ψm〉 .

(10)

III. APPLYING THE CALCULATION
TO HELICAL STRUCTURES

We will now examine the specific case of a helical structure
supporting synchronous-vibration modes, which can give rise
to resonances. The scattering QS eigenfunctions that corre-
spond to these vibrations satisfy the relation k = mkz due to
their functional dependency, that is, according to the helical
symmetry, as illustrated in Fig. 2(a), and can be expressed as
[19]

ψm = eim(kzz−φ)

⎧⎪⎨
⎪⎩

A4mKm(mkzρ) ρ > ρ2

A2mKm
(
mkz

√
ε1zm

ε2
ρ
) + A3mIm

(
mkz

√
ε1zm

ε2
ρ
)

ρ1 < ρ < ρ2

A1mIm(mkzρ) ρ < ρ1

, (11)
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FIG. 3. Physical permittivity ε1(k) and first eigenpermittivities ε1,n k of the helical structure, where we used the parameters of Fig. 2 and
ρ1 = 7, ρ2 = 12 nm. The real parts of the physical permittivity and the first eigenpermittivity intersect at two k values with Im(ε1) = 0.1i,
resulting in large contributions of the corresponding eigenfunctions. Note that we consider a single ω, and k in the QS expansion can take any
value and is not required to satisfy kv = ω.

where ρ1 and ρ2 are the internal and external inclusion radii,
respectively, and Im and Km are the modified Bessel functions.
The convergence of Eq. (10) is ensured since Km�1(mkρ �
a) → 1√

2mk

√
π
ρ

e−mkρ , ρ0 > ρ2, and there is always an imagi-

nary part of the permittivity (see Appendix 3).
In crystals, the permittivity is usually expanded in a Fourier

series and it couples each field mode with the modes with
k + Gn, where Gn is a reciprocal-lattice vector, and there
is an effective ←→ε1 (ω, k) that describes the ω, k response
to an excitation at ω, k [20,32]. In our case, the symmetry
to discrete translations defines the k = mkz and nkz modes,
where n is the number of units per helical round, that represent
the dc and higher-order Fourier components, respectively (see
also the static case of electric charges in a helical arrangement
in Ref. [33]). Thus, the coupling is to modes with integer
multiples of (�m,�k) = (1, kz ) and �k = nkz apart. At
dipole distances on the order of the length period a, the field

that is generated by the high-order modes is negligible at the
dipole location and therefore the most dominant mode is the
m = 1 mode.

We now analyze classically the vibrational modes that can
be excited by the incoming field and generate field as was
done in Ref. [19]. We consider the coupling of vibrations
also to field components with kc � ω that are almost static
[20] and satisfy ka � 1. When vibrational modes and electric
field are coupled they have the same ω and k, and, at low
and high ks, ω(k) of one of the polaritons and that of the
uncoupled vibrational mode are similar [21]. We study a struc-
ture comprising two types of units with masses m1 and m2

connected by springs k1, k2, k3, and k4 as shown in Fig. 2(b).
Denoting the axial displacements of m1,2 and the indices
of the axial and lateral shifts by u1,2 and s, q, respectively,
and assuming u1,2 = a1,2eikz+imφ , we write the equations of
motion (EOM):

−ω2m1u1sq = k1(u2sq − u1sq ) − k2(u1sq − u2s−1q ) − k3(u1sq − u1sq+1) − k3(u1sq − u1sq−1),

−ω2m2u2sq = k2(u1s+1q − u2sq ) − k1(u2sq − u1sq ) − k4(u2sq − u2sq+1) − k4(u2sq − u2sq−1), (12)(−ω2m1 + k1 + k2 + 4k3 sin2((ka/n − 2πm/n)/2) −(k2e−ika + k1)
−(k2eika + k1) −ω2m1 + k1 + k2 + 4k4 sin2((ka/n − 2πm/n)/2)

)(
u1

u2

)
=

(
0
0

)
. (13)

This one-dimensional (1D) description enables us to an-
alyze the behavior of the system in the axial axis while
accounting for the lateral interactions in the terms with
k3 and k4. These diagonal terms restrain the movements of
m1 and m2 to their sites as in a local oscillator and vanish for
the helical functions satisfying k = mkz [see Eq. (11)]. Also,
for these modes it can be seen that laterally adjacent units
oscillate in phase. Equation (13) can be written as Au = ω2u,
where A is a Hermitian matrix and therefore diagonalizable
and since ω2 is real and positive the modes are delocalized.
When anharmonicity or dissipation is incorporated, the matrix
formulation and Hermiticity no longer hold and localiza-
tion can arise. We assume that the largest anharmonicity is
in the axial forces between lateral units due to the align-
ment shift of the units upon movement and the distribution
of charge along them (see Ref. [19] Fig. A1). The anhar-
monicity in these terms ∝k5u2

1sq{1 − 2 cos(ka/n − 2πm/n) +
cos[2(ka/n − 2πm/n)]} and translates to an on-site anhar-

monic term, which vanishes for the k = mkz modes. Moving
away from k = mkz increases the ratio of anharmonicity to
dispersion, leading to a more localized response, similarly to
interacting diatomic molecules with internal anharmonicity
[34,35]. From Eq. (13) we calculate ω(k) for the acoustic and
optical modes without anharmonicity. The k = mkz modes
have the same ω(k) of a 1D crystal [see Fig. 2(c)] in agreement
with the previous analysis in Eq. (11). We then incorporated
dissipation into the calculation of ω(k), which showed that
Re[ω(k)] is hardly affected and Im[ω(k)] is constant at all
ks, except at large γ s that suppress the acoustic modes (see
Ref. [19] Appendix B3). The physical permittivity can then
be written similarly to the derivation for a harmonic oscillator
[21] with the oscillator eigenfrequency ωT → ω(k) [19]:

ε1 = 1 + 4πNq2

mr[ω2(k) − ω2]
, (14)
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FIG. 4. (a) A setup of a dipole in proximity to a helical structure where the spontaneous emission rate of the dipole is enhanced due to
the proximity to the structure. (b) Purcell factors in the z and ρ directions as functions of the radius for isotropic and helical structures with
ρ1 = 7 nm and ρ2 = 12 nm, where the helical structure has a = 8 nm. The Purcell factors in the φ direction are smaller by at least an order of
magnitude since 1/ρ < k, except at close distances to the isotropic structure, where the magnitudes are negligible compared with the helical
structure. The Purcell factors of the helical structure are dominant for 12 < ρ < 24 nm and the ones of the isotropic structure are dominant
for ρ > 24 nm. In addition, the Purcell factors in the ρ direction are larger for the isotropic structure whereas the magnitudes in the ρ and z
directions are similar for the helical structure.

where q is the unit charge, mr is the effective mass, and N
is the charge density. Note that in electrodynamics in the
quasistatic regime, the dependency on ω is negligible and
therefore the polariton eigenfrequency is approximately de-
termined by the vibrational modes.

We are now in a position to derive the LDOS and the FRET
rate for helical structures using the expressions in Eqs. (5)
and (7). For simplicity we focus on the m = 1 modes, which
dominate at large distances, and proceed without anharmonic
terms [19], similarly to Ref. [21]. We first calculate ε1(k) and
ε1k using the expression above and the boundary conditions
[19], respectively, to observe the intersection points between
them, which are the resonances. In the calculation of ε1(k)
we chose q = 12e, where e is the electron charge [37], and
spring constants on the order of the one reported in Ref. [38].
We also use in the expression of ε1(k), ω2(k) that incorporates
dissipation and has a constant imaginary part [19]. To compare
the LDOS and FRET results to an isotropic dielectric structure
(which is the standard modeling of helical structures of this
kind), with ε1 = 1.5 + 0.1i, we set Im(ωn) = πNq2

4mr
, which

satisfies Im(ε1) = 0.1i at an intersection point. Then, using
ε1(k) and ε1k , we perform the calculation of the LDOS and
FRET for the helical structure setup and compare the results.
For details about the calculations for the isotropic structure
see Appendix 5.

In Fig. 3 we present the physical permittivity ε1 and the
eigenpermittivities ε1k for the first few modes of the helical
structure. Due to the anisotropy there is an infinite number of
eigenpermittivities for a given k value, unlike the case of an
isotropic medium. While this resembles electrodynamics, in
which there are are multiple resonances at a given k value,
the eigenpermittivities in this case are real and can give rise
to a strong response, especially for the first resonances where
Im(ε1) is small. Since the resonances are discrete, if we as-
sume that each resonance is a continuous function of ω and k,
when varying ω we will encounter closely spaced resonances
(one can think of resonances represented by, e.g., parallel
diagonal lines in ω and k). This is in qualitative agreement
with the closely spaced resonances in frequency in the exper-
imental results in Ref. [39].

In Fig. 4 we present the Purcell factors in the z and ρ direc-
tions, which are the dominant ones, as functions of ρ for the
helical and isotropic structures, both with ρ1 = 7 nm, ρ2 =
12 nm. It can be seen that for the isotropic structure the mag-
nitudes in the ρ direction are larger, whereas for the helical
structure the magnitudes in the ρ and z directions are similar.
Interestingly, close to the structure the LDOS of the helical
structure dominates since the m = 1 modes that extend the
farthest have a larger response compared to the isotropic struc-
ture, while at some distance away the response of the isotropic
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FIG. 5. (a) The setup of two dipoles in proximity to the helical
structure, which can transfer energy via the structure. (b) Normalized
FRET rates as functions of the axial distance between two dipoles
oriented in the z direction for an isotropic dielectric structure with
ε1 = 1.5 + 0.1i, helical structure, and free space. The distance of the
dipoles from the structures is a, which is the helix pitch.

structure is larger. This can be explained by the strong re-
sponse of the helical structure up to an interaction distance on
the order of a due to the synchronous-vibration modes, which
depend on ρ via K (kzρ) [see Eq. (11)]. In addition, the modes
with larger interaction distances, which have small ks, are
present in the isotropic structure but not in the helical struc-
ture since ε1 ≈ 1 ⇒ 1/(s − sk ) ≈ 0, and therefore they have
a negligible contribution in the field expansion [see Eq. (2)].
This may suggest two distinct mechanisms of interaction in
these regions. Finally, we note that Purcell factors depend on
the frequency as follows: �/�0 ∝ 1/ω3 [see Eq. (10)]. Since
in our case ω = 2 × 1011 (s−1), it gives, e.g., an additional
factor of 5 × 108 compared to the calculation in the near
infrared in Fig. 3 of Ref. [27].

In Fig. 5 we present the normalized FRET rates between
two axially distanced dipoles oriented in the z direction at a
distance a from the helical and isotropic structures as well
as in free space. The isotropic structure exhibits a larger
FRET range compared to free space, similarly to a Gaussian
beam in which the modes interfere. Importantly, at a given
time the FRET close to the helical structure setup has an
approximately constant amplitude and oscillates with a period
a, due to the exp(ikzz) dependency in Eq. (11). Note that
since we have incorporated dissipation into the permittivity
the FRET rate in this model decays in space, at a distance
that is larger than the one displayed in the graph and can be
approximated using �x ≈ 1/(

√
2�k), where �k is according

to the integrand in Eq. (5). We also calculated the FRET
rates for dipoles oriented along the ρ and φ directions and
in the helical-structure setup, they have approximately the
same z dependency since the contribution is dominated by
exp(ikzz) [see Eq. (11)], and their relative magnitudes are
1.14 and 1.64 × 10−5, respectively. The scaling of the FRET
as a function of the dipole radius for dipoles oriented along

z, ρ, and φ at distances on the order of a or larger can be
approximated as [kzK1(kzρ)]2, [K ′

1(kzρ)]4, and [ 1
ρ

K1(kzρ)]4,
respectively. Finally, the FRET rate as a function of z between
dipoles oriented along z and ρ in the helical-structure setup
is shifted in phase by π/2, which implies that for dipoles at
the same z location the FRET rate will be maximal when they
are parallel. Incorporating the induced electric response and
the anharmonic terms is expected to result in a shorter FRET
distance close to the helical structure. Clearly, the effect of
including the anharmonic terms depends on their coefficients
and the strength of the incoming field, which will determine
the mode amplitude. Usually, on a resonance since the mode
amplitude is large and the anharmonic terms are significant,
it will increase the imaginary part of ωk , which in turn will
reduce the strength and axial extent of the response since ω is
real. However, assuming that the dominant anharmonicity is
in the axial forces between lateral units, this effect is expected
to be dominant only away from the modes satisfying k = mkz,
where this anharmonicity is large. Thus, excitation at an ω

that is significantly different than ωk (k = mkz ) will result
in a weaker and more localized response, see Appendix 6.
Additional anharmonic terms can decrease the FRET
range.

IV. CONCLUSION

In this work we first derived the density of states, Purcell
factors, and FRET rate in the eigenpermittivity formalism
for a two-constituent system with isotropic and anisotropic
inclusions. We then applied this formulation to the case of
a helical structure supporting axial vibrations and compared
it with an isotropic dielectric structure. We showed that the
helical structure can greatly enhance the spontaneous emis-
sion rate up to distances on the order of the helix pitch
and that at much larger distances the dielectric response
dominates. Finally, we showed that helical structures can
mediate long-range FRET between two dipoles. This could
be crucial for understanding and controlling molecular in-
teractions in the vicinity of such structures. Our results may
be of particular relevance for phenomena associated with bi-
ological helical structures such as DNA, microtubules, and
alpha helices, and could relate to fundamental questions in
biology such as the role of electrodynamics in explaining
long-range interactions and synchronization between distant
molecules.

APPENDIX

1. Expansion of the potential of a dipole for an anisotropic
and spatially-dispersive inclusion

We will start by expanding the physical potential of a
charge distribution in a two-constituent medium, in which
both constituents are isotropic and spatially uniform, similarly
to the treatment in Refs. [11,12,40]. We will then develop an
expansion for an inclusion with an anisotropic and spatially
uniform permittivity and simplify it for a dipole source. Fi-
nally, we will formulate the field expansion for a k-dependent
inclusion permittivity where the modes are uncoupled and
analyze the scattered field for a crystal inclusion.
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In the quasistatic regime we use Poisson’s equation in a
two-constituent medium for the electric potential of a charge
distribution ρ̃(r). When both constituents have spatially uni-
form and isotropic permittivities we write [11,12,40]

∇ε∇ψ = ρ̃(r),

∇2ψ (r) = ∇ · θ1(r)u∇ψ (r) + ρ̃(r)/ε2, u ≡ ε2 − ε1

ε2
,

where θ1(r) is a window function that equals 1 inside the
inclusion, ε1 is the inclusion permittivity, and ε2 is the
host-medium permittivity. The potential can be regarded as
generated by the external charge distribution ρ̃(r)/ε2 and
∇ · θ1(r)u∇ψ (r). Therefore, it can also be expressed as ψ =
ψ0 + ψsc in terms of the potential ψ0 generated by the charge
distribution in a uniform ε2 medium and ψsc that is generated
due to the existence of the inclusion.

An eigenstate ψn, which exists in a system without a
source, is defined as follows:

∇2ψn(r) = ∇ · θ1(r)un∇ψn(r), un ≡ ε2 − ε1n

ε2
,

ψn(r) =
∫

G(r − r′)∇ · θ1un∇ψn(r′)dr′

= un

∫
θ1(r′)∇G(r − r′)∇ψn(r′)dr′,

where G(r − r′) is Green’s function of Poisson’s equation and
we performed integration by parts. We define the operator �̂

as

�̂ψn =
∫

θ1(r′)∇G(r − r′)∇ψn(r′)dr′

and write

ψn = un�̂ψn, snψn = �̂ψn, sn = 1

un
.

Since �̂ is self-adjoint all the eigenvalues sn are real.
In addition, at the large n limit sn = 1/2 and therefore
ε1/ε2 = −1 is an accumulation point of the eigenpermittivity
ratios [12,13,40]. We then obtain [11,12,40]

ψ = u�̂ψ + ψ0

= 1

1 − u�̂
ψ0 = ψ0 + u�̂

1 − u�̂
ψ0

= ψ0 +
∑

n

u�̂

1 − u�̂
|ψn〉〈ψn|ψ0〉

= ψ0 +
∑

n

sn

s − sn
|ψn〉〈ψn|ψ0〉.

By using [11,15]

〈ψn|ψ0〉 =
∫

drθ1∇ψ∗
n · ∇ψ0

=
∫

drθ1(r)∇ψ∗
n (r) · ∇

∫
G(r − r′)qδ(r′ − r0)dr′

= qsn

∫
dr′ψ∗

n (r′)qδ(r′ − r0) = qsnψ
∗
n (r0),

we get for a point charge

ψ = ψ0 + q
∑

n

s2
n

s − sn
|ψn〉ψ∗

n (r0).

The eigenstates are assumed to be normalized, where the inner
product is defined as

〈ψn|ψn〉 =
∫

drθ1∇ψ∗
n · ∇ψn.

Now we develop the expansion of the potential for an
anisotropic inclusion permittivity as was done in Ref. [19].
We denote the inclusion permittivity tensor by ←→ε1 and
write

∇←→ε ∇ψ = ρ̃(r),

ε2∇2ψ + ∇θ1(←→ε1 − ε2)∇ψ = ρ̃(r),

ε2∇2ψ = ρ̃(r)

ε2
+∇θ1

(ε2 − ←→ε1 )

ε2
∇ψ,

∇2ψ (r) = ∇ · θ1(r)←→u ∇ψ (r) + ρ̃(r)

ε2
,

←→u ≡ ε2I − ←→ε1

ε2

where I is the unit matrix.
We define an eigenfunction ψk as follows:

ψk (r) =
∫

G(r − r′)∇ · θ1
←→u ∇ψk (r′)dr′

=
∫

G(r − r′)
∂

∂ ′i
θ1uk,i j

∂

∂ ′ j
ψk (r′)dr′

=
∑
i, j

ui j,kG(r − r′)
∂

∂ ′ i
θ1(r′)

∂

∂ ′
j

ψk (r′)dr′

=
∑
i, j

ui j,kθ1(r′)
∂

∂ ′ i
G(r − r′)

∂

∂ ′
j

ψk (r′)dr′,

where we performed integration by parts and ui j ≡ δi j − ε1i j

ε2
.

For a diagonal form of ←→ε we have

ψk (r) = ui,k

∫
G(r − r′)

∂

∂ ′
i

θ1(r′)
∂

∂ ′
i

ψk (r′)dr′

=
∑

i

ui,k

∫
θ1(r′)

∂

∂ ′
i

G(r − r′)
∂

∂ ′
i

ψk (r′)dr′.

For (εx, εy, εz ) = (ε2, ε2, ε1z ) we get

ψk (r) = uzk

∫
G(r − r′)

∂

∂ ′
z

θ1(r′)
∂

∂ ′
z

ψk (r′)dr′

= uzk

∫
θ1(r′)

∂

∂ ′
z

G(r − r′)
∂

∂ ′
z

ψk (r′)dr′,

and write the eigenvalue equation

ψk = uzk�̂zψk, szkψk = �̂zψk,

szk = 1/uzk = ε2/(ε2 − ε1zk ),

where szk is an eigenvalue. Note that here the physical permit-
tivity of the inclusion ε1 is spatially uniform and the index k
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denotes the mode index. Similarly, we write the expansion of
ψ for this case

ψ = ψ0 +
∑

k

szk

sz − szk
|ψn〉〈ψn|ψ0〉.

For a point charge we substitute the eigenvalue equation in the
inner product to obtain

〈ψk|ψ0〉 =
∫

drθ1(r)
∂

∂z
ψ∗

k (r)
∂

∂z
ψ0(r)

= 4π

ε2

∫
drθ1(r)

∂

∂z
ψ∗

k (r)
∂

∂z
G(r − r′) ∗ qδ(r′ − r0)

= 4πq

ε2
szkψ

∗
k (r0).

We then consider a dipole composed of two charges and write

〈ψk|ψ0〉 = szkq[ψ∗
k (z0 + d/2) − ψ∗

k (z0 − d/2)]

= szkqd
[ψ∗

k (z0 + d/2) − ψ∗
k (z0 − d/2)]

d
.

For a cylindrical inclusion, the eigenfunctions have two in-
dices, m and k. All in all, we obtain for ψ

ψ = ψ0 + 4π

ε2

∑
m

∫
s2

zk

sz − szk
|ψm,k〉∇ψ∗

m,k (r0) · pdk,

(A1)
where the inner product for the normalization is

〈ψk|ψk〉 =
∫

drθ1(r)
∂

∂z
ψ∗

m,k (r)
∂

∂z
ψm,k (r).

We now formulate an expansion for a k-dependent inclusion
permittivity without coupling between modes. This is the situ-
ation in an electron gas, where the physical permittivity value
is associated with each mode [21]. We first write the response
of the inclusion to an excitation at a given k:

ψsc,k = uzk�z

1 − uzk�z
ψ0k,

where uzk corresponds to the physical inclusion permittivity at
a given k and

ψ0k = 〈ψ0|ψk〉ψk .

We can now sum these terms and substitute in the expansion
above sz → sz(m, k) to obtain for a cylindrical inclusion

ψ = ψ0 + 4π

ε2

∑
m

∫
s2

z,km

sz(m, k) − sz,km
|ψkm〉∇ψ∗

km(r0) · pdk.

(A2)
Note that the previous expansion for the electric potential
with a uniform inclusion permittivity is satisfied for each k
component, which implies that one can vary ε as a function of
k in the expansion.

Finally, we analyze the response of a crystal inclusion. In
the case of a helical crystal the Fourier expansion is along a
helical orbit and the dc components have constant potential
along this orbit. We thus have coupling between modes of the
types [33] (m′, k′) → (m′ + pm, k′ + pmkz ) and (m′, k′) →
(m′, k′ + pnkz ), where p is an integer number and n is the
number of units per helical round. We will show next that for

ρ0 − ρ2 > a/n and a/2, the second and first types of coupling
are negligible, respectively. We therefore conclude that for
ρ0 − ρ2 > a/2 only the m = 1 mode is important and write

ψ (r, ρ0 > a/2) ≈ ψ0(r) + 4π

ε2

∫
s2

z,km=1

sz(m = 1, k) − sz,km=1

× |ψkm〉∇ψ∗
km(r0) · pdk. (A3)

We can substitute the eigenpermittivities and the physical
permittivity, to get sz(m = 1, k) and sk,m=1, respectively, and
obtain an expansion for ψ (r). The calculation of the eigen-
permittivities can be performed using the boundary conditions
and the physical permittivity can be measured in some cases
or calculated by substituting ω(k) in ωT in the expression
for ε. ω(k) is calculated in the main text from the EOM
and can also be calculated when anharmonic terms are incor-
porated.

Since a strong response is expected at m = 1, k = kz, a
dipole that emits at a range of spatial frequencies will interact
more dominantly with this mode. In this region the dominant
term in the expansion is

4π

ε2

s2
kzm=1

sz(m = 1, kz ) − skzm=1
|ψkzm=1〉∇ψ∗

kzm=1(r0) · p,

in addition to ψ0, where kz = 2π
a and a is the helical-orbit axial

periodicity.

2. The form of the eigenfunctions

Since a E inc/ψ0 component with a given k results in a con-
tribution of an eigenfunction with the same k in the expansion,
the eigenfunctions that account for the field scattering due to
synchronous vibrations are

ψm = eim(φ−kzz)

⎧⎨
⎩

A1mKm(mkzρ) ρ > ρ2

A2mIm + A3mKm ρ1 < ρ < ρ2

A4mIm(mkzρ) ρ < ρ1

,

where φ, z, and ρ are cylindrical-coordinate variables,
Im and Km are the modified Bessel functions, ρ1 and ρ2 are
the internal and external inclusion radii, kz = 2π/a, and a is
the helical-orbit axial period. Upon a continuous translation
along the helical orbit, ψm remains constant and therefore
corresponds to an eigenvalue 1. We can similarly take the
directional derivative in the direction of the helical orbit and
obtain

∇vψm = v · ∇ψm = − i√
(ρkz )2 + 1

× (ρkz, 1) · (m/ρ,−mkz )eim(φ−kzz) = 0,

as expected. This means that R̂ψn = ψn, where R̂ is the
continuous-translation operator.

3. Scaling of the eigenfunctions

We analyze the scaling of ψm for small and large ρs. We
start with the first m = 0 mode:

Km(x → 0) →
{−[

ln
(

x
2

) + 0.5772
]

m = 0
�(m)

2

(
2
x

)m
m �= 0

.
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Since, for m = 0, x = 0 and we expect a finite potential, this
mode is associated in all regions with Im=0(x) and is constant
everywhere (and therefore can be omitted). This mode can be
treated in the full Maxwell-equation analysis and was shown
to scale as

√
1/ρ [41]. We proceed to the m � 1 modes at

ρ � a and obtain

Km�1(mkzρ � a) → 1√
2mkz

√
π

ρ
e−mkzρ,

with a typical interaction distance on the order of a/m. This
determines the range in which a dipole interacts with each
mode. When k and m are large this approximation holds and

one can show that limk,m→∞
|∇ψm,kμ(r0 )|2

˜〈ψm|ψm〉 ∝ mkε1ke−2kmρ0 . Tak-

ing into account that Im[ε1(k)] > 0, s2
mIm(s∗ )

{Re[s(k′ )]−sm (k′ )}2+[Im(s)]2 is
bounded since even at the limit sm → ∞ it equals 1, and
that ε1k should converge when k → ∞ (see the Appendix in
Ref. [19]) the integral over k′ and sum over m in Eq. (10)
are ensured to converge. Clearly, the larger ρ0 is, the faster it
converges.

The scaling of the helical modes inside the structure close
to the origin is

Im(x → 0) → 1

�(m + 1)

(
x

2

)m

,

Im=0(mkzρ → 0) → 1

�(m + 1)

(
mkzρ

2

)m

∝ mm

(
kzρ

2

)m

, �(m + 1) = m!.

4. Calculating the radial argument inside the inclusion

In a crystal one can express the effective permittivity as
ε = ε(ω, k), which relates the response at a given k to an

excitation at the same k. In the case of a MT, this form
of ε(ω, k) is justified because the period length a is 8 nm
and, therefore, (λ0/a)2 � 1 where λ0 = c/ω is the vacuum
wavelength [20]. Note that in the derivation in Ref. [20] it
is assumed that, inside the inclusion ρext (ω) = 0, Jext (ω) =
0, which is satisfied in our case since the charges on the
tubulin and tubulin dimers oscillate only as a response to
an external excitation and can therefore be defined as polar-
ization. Also, eigenstates are defined for a system without
a source. Another argument is that for sources at distances
larger than the typical interaction distance of the m = 2 mode
the inclusion is approximately not affected by the m > 1
modes.

To represent axial vibrations, we assume an anisotropic in-
clusion with an axial permittivity εz and radial and azimuthal
permittivities ε2, equal to the host-medium permittivity,
where we omit k for brevity. Note that the eigenpermit-
tivities in the quasistatic regime do not depend on ω.
We now solve Laplace’s equation in cylindrical coordi-
nates inside the anisotropic inclusion. This will allow us
to find the argument of the functions Im and Km for ρ1 <

ρ < ρ2 and calculate the eigenpermittivities. Substituting the
form of ψm we write Laplace’s equation inside the helical
structure:

∇←→ε ∇ψm = 0,

ε2
1

ρ

∂

∂ρ

(
ρ

∂ψm

∂ρ

)
− ε2m2 1

ρ2
ψm − k2

z m2εzmψm = 0. (A4)

We change variables

x ≡ km
√

εz/ε2ρ,
∂

∂ρ
= ∂

∂x

∂x

∂ρ
= ∂

∂x
kzm

√
εzm/ε2,

and write

1

x
k2

z m2εzm
∂

∂x

(
x
∂ψm

∂x

)
− m2 (kzm

√
εzm)2

x2
ψm − k2

z m2εzmψm = 0,

1

x

∂

∂x

(
x
∂ψm

∂x

)
−

(
m2

x2
ψm + 1

)
ψm = 0. (A5)

Thus we get

ψm = eim(φ−kzz)

⎧⎪⎨
⎪⎩

A1mKm(mkzρ) ρ > ρ2

A2mIm
(
mkz

√
εzm

ε2
ρ
) + A3mKm

(
mkz

√
εzm

ε2
ρ
)

ρ1 < ρ < ρ2

A4mIm(mkzρ) ρ < ρ1

,

which needs to be multiplied by additional factors to obtain
the contribution in the expansion of the potential of a point
charge as we showed in the previous subsection. Note that
when calculating the total response as in Eqs. (2), (5), and (10)
one has to sum over m and integrate over k for any relation
between k and m.

5. Isotropic cylindrical shell: Calculating the eigenpermittivities

We express the eigenvalue equation and the relations be-
tween the coefficients of the eigenfunctions of an isotropic

cylindrical shell:

ψm,k = ei(mφ+kz)

⎧⎪⎨
⎪⎩

AKm(kρ) ρ > ρ2

B1Im(kρ) + B2Km(kρ) ρ1 < ρ < ρ2

C1Im(kρ) ρ < ρ1

,

where B1 is treated as known (and cancels out
in the expansion). We first write the boundary
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conditions

Aa = B1b11 + B2b21,

B1b12 + B2b22 = C1c,

Aε2ad = ε1(B1b11d + B2b21d ),

ε1(B1b12d + B2b22d ) = C1ε2cd ,

where

a = Im(kρ1), b±
11 = Im(kρ1), b±

12 = Im(kρ2),

b±
21 = Km(kρ1), b±

22 = Km(kρ2), c = Km(kρ2),

ad = ε2

(
∂Im(kρ)

∂ρ

)
ρ=ρ1

, b±
11d = ε1

(
∂

∂ρ
Im(kρ)

)
ρ=ρ1

,

b±
12d =

(
∂

∂ρ
Im(kρ)

)
ρ=ρ2

, b±
21d = ε1

(
∂

∂ρ
Km(kρ)

)
ρ=ρ1

,

b±
22d = ε1

(
∂

∂ρ
Km(kρ)

)
ρ=ρ2

, cd = ε2

(
∂Km(kρ)

∂ρ

)
ρ=ρ2

.

We write two relations between B2 and ε1

ε1(B1b12d + B2b22d ) = ε2
B1b12 + B2b22

c
cd , (A6)

B1b11 + B2b21

a
adε2 = ε1(B1b11d + B2B21d ), (A7)

and express B2

ε1B2b22d − ε2
B2b22cd

c
= ε2

B1b12

c
cd − ε1B1b12d ,

B2

(
ε1b22d − ε2

b22cd

c

)
= B1(ε2

b12

c
cd − ε1b12d ),

B2 = B1

(
ε2

b12
c cd − ε1b12d

ε1b22d − ε2
b22cd

c

)
.

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04 1.045
1.414

1.4145

1.415
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1011
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-15

-10

-5

0
104

FIG. 6. (a) Real part of ωk and (b) imaginary part of ωk , where
the coefficient of the anharmonic term is k5 = 5k3kz and the mode
amplitude is u1 = 0.1a.

Substituting B2 we obtain a quadratic eigenvalue equation for
ε1:

0 = ε1

ε2
b22d

(
b11d

ε1

ε2
− b11

ad

a

)
− b22cd

c

(
b11d

ε1

ε2
− b11

ad

a

)

+ b12

c
cd

(
ε1

ε2
b21d − b21

ad

a

)
− ε1

ε2
b12d

(
ε1

ε2
b21d − b21

ad

a

)
.

Finally, we express A and C1

A = B1

b11 + ( ε2
b12

c cd −ε1b12d

ε1b22d −ε2
b22cd

c

)
b21

a
,

C1 = B1

b12 + ( ε2
b12

c cd −ε1b12d

ε1b22d −ε2
b22cd

c

)
b22

c
,

and obtain the two sets of solutions:

A = − B1

2a(ab22b21d cd − b21cad b22d )

{−cb2
21ad b12d + b11b21cad b22d + ab22b21b11d cd + ab12b21b21d cd + −2ab11b22b21d cd

± b21

√[
cad

(
b21b12d − b11b22d

) + a(b12b21d − b22b11d )cd
]

2 − 4a(b12b21 − b11b22)cad (b12d b21d − b11d b22d )cd
}
,

B2 = B1

2b21cad b22d − 2ab22b21d cd
{−b21cad b12d − b11cad b22d + ab22b11d cd + ab12b21d cd

±
√

[cad (b21b12d − b11b22d ) + a(b12b21d − b22b11d )cd ]2 − 4a(b12b21 − b11b22)cad (b12d b21d − b11d b22d )cd},
C = B1

2c(b21cad b22d − ab22b21d cd )

{
ab2

22b11d cd − b21b22cad b12d − b11b22cad b22d − ab12b22b21d cd + 2b12b21cad b22d

± b22

√
[cad (b21b12d − b11b22d ) + a(b12b21d − b22b11d )cd ]2 − 4a(b12b21 − b11b22)cad (b12d b21d − b11d b22d )cd

}
,

ε1k/ε2 = − 1

2ac(b12d b21d − b11d b22d )
{−b21cad b12d + b11cad b22d + ab22b11d cd − ab12b21d cd+

±
√

[cad (b21b12d − b11b22d ) + a(b12b21d − b22b11d )cd ]2 − 4a(b12b21 − b11b22)cad (b12d b21d − b11d b22d )cd}.
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6. Including anharmonicity

Here we calculated ωk when anharmonicity in the axial
forces between lateral units is included in the model without
dispersion, where we set the amplitude u1 = 0.1a for simplic-
ity, see Fig. 6. It can be seen that Im(ωk ) increases away from

k = kz, which implies a stronger and delocalized response
when k ≈ kz, since the physical frequency is real. A complete
account of this analysis as a function of the incoming field will
be given elsewhere.
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