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Hybrid magnon-atom entanglement and magnon blockade via quantum interference
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In this paper, we propose a quantum interference mediated control of switching between magnon-atom
entanglement and magnon blockade. A three-level � configuration atomic ensemble and a yttrium iron gar-
net sphere are simultaneously coupled to a microwave cavity mode through magnetic dipole interaction. By
applying two strong fields to drive the atoms, the resonant coupling between a dressed-state atomic transition
and the magnon mode, without direct interaction, is established by adiabatically eliminating the cavity field.
Interestingly, the anti-Jaynes-Cummings (JC) interaction and the JC interaction are alternatively formed when the
atoms are trapped into different superposition states induced by quantum interference, causing the appearance of
hybrid magnon-atom entanglement and magnon quantum blockade, respectively. The coherent-controlled hybrid
magnon-atom entanglement and magnon blockade may find potential applications in quantum information
processing.
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I. INTRODUCTION

In recent years, the magnon-photon strong and ultra-
strong coupling in microwave and optical frequency region
has attracted increasing interest since it provides a promis-
ing platform for studying magnon quantum electrodynamics
[1–10]. The magnon, as an example, is regarded as the quanta
of collective spin excitations in yttrium iron garnet (YIG)
possessing unique properties of high spin density and low
damping rate [11]. Thanks to various coupling schemes in-
volving magnetic dipole interaction, magnetostriction, and
magnetic-optical coupling, one can implement the interac-
tions between ferrimagnetic crystals and different physical
systems in diversity. This brings forth new ideas to construct
a variety of hybrid systems including cavity optomagnon-
ics [12–14], cavity magnomechanics [15,16], and hybrid
ferromagnetic-superconducting systems [17–19]. Up to now,
the cavity-magnon system has been widely used to ex-
plore abundant macroscopic quantum effects, such as the
observation of nonlinear bistability [20], magnon Kerr effect
[21,22], magnon-induced transparency [23,24], nonreciproc-
ity [25,26], slow light [27,28], and so on.

Interestingly, a large number of hybrid systems have been
suggested to study the magnon squeezing [29], magnon-
magnon entanglement [21], Bell state [30], and magnon
Schrödinger cat state [31,32]. For instance, Li et al. showed
that the genuine tripartite entanglement can be achieved be-
tween magnons, cavity microwave photons, and phonons in
cavity magnomechanics [33], wherein the cavity photons and
magnons are coupled by magnetic dipole interaction while the
magnons and phonons via magnetostrictive interaction. The
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entanglement in this hybrid system is mainly determined by
two physical processes: (i) the cavity-magnon beam splitter
interaction; (ii) the magnon-phonon parametric interaction.
The entanglement is basically dependent on the magnon-
phonon coupling (parametric interaction), without which not
only tripartite entanglement but also bipartite entanglement is
absent. More recently, Kong et al. proposed a new scheme
to prepare remote magnon entanglement based on the dis-
persive interactions [34]. In their work, two magnon modes
are separately placed into two different microwave cavities,
in which a single superconduction atom interacts simultane-
ously with the two cavity modes. When the cavity modes
are turned to be far detuned with the superconducting atom
and magnon modes, a two-channel interaction is established
by virtual photon exchange, resulting in the appearance of
original magnon-magnon Einstein-Podolsky-Rosen (EPR) en-
tanglement. In fact, both the Jaynes-Cummings (JC) [35,36]
and anti-JC interactions are coexistent between magnons and
atomic spins in the dressed-state interaction. This is similar
to the physical processes found in magnon-photon-phonon
hybrid system [33]. While the magnon mode interacts with the
atomic spin in an anti-JC interaction, the two-mode squeez-
ing between the magnon and atom is created. After that, the
quantum state would be transferred from atomic spin to the
other magnon mode via a JC interaction, thus giving rise to
the remote magnon-magnon entanglement. This provides a
basic idea to prepare entanglement between distant parties.
Accordingly, the magnon-magnon entanglement in their work
is essentially originated from the anti-JC interaction.

On the other hand, the magnon quantum blockade, as
defined, is a counterpart of photon blockade effects [37,38],
namely, the absorption of the first photon would lead to the
inhibition of the second and subsequent ones. The photon
blockade is closely related to antibunching behavior and opens
up a way to prepare a single-photon source [39,40]. Therefore,
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it has been extensively studied in various systems including
optomechanical systems [41], coupled atom-cavity systems
[42], and cavity quantum electrodynamics [43]. Recently, the
strong coupling between the magnon and the superconduct-
ing qubit has been realized in experiment [17–19], which
motivates researchers to pay special attention to the magnon
blockade. The magnon blockade is usually divided into two
categories: one is originated from anharmonicity created
by strong magnon-qubit coupling, i.e., conventional magnon
blockade (CMB); the other is based on the destructive quan-
tum interference between several direct or indirect pathways
in weak coupling cases, i.e., unconventional magnon blockade
(UCMB). Recently, CMB [44] and UCMB [45,46] have been
investigated in a hybrid ferromagnet-superconductor quantum
system, respectively. Subsequently, the simultaneous block-
ade of a photon, phonon, and magnon induced by a two-level
atom [47], and the phase-controlled multimagnon blockade
and magnon-induced tunneling [48] are also achieved theo-
retically. In these schemes, it is found that the JC interaction
between magnon and superconducting qubit is the key to
generate the magnon blockade effect.

As is well known, the atomic coherence and quantum
interference play an important role in controlling the optical
properties of the interacting medium, causing a large number
of phenomena such as coherent population trapping (CPT)
and electromagnetically induced transparency (EIT), which
could find potential applications in light information storage,
readout and transfer [49]. More interestingly, it has been
studied extensively that the coherent control of two-photon
processes and dissipation scheme can be used to generate
entangled and squeezed states [50,51], which are important re-
sources for quantum teleportation [52], quantum dense coding
[53], and universal quantum computation [54]. As proposed
in the pioneering work by Agarwal [55], the quantum inter-
ference effects in the spontaneous emission should be taken
into account if the near degenerate levels in multilevel systems
are coupled by the same vacuum modes. After that, a great
deal of interest has been paid on this type of quantum inter-
ference to study ultranarrow lines [56], spontaneous emission
cancellation [57], quantum entanglement [58], lasing without
inversion [59], etc. Generally, the spontaneously generated
coherence (SGC) effects have been frequently studied in V -
type atoms, while such effects have been relatively paid less
attention in the �-type systems in spite of it was first predicted
by Javananien in 1992 [60]. However, Menon and Agarwal
have investigated the typical quantum interference in the �-
type systems, finding that the SGC has remarkable effects in
modifying the line profiles [61]. Subsequently, the SGC in �

system received great interest to study the inversionless gain
[62], optical bistability [63], resonance fluorescence [64], and
squeezing spectra [65]. What is more, Dutt et al. studied the
SGC effects in experiment by utilizing an artificial atomic
system with �-type structure [66]. More recently, the long-
lived spontaneously generated coherence has been generated
by incoherent light and the possible experiment proposal has
also been suggested [67,68].

In this paper, we present a scheme to realize the switching
of quantum entanglement and magnon blockade mediated by
quantum interference in a hybrid magnon-cavity-atom sys-
tem. Being different from previous schemes [44–48], two

strong fields are applied to resonantly drive the atomic sys-
tem. The indirect interaction between the magnons and atoms
is established via exchange of virtual photons in dispersive
microwave cavity. Interestingly, the anti-JC interaction and
JC interaction are alternatively generated when the atoms are
trapped into different superposition state in dress-state picture.
If an anti-JC interaction is established, the hybrid magnon-
atom entanglement is generated at steady state by treating
the dressed atomic spin as a bosonic mode under Holstein-
Primakoff approximation. On the other hand, the CMB and
UCMB are possible to attain when a JC interaction of magnon
and atom is formed. The main innovative points in our scheme
are summarized briefly as follows: (i) the coherent coupling
between the magnon and atoms is realized by adiabatically
eliminating the cavity mode; (ii) the alternative appearance of
anti-JC- and JC-type interaction is determined by the quantum
interference; (iii) the hybrid magnon-atom entanglement and
magnon blockade can be effectively controlled by the atomic
coherence.

The remaining part of the present paper is organized as
follows. In Sec. II, we describe the model that consists of a
�-type system and a YIG sphere in a microwave cavity. In
Sec. III we demonstrate the generation of hybrid magnon-
atom entanglement and squeezing. In Sec. IV, we discuss the
analytical results for CMB and UCMB and the internal mech-
anisms are also analyzed in detail. Finally, the conclusion is
given in Sec. V.

II. MODEL AND EQUATIONS

As sketched in Fig. 1, an atomic ensemble with �-type and
a YIG sphere are placed into a microwave cavity, in which
the cavity mode a is coupled with the transition |g2〉 ↔ |g1〉
and, simultaneously interacts with the magnon mode of a YIG
sphere with frequency ωm. Both the atoms and the YIG sphere
are in the yz plane, and at the wave crest of the microwave
field. For the �-type atomic system, we apply a control field
�c and a strong microwave field �m to resonantly drive the
corresponding transitions |e〉 ↔ |g2〉 and |g2〉 ↔ |g1〉, respec-
tively.

The master equation for the density operator ρ of the
composite magnon-cavity-atom hybrid system is written in an
appropriate rotating frame as (h̄ = 1) [69,70]

ρ̇ = −i[H, ρ] + Lcρ + Lmρ + Laρ (1)

with the total system Hamiltonian

H = Hd + HI , (2)

where the first term

Hd = �mσg1g2 + �cσg2e + H.c., (3)

represents the resonant interaction of the atom with the clas-
sical dressing fields, and the second term

HI = gaaσg2g1 eiδt + gmam†ei�t + H.c. (4)

describes the simultaneous interaction of the cavity
field with the atom and magnon mode. Here σlm =∑N

μ=1 |lμ〉〈mμ|(l, m = g1, g2, e) are the projection operators
of N independent atoms for l = m and the flip operators
for l �= m. a (a†) and m (m†) are the annihilation (creation)
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FIG. 1. (a) Schematic diagram of the magnon-atom system. A
ferromagnetic YIG sphere and a three-level �-type atomic ensemble
are installed in a microwave cavity. A control field �c and a mi-
crowave field �m are applied to resonantly drive the corresponding
transitions |e〉 ↔ |g2〉 and |g2〉 ↔ |g1〉, respectively. A microwave
quantized field mode a is coupled with the transition |g2〉 ↔ |g1〉
and, at the same time, with the magnon mode of a YIG sphere with
frequency ωm.

operator for the cavity field and magnon mode. ga and gm are
the coupling strength of interaction of the cavity field with
the atoms and the magnon. δ = ωg2g1 − ν and � = ωm − ν

are the detunings of the atomic transition frequency ωg2g1 and
the magnon frequency ωm from the cavity field frequency
ν. The damping of the cavity field Lcρ, the magnon mode
damping Lmρ, and the atomic decay between different atomic
states denoted by Laρ are described as follows:

Lcρ = κa

2
(2aρa† − ρa†a − a†aρ), (5)

Lmρ = κm

2
(2mρm† − ρm†m − m†mρ), (6)

Laρ =
2∑

j=1

γ j

2
(2σg j eρσeg j − σeeρ − ρσee)

+ γp

4
(2σpρσp − σpσpρ − ρσpσp)

+ γ12σg1eρσeg2 + γ21σg2eρσeg1 , (7)

wherein κa, κm, and γ j are the damping rates of the cav-
ity, the magnon, and the corresponding atomic transitions.
γp is the dephasing rate between the two lower levels and
σp = σg2g2 − σg1g1 . γ12 = γ21 = β

√
γ1γ2 represents the spon-

taneously generated coherence (SGC) effect [55] due to the
cross coupling between the two decay paths |e〉 → |g1〉 and

|e〉 → |g2〉, among which the parameter β = �μeg1 · �μeg2
| �μeg1 || �μeg2 | stands

for the alignment of the two dipole moments �μeg1 and �μeg2 .

The SGC tends to vanish, i.e., β = 0, when the two dipole
moments are orthogonal. However, the SGC effect is maximal
for β = ±1 corresponding to the cases that they are parallel
or antiparallel.

To describe clearly the physical mechanisms, we resort to
the dressed atomic picture by diagonalizing the Hamiltonian
Hd under the conditions of �c,m 	 γ j, κa,m, ga,m. The dressed
atomic states are expressed in terms of bare states as [71]

|0̃〉 = − sin θ |g1〉 + cos θ |e〉,
|1̃〉 = 1√

2
(cos θ |g1〉 − |g2〉 + sin θ |e〉),

|2̃〉 = 1√
2

(cos θ |g1〉 + |g2〉 + sin θ |e〉) (8)

with sin θ = �c

�̃
, cos θ = �m

�̃
, and �̃ = √

�2
c + �2

m. The
dressed states |0̃〉, |1̃〉, and |2̃〉 have their eigenvalues 0, −�̃,
and �̃, respectively. It means that the spacings between these
dressed states are identical. Now the interaction Hamiltonian
Hd becomes the diagonal form in the dressed-state picture

H̃d = �̃(σ2̃2̃ − σ1̃1̃ ), (9)

where σk̃l̃ = ∑N
μ=1 |k̃μ〉〈l̃μ|(k, l = 0, 1, 2) are the projection

operators (k = l) and the flip operators (k �= l) of the en-
semble in terms of the dressed states. By transforming the
bare atomic relaxation terms into the dressed-state picture and
neglecting the quantized modes temporarily, we can obtain
the steady-state populations of the dressed states Nk = 〈σk̃k̃〉,
which is given in Appendix.

It is assumed that the atomic system with �-type are
trapped into a small trapping volume [72]. In the follow-
ing numerical calculations, we always set γ1 = γ2 = γ and
�c,m 	 γ 	 γp, which is always justified in atomic or atom-
like systems [66,73]. Taking 87Rb atom as an example, the
atomic relaxation rate of γ1,2 are usually of the order MHz.
As proposed in Ref. [73], the Rabi frequencies of the driving
fields �c,m can reach the values of the order GHz even THz,
satisfying the conditions of �c,m 	 γ . Furthermore, the de-
phasing rate γp between the two ground states is of the order
KHz [74]. Therefore, without loss of generality, the other
parameters are assumed to be scaled in units of γ .

Figures 2(a) and 2(b) plot the normalized steady-state pop-
ulations of the dressed states N̄k = Nk/N versus the amplitude
ratio �c/�m for parallel and antiparallel dipole moments by
taking γp = 0, respectively. Clearly, for β = 1, the normalized
dressed-state population of N̄2 drops slowly from 1 while
N̄1 increases slightly from 0 with the increasing of the ratio
�c/�m. In the region of 0 < �c/�m � 0.5, it is seen that
all of the dressed-state populations almost keep unchanged.
Notably, the evolutions of N̄2 and N̄1 versus �c/�m are com-
pletely conversed for β = −1. In addition, it is found that
the variation trends for N̄0 are the same in the two cases.
Specifically, at �c/�m = 0.5 for β = 1, we have N̄2 = 0.983,
N̄1 = 0.003, and N̄0 = 0.014, implying that the atoms are
nearly trapped into the superposition state |2̃〉, as shown in
Fig. 2(a). This is the well-known coherent population trapping
(CPT) effect. Oppositely, the dressed-state population would
be trapped into the state |1̃〉 in the region of 0 < �c/�m � 0.5
for β = −1 as shown in Fig. 2(b). When γp = 0.01γ and
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FIG. 2. The steady-state normalized populations of the dressed
states N̄k versus the amplitude ratio �c/�m. Taking parameters
γ1,2 = γ and (a) γp = 0, β = 1; (b) γp = 0, β = −1; (c) γp = 0.01γ ,
β = 1; (d) γp = 0.01γ , β = −1.

β = 1, N̄2 first increases rapidly from 0.5 and then decreases
rapidly with the increasing of �c/�m, while N̄1 first decreases
rapidly from 0.5 and then increases slowly. The dressed-
state population would be nearly trapped into the state |2̃〉
in the region of 0.3 � �c/�m � 0.62 (N̄2 � 0.95), as shown
in Fig. 2(c). Likewise, the dressed-state population would be
trapped into the state |1̃〉 in the region of 0.3 � �c/�m � 0.62
for β = −1, as shown in Fig. 2(d). It is seen that the atomic
coherence induced by the strong driven fields and quantum
interference effects are combined to create the population
trapping and population conversion. In addition, it is noted
that the dephasing rate γp has an evident effect on modifying
the evolution of dressed-state population.

By expressing the interaction Hamiltonian (4) based on
dressed states, making a further unitary transformation to HI

with U = exp(−iH̃dt ), i.e., UHIU † and assuming |δ|, |δ ±
�̃|, |δ − 2�̃| 	 |δ + 2�̃|, the interaction Hamiltonian can be
written as

H̃I = ga cos θ

2
aσ2̃1̃ei(δ+2�̃)t + gmam†ei�t + H.c. (10)

Here we have tuned the magnon mode being resonant with
the second-order Rabi sideband, i.e., ωm = ωg2g1 + 2�̃ or
� = δ + 2�̃, but the cavity field being far detuned from the
second-order Rabi sideband. By assuming the cavity field de-
cays much more rapidly than the atom and the magnon mode,
we can adiabatically eliminate the cavity mode. Following the
technique as in Ref. [75], the effective interaction Hamiltonian
can be derived as

Heff = −iH̃I (t )
∫

dt ′H̃I (t ′). (11)

Discarding the rapidly oscillating terms, we obtain the effec-
tive interaction Hamiltonian

Heff = gcos θ

2
(mσ2̃1̃ + σ1̃2̃m†), (12)

where the effective coupling strength is defined as g = gagm

�
. It

is seen from the above effective Hamiltonian that the coherent
coupling between atoms and magnon mode, although without
direct interaction, is established effectively. This is based on
the simultaneous interactions of the magnon and the atoms
with the cavity field. The cavity field is tuned to be far detuned
from the atomic second-order Rabi sideband and the magnon
mode frequency, and then it can be adiabatically eliminated.
In short, the strong fields are used to establish the atomic co-
herence and the microwave cavity mode is to create effective
interaction of magnon and atoms via virtual photon exchange.

III. HYBRID MAGNON-ATOM ENTANGLEMENT
AND SQUEEZING

Now we are in a position to investigate the quantum effects
in the hybrid system. First, the maximal quantum interference
is considered when two atomic dipole moments �μeg1 and
�μeg2 are parallel, i.e., β = 1. At this time, it is clear that
the population of the dressed state |2̃〉 is greater than that
of the dressed state |1̃〉, i.e., N2 > N1. Under such condition,
we can adopt the Holstein-Primakoff approximation [76] to
describe the atomic ensemble as a bosonic field, i.e., c =
σ2̃1̃/

√
N2 − N1 satisfying [c, c†] = 1. By defining the parame-

ter ξ = gcos θ

2

√
N2 − N1, the system effective Hamiltonian can

be rewritten as

Heff = ξmc + ξc†m†, (13)

which represents the anti-JC-type interaction between the
magnon and atom, being similar to the parametric interaction.

To investigate the quantum correlations between atoms and
magnon modes, following the standard technique, we derive
a set of linearized quantum Langevin equations (QLEs) as
follows [77]:

ṁ = −κm

2
m − iξc† + √

κmFm(t ),
(14)

ċ = −�

2
c − iξm† +

√
�Fc(t ),

wherein � represents the decay rate of the spin down flip
operator, which is given in Appendix. It is noted that the
symbol δ is omitted from now on because the expectation
values of these operators are equal to zero in our schemes,
i.e., 〈Ô〉 = 0. The noise operators satisfy the nonzero corre-
lations 〈Fm(t )Fm† (t ′)〉 = (nth + 1)δ(t − t ′), 〈Fm† (t )Fm(t ′)〉 =
nthδ(t − t ′), 〈Fc† (t )Fc(t ′)〉 = N1

N2−N1
δ(t − t ′), 〈Fc(t )Fc† (t ′)〉 =

N2
N2−N1

δ(t − t ′). Here nth = (eh̄ωm/kBT − 1) is the mean magnon
number of thermal excitations at the magnon frequency ωm,
in which kB is the Boltzmann constant and T is the bath
temperature. It should be pointed out that in order to con-
sider the influence of temperature on the following mentioned
quantum effects, an absolute value rather than a relative value
of ωm should be given. As proposed in Ref. [45], the magnon
frequency is set as ωm/2π = 6.5 GHz, which is possible to
match the condition of ωm = ωg2g1 + 2�̃.

The above QLEs can be written in the quadrature
form, with quadrature fluctuations defined as X = (m +
m†)/

√
2, Y = i(m† − m)/

√
2, x = (c + c†)/

√
2, y = i(c† −

c)/
√

2 (similar definition for noises FX , FY , Fx, Fy), which are
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written as

Ẋ = −κm

2
X − ξy + √

κmFX (t ),

Ẏ = −κm

2
Y − ξx + √

κmFY (t ),

ẋ = −�

2
x − ξY +

√
�Fx(t ),

ẏ = −�

2
y − ξX +

√
�Fy(t ). (15)

They can be cast in the matrix form

u̇(t ) = Au(t ) + n(t ), (16)

where u(t ) = (X,Y, x, y)T , A is the drift matrix

A =

⎛⎜⎜⎜⎜⎝
− κm

2 0 0 −ξ

0 − κm
2 −ξ 0

0 −ξ −�
2 0

−ξ 0 0 −�
2

⎞⎟⎟⎟⎟⎠, (17)

and n(t ) = (
√

κmFX ,
√

κmFY ,
√

�Fx,
√

�Fy)T . The system is
stable only if all eigenvalues of the drift matrix A have nega-
tive real parts, which can be derived from the Routh-Hurwitz
criterion [78],

λ± = 1

4
[−(κm + �) ±

√
(κm + �)2 − 4(κm� − 4ξ 2)]. (18)

Since the dynamics of the system is linear and the input
noises are Gaussian, the dynamical map preserves the Gaus-
sian nature of any input state. The steady state of quantum
fluctuations of the system is therefore a continuous variable
two-mode Gaussian state, which is completely characterized
by an 4 × 4 covariance matrix (CM) V , defined as Vi j (t ) =
〈ui(t )u j (t ′) + u j (t ′)ui(t )〉/2. When the system is stable, t →
∞, the solution of V can be obtained by directly solving the
Lyapunov equation [79]

AV + VA = −D, (19)

where D is the diffuse matrix defined by Di jδ(t − t ′) =
〈ni(t )n j (t ′) + n j (t ′)ni(t )〉/2, given as

D =

⎛⎜⎜⎜⎜⎜⎝
κm

(
nth + 1

2

)
0 0 0

0 κm
(
nth + 1

2

)
0 0

0 0 �N+
2N−

0

0 0 0 �N+
2N−

⎞⎟⎟⎟⎟⎟⎠, (20)

wherein N± = N2 ± N1. Once the CM of the system is
achieved, one can then calculate the degree of the hybrid
magnon-atom entanglement.

Here, we use the logarithmic negativity EN to quantify
the degree of entanglement. This quantity is a rigorous en-
tanglement monotone, and is zero for separable states. For
two-mode Gaussian states in our system, it can be calculated
using the expression [80,81]

EN ≡ max[0,−ln2ṽ−], (21)

where ṽ− = min eig|i�2Ṽ | (with the symplectic matrix �2 =
⊕2

j=1iσy and the y-Pauli matrix σy) is the minimum sym-

FIG. 3. Density plot of (a) hybrid magnon-atom entanglement
EN and (b) hybrid magnon-atom squeezing �X 2

mc versus the am-
plitude ratio �c/�m and the coupling strength g/γ . The parameters
are chosen as γ1,2 = γ , γp = 0.01γ , β = 1, κm = 0.1γ . The shadow
region shows the unstable region, and the empty region in (b) repre-
sents the areas where squeezing is greater than 1.

plectic eigenvalue of the CM Ṽ = P1|2VP1|2, where P1|2 =
diag(1,−1, 1, 1) is the matrix that implements partial trans-
position at the level of CMs.

In addition, by defining a pair of quadrature operators as
Xmc = X + y and Pmc = Y − x, the two-mode squeezing oc-
curs if the following inequalities are satisfied [69,70]:

�X 2
mc < 1, or �P2

mc < 1. (22)

According to the QLEs, we can analytically derived the vari-
ance of two-mode squeezing �X 2

mc.

�X 2
mc = κm�(κm + � − 4|ξ |)

(κm + �)(κm� − 4|ξ |2)

N2

N2 − N1
. (23)

In Fig. 3, we show the density plot of the hybrid magnon-
atom entanglement EN and squeezing �X 2

mc versus the
amplitude ratio �c/�m and the coupling constant g/γ by
taking γ1,2 = γ , γp = 0.01γ , β = 1, κm = 0.1γ . In Fig. 4, we
give the density plot of EN and �X 2

mc versus γp/γ and �c/�m

by choosing g = 0.1γ . First, as shown in Fig. 3, it is seen
that the magnon-atom entanglement and squeezing happen
in some regions. It is reasonable that the effective coupling
parameter ξ is a key factor to determine the entanglement and
squeezing. To show this, we plot the evolution of ξ/γ and �/γ

as a function of �c/�m in Figs. 5(a) and 5(b), respectively.
We find that as γp = 0, the parameter ξ falls monotonously
with the increasing of �c/�m. While for γp �= 0, we see that
the parameter ξ increases first to a maximal value and then
decreases slowly. This would lead to the similar evolution of

FIG. 4. Density plot of (a) hybrid magnon-atom entanglement
EN and (b) hybrid magnon-atom squeezing �X 2

mc versus the ampli-
tude ratio �c/�m and the dephasing rate γp/γ . Taking g = 0.1γ and
the other parameters are the same as in Fig. 3. The shadow and empty
regions represent the same meanings as in Fig. 3.
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FIG. 5. (a) The effective coupling constant ξ/γ and (b) decay
rate �/γ as a function of the amplitude ratio �c/�m for γp = 0
(solid line), γp = 0.01γ (dashed line), γp = 0.02γ (dotted line). The
parameters are taken as γ1,2 = γ , β = 1, g = 5γ .

the entanglement and squeezing, as shown in Fig. 3. More-
over, the entanglement and squeezing can be achieved in the
weak coupling cases, and the degrees of entanglement and
squeezing are enhanced with the increasing of coupling con-
stant g. In the present scheme, the two-mode entanglement and
squeezing are strongly dependent on the dressed-state popu-
lation difference N2 − N1, which is essentially determined by
the quantum interference β and the amplitude ratio �c/�m.
Once the coherent coupling of magnon and atom is estab-
lished by virtual photon exchange, the hybrid magnon-atom
entanglement and squeezing are obtainable under appropriate
conditions.

Furthermore, as shown in Fig. 4, the dephasing rate γp

between the two ground states |g1〉 and |g2〉 has a remark-
able influence on the hybrid atom-magnon entanglement and
squeezing. As the increase of γp, the entanglement EN and
the squeezing �X 2

mc disappear gradually, which can be at-
tributed to the fact that the CPT effect is spoiled by the
dephasing rate, which can be seen in Figs. 2(c) and 2(d).
Nevertheless, the increase of γp is beneficial to the stability
of the system. In addition, the magnon-atom entanglement
and squeezing are robust against environmental temperature
for different dephasing rates, as shown in Fig. 6. It can be
seen that the entanglement and squeezing will disappear when
temperature exceeds about 450 mK for the case of γp = 0.
With the increase of the dephasing rate, the temperature toler-
ance of entanglement and squeezing will decrease. However,
the entanglement and squeezing are relatively stable in the
temperature range of 0–100 mk.

FIG. 6. (a) EN and (b) �X 2
mc versus temperature T for γp =

0, g = 0.1γ , �c/�m = 0.23 (solid line), γp = 0.01γ , g = 0.1γ ,
�c/�m = 0.2 (dotted line), γp = 0.02γ , g = 0.12γ , �c/�m = 0.2
(dashed line). Taking ωm/2π = 6.5 GHz and the other parameters
are the same as in Fig. 3.

IV. CONVENTIONAL AND UNCONVENTIONAL
MAGNON BLOCKADE

Next, we would like to turn to the other case of β = −1. In
this case, we find that the population of the dressed state |1̃〉 is
far greater than that of the dressed state |2̃〉, i.e., N1 	 N2, in
the region of 0.3 � �c/�m � 0.62. In this case, the atoms are
almost trapped into the superposition state |1̃〉. Similarly, we
can define the spin down flip operator as c̃ = σ1̃2̃/

√
N1 − N2.

Then the effective Hamiltonian can be rewritten as

H̃eff = ξ̃mc̃† + ξ̃ c̃m†, (24)

represents the JC-type interaction [35] with ξ̃ =
gcos θ

2

√
N1 − N2. This motivates us to investigate the quantum

blockade effect in present scheme.
For the observation of magnon blockade effect, we

consider a weak probe field with the Hamiltonian Hd =
�d (m†e−iωd t + meiωd t ) (with frequency ωd and strength �d )
applied into the YIG sphere after returning to the origi-
nal rotating frame. The effective Hamiltonian of this hybrid
magnon-atom system in the appropriate rotating frame can be
written as

H̃eff = �d m†m + �d c̃†c̃ + ξ̃mc̃† + ξ̃ c̃m†

+�d (m† + m), (25)

where �d = ωm − ωd is the magnon frequency from the driv-
ing field frequency.

Correspondingly, the master equation could be obtained by
considering the dissipation of magnon and the decay rate of
dressed atoms

dρ

dt
= −i[H̃eff, ρ] + κm

2
(nth + 1)L[m]

+ κm

2
nthL[m†] + �

2
L[c̃], (26)

wherein L[o]ρ = 2oρo† − o†oρ − ρo†o represents the Lind-
blad terms accounting for the environment losses.

As is well known, the magnon blockade effect is a typical
quantum effect, which is a counterpart of Coulomb block-
ade and photon blockade [37,38]. For instance, the photon
blockade describes such a phenomenon that the absorption
of a photon by an arbitrary optical device will block the
subsequent photon. Similarly, the magnon blockade effect
can be described by evaluating the equal-time second-order
correlation function [69],

g(2)(0) = 〈m†m†mm〉ss

〈m†m〉2
ss

, (27)

in which the symbol 〈· · · 〉ss represents the expectation value
and g(2)(0) denotes the equal-time second-order correlation
for magnon at steady state. For g(2)(0) > 1, the correla-
tion function illustrates that the super-Poisson distribution of
magnon numbers is present, corresponding to magnon bunch-
ing. Otherwise, the magnon antibunching being related to
sub-Poisson statistics is generated when g(2)(0) < 1, implying
the appearance of nonclassical effects. Especially, the perfect
magnon blockade is obtained at g(2)(0) = 0, which means
the high-quality single-magnon source is possible to detect
theoretically.
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FIG. 7. (a) Energy-level diagram of the dressed states of the
coupled system. Assuming the largest magnon excitation number n is
equal to 2. (b) Energy-level diagram of the bare states of the system
in the low-excitation subspace. The destructive interference between
transition paths prevents the two-magnon excitation.

In general, the numerical results of the equal-time second-
order correlation function could be easily derived from
Eq. (26) by the way of QUTIP [82]. However, herein we
would like to give an analytical result based on the pertur-
bation theory. As usual, under the condition of weak driving
field �d � �d , ξ̃ , the reduced Hamiltonian (25) can be fur-
ther diagonalized in the Hilbert space |n, 1̃〉, |n − 1, 2̃〉, where
|n〉(n = 0, 1, 2, . . .) denotes the number state of magnon. The
corresponding eigenenergies are then given by

En,± = n�d ± ξ̃
√

n. (28)

It is easy to see that the energy splitting between states |n,+〉
and |n,−〉 is mainly determined by the following factors: the
effective coherent coupling constant g = gagm/�, the ampli-
tude ratio �c/�m and the magnon number n. Energy-level
diagram of the dressed states of the coupled system is shown
in Fig. 7(a). Accordingly, the magnon statistics property in
our scheme can be conveniently controlled by the relative
amplitude of the driving fields �c/�m.

To obtain the analytical result of second-order correlation
function, one should solve the non-Hermitian Schrödinger
equation by phenomenologically adding the dissipation rates
of the system into the Hamiltonian H̃eff, i.e.,

H ′
non = H̃eff − i

κm

2
m†m − i

�

2
c̃†c̃, (29)

wherein the parameters κm and � are the dissipation rates of
the magnon and atomic spin, respectively. By substituting the
non-Hermitian Hamiltonian into

i
∂|ψ (t )

∂t
= H ′

non|ψ (t ), (30)

where |ψ (t )〉 = ∑2
n=0 Cn,1̃|n, 1̃〉 + ∑1

m=0 Cm,2̃|m, 2̃〉. The pa-
rameters Cn,1̃ and Cm,2̃ represent the probability amplitudes
for the states |n, 1̃〉, |m, 2̃〉, respectively. In the weak driving
cases, the system would be confined into a low-excitation
subspace. This leads to a fact that the magnon number state
can be truncated into a two-magnon excitation subspace, thus

the set of coupled equations of Cn,1̃ and Cm,2̃ is derived as

0 = �̃aC0,2̃ + ξ̃C1,1̃ + �dC1,2̃,

0 = �̃mC1,1̃ + ξ̃C0,2̃ + �dC0,1̃ +
√

2�dC2,1̃,

0 = (�̃a + �̃m)C1,2̃ + �dC0,2̃ +
√

2ξ̃C2,1̃,

0 =
√

2ξ̃C1,2̃ + 2�̃mC2,1̃ +
√

2�dC1,1̃ (31)

with �̃a = �d − i�/2, �̃m = �d − iκm/2. Under the fact of
C0,1̃ � 1 	 {C1,1̃,C0,2̃} 	 {C2,1̃,C1,2̃}, one can give a concise
expression for the steady-state second-order correlation func-
tion

g(2)(0) � 2|C2,1̃|2
|C1,1̃|4

. (32)

Finally, the analytical results of g(2)(0) are given by

g(2)(0) � |ξ̃ 2 − �̃a�̃m|2|ξ̃ 2 + �̃a(�̃a + �̃m)|2

|�̃a|4|ξ̃ 2 − �̃m(�̃a + �̃m)|2
. (33)

Obviously, g(2)(0) can take minimal values and the ideal
magnon blockade may happen when |ξ̃ 2 − �̃a�̃m| � 0 or
ξ̃ 2 + �̃a(�̃a + �̃m) = 0. For the first case, under the strong
coupling limit, ξ̃ 	 {κm, �}, one can get the optimal condi-
tions for the strong magnon antibunching effects as

�d �= ±ξ̃ = ±gcos θ

2

√
N1 − N2. (34)

It is worthwhile to point out that the optimal conditions are
exactly consistent with the energy splitting of the first ex-
cited states |1,±〉 in Eq. (28). This implies that the magnon
mode is resonant with the transition from state |0, 1̃〉 to the
states |1,±〉, but is far detuned with the second transition
from |1,+〉(|1,−〉) to |2,+〉(|2,−〉). Therefore, as shown
in Fig. 7(a), the first magnon is absorbed followed by the
inhibition of the successive one, which is the typical conven-
tional magnon blockade (CMB) effects. Essentially, the strong
energy splitting is created by the strong coupling ξ̃ between
magnon and atom with indirect interactions. Being different
from previous schemes [44,45,48], the coupling constant ξ̃

can be coherently controlled by the relative amplitude of driv-
ing fields. In fact, the parameter ξ̃ are equal to ξ for the two
different cases of β = ±1. As shown in Fig. 5, it is obvious
that the condition of ξ̃ 	 {κm, �} can be satisfied in the region
of 0.3 � �c/�m � 0.62.

In Fig. 8(a), logarithmic of the equal-time second-order
correlation function log10g(2)(0) is plotted as a function of
coupling constant g and amplitude ratio �c/�m under the con-
dition of �d ≈ ξ̃ . To guarantee the validity for calculation of
correlation function via perturbation theory, we only select the
reliable region of 0.3 � �c/�m � 0.62, in which we always
have N̄1 − N̄2 ≈ 1, as shown in Fig. 2(d). Figure 8(a) shows
that the strong magnon antibunching g(2)(0) is generated in
the nearly whole region. The larger coupling constant g is,
the smaller the value of g(2)(0) is. It demonstrates that the
ideal CMB is possible to happen within the strong and ultra-
strong coupling regime. Besides, the strong magnon blockade
becomes weak as the increasing of �c/�m, which can be ob-
served more clearly from a two-dimensional curve in Fig. 8(b)
by choosing different amplitude ratios �c/�m = 0.3 (solid
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FIG. 8. (a) Logarithmic plot of the equal-time second-order cor-
relation function log10g(2)(0) as a function of the coupling strength
g/γ and the amplitude ratio �c/�m. (b) Logarithmic plot of the
equal-time second-order correlation function log10g(2)(0) as a func-
tion of g/γ for different �c/�m. Taking parameters γ1,2 = γ , β =
−1, κm = 0.1γ , �d = 0.01γ , γp = 0.01γ , �d = ξ̃ .

line), �c/�m = 0.5 (dashed line), �c/�m = 0.6 (dotted line).
This can be attributed to the fact that the coupling strength ξ̃

is reduced with the increasing of �c/�m between 0.3 and 0.6,
as shown in Fig. 5.

On the other hand, if ξ̃ 2 + �̃a(�̃a + �̃m) = 0 has a non-
trivial solution, we can obtain another condition for the
optimal magnon antibunching as

�d � 0, gopt = sec θ

√
�(κm + �)

N1 − N2
. (35)

In Fig. 9(a), we plot the logarithmic of log10g(2)(0) as a
function of g and amplitude ratio �c/�m by setting �d = 0.
The parameters are the same as those in Fig. 8. Clearly, the
magnon blockade only appears at some specific positions by
appropriately choosing g and �c/�m, which is depicted by the
white dashed line in Fig. 9(a). Similarly, in Fig. 9(b) we also
plot the evolution of log10g(2)(0) versus g by choosing differ-
ent amplitude ratios �c/�m = 0.3 (solid line), �c/�m = 0.5
(dashed line), �c/�m = 0.6 (dotted line). It can be seen that
the optimal value of g is gopt = 0.246γ , gopt = 0.55γ , gopt =
0.75γ , respectively. In fact, based on Eq. (35), one can deduce
directly that as the amplitude ratio increases, the population
difference of N1 − N2 is reduced, leading to the larger optimal
values of gopt. Opposite to the first case, the magnon blockade

FIG. 9. (a) Logarithmic plot of the equal-time second-order cor-
relation function log10g(2)(0) as a function of the coupling strength
g/γ and the amplitude ratio �c/�m. (b) Logarithmic plot of the
equal-time second-order correlation function log10g(2)(0) as a func-
tion of g/γ for different �c/�m. Setting �d = 0, and the other
parameters are the same as in Fig. 8. The white dashed line denotes
the optimal condition described by Eq. (35).

FIG. 10. Logarithmic plot of the equal-time second-order corre-
lation function log10g(2)(0) as a function of �d/γ for γp = 0 (solid
line), γp = 0.01γ (dashed line), γp = 0.02γ (dotted line). (a) g = 5γ

and (b) g = 0.223γ . Taking �c/�m = 0.3γ and the other parameters
are the same as in Fig. 8.

is generated in the weak coupling region (g < γ ). The internal
mechanism is reasonably quite different from the first case.
As shown in Fig. 7(b), there exist two different pathways to
excite the magnon into the state |2, 1̃〉, i.e., |0, 1̃〉 → |1, 1̃〉 →
|2, 1̃〉 and |0, 1̃〉 → |1, 1̃〉 � |0, 2̃〉 → |1, 2̃〉 � |2, 1̃〉. It is the
very quantum interference mechanism that gives rise to the
occurrence of magnon blockade effect, which is named as
unconventional magnon blockade (UCMB).

Moreover, it is of interest to discuss the effects of the other
parameters on the CMB and UCMB. In the first of place, in
Fig. 10, we plot the evolution of log10g(2)(0) as a function of
�d/γ by choosing different dephasing rate of γp = 0 (solid
line), γp = 0.01γ (dashed line), γp = 0.02γ (dotted line).
The coupling constant is chosen as g = 5γ in Fig. 10(a) and
g = 0.223γ in Fig. 10(b). The other parameters are the same
as those in Fig. 8. When the dephasing rate is increased from
γp = 0 to γp = 0.02γ , the optimal CMB appears at different
�d but the UCMB is always generated at �d = 0. Meanwhile,
the increase of the dephasing rate leads to the reduction of
both CMB and UCMB. Physically, it is well known that co-
herent population trapping would be spoiled by the dephasing
rate between the lower states of atoms, causing the reduction
of magnon blockade. Furthermore, the dephasing rate has a
more remarkable effect on UCMB. This is because the de-
phasing rate γp is detrimental to the quantum interference, as
shown in Figs. 2(c) and 2(d), resulting in the obvious reduc-
tion of UCMB, which is originated from quantum interference
between different pathways. In addition, we also concern on
the influence of the dissipation rate of magnon κm on CMB
and UCMB. Likewise, the increase of κm also leads to the
reduction of both CMB and UCMB, as shown in Fig. 11. On
the other hand, we find that the CMB and UCMB are robust
against the experimental working temperature, which can be
seen in Fig. 12. It should be noted that Fig. 12 is plotted by
QUTIP [82]. For this reason, the numerical results shown in
Fig. 12 are not completely consistent with the results in Fig. 10
based on the analytical method.

Finally, we would like to discuss the feasibility of the
present scheme in experiment. Taking 87Rb atoms as a po-
tential candidate, the two ground states |g1,2〉 are Zeeman
sublevels of the same hyperfine state. As shown in Fig. 1, both
the atoms and the YIG sphere are in the yz plane, and at the
wave crest of the microwave field. The atoms are assumed to
be trapped in a small volume [72]. A semiconductor laser can
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FIG. 11. Logarithmic plot of the equal-time second-order cor-
relation function log10g(2)(0) as a function of �d/γ for κm = 0.1γ

(solid line), κm = 0.3γ (dashed line), κm = 0.5γ (dotted line). Tak-
ing γp = 0.01γ and the other parameters are the same as in Fig. 10.

supply the control field, which couples to the transition con-
necting the state |g2〉 and excited state |e〉. Meanwhile, another
resonant microwave field generated by a horn antennas [83]
couples to transition |g1〉 ↔ |g2〉 and travels in the x direction
perpendicular to the CPWR. A coplanar waveguide resonator
(CPWR) [72,84] can apply the microwave quantum field,
which is simultaneously coupled with the atomic transition
|g1〉 ↔ |g2〉 and magnon mode with large detuning. In addi-
tion, similar to the present scheme, the quantum interference
effects have been proposed in a three-state � system in which
two Zeeman substates of the same hyperfine state constitute
the two lower states [60].

On the other hand, it is worthwhile to note how to gen-
erate SGC in atomic or atomlike systems. Theoretically, the
quantum interference effects are considered in the atomic
system with near degenerate levels, i.e., the level space of the
lower states satisfies the approximate condition of ωg1g2 ∼ γ

and with nonorthogonal dipole moments �μeg1 and �μeg2 . The
strength of the quantum interference is measured by the pa-
rameter β. In practice, it is a great challenge to find realistic
atom with nonorthogonal dipole moments and quantum states
close in energy [85]. In earlier literature, the experimental
control of quantum interference has been observed in sodium
dimers [86] but a conflicting result is reported later [87].
Fortunately, several theoretical and experimental approaches
to overcome this restriction have been proposed successively.
For instance, Agarwal et al. displayed that the anisotropy
of the vacuum of the electromagnetic field can give rise to
the generation of SGC effects without the requirement of
nonorthogonal dipole moments [88]. Another different ap-

FIG. 12. Logarithmic plot of the equal-time second-order cor-
relation function log10g(2)(0) versus temperature T for different
dephasing rates. Taking ωm/2π = 6.5 GHz and the other parameters
are the same as in Fig. 10.

proach to verify the presence of spontaneous coherences is
to use artificial atomic systems. It is reported that in charged
GaAs quantum dots, the Raman spin coherence in the quan-
tum beats is caused by the SGC effects with a three-level
�-type configuration [66]. Kiffner et al. demonstrated that the
conditions for SGC are indeed satisfied in a real four-level
system in J = 1/2 ↔ J = 1/2 configuration [89]. Further-
more, it turns out that decay-induced cross couplings can
be engineered via a suitable incoherent pumping [90]. Both
three-level V and � systems may exhibit coherence effects
even if they are driven with incoherent fields only. In recent
years, Brumer et al. pay continuous interest to investigate
the generation of noise-induced quantum coherences beyond
the secular approximation and an experimental proposal is
suggested [67,68]. In a word, the SGC effects can be verified
with various methods and can be observed in experiment.

Before ending this section, we would like to emphasis the
main results found in the present scheme. First, by utilizing
the quantum interference in spontaneous generation and the
atomic coherence induced by the strong fields, we propose
a scheme to realize the switching of anti-JC interaction and
JC interaction, resulting in the generation of entanglement
and blockade, respectively. Second, we find that the coherent
coupling between atoms and magnon is established via virtual
photon exchange when the cavity field is tuned to be far
detuned with the atomic transition and magnons [34], simul-
taneously. The quantum entanglement and magnon blockade
can be conveniently controlled by the relative intensity of the
driven fields. Third, we consider the effect of dephasing rate
on entanglement and blockade, showing that these quantum
effects are still generated when the atomic decoherence rate
is introduced [91]. In addition, it is noted that our results are
also robust against the magnon dissipation rate and thermal
environment noise, relatively.

V. CONCLUSION

In conclusion, we suggest a scheme to realize the magnon-
atom entanglement and magnon blockade based on the
quantum interference together with atomic coherence in a
hybrid magnon-cavity-atom system. By placing a three-level
�-type atomic ensemble and a YIG sphere into a microwave
cavity, when two strong fields are applied to resonantly
drive the atomic system, it is demonstrated that the coher-
ent coupling between the atoms and magnon without direct
interaction is established in dressed-state picture through vir-
tual photon exchange. Of great interest, the anti-JC-type and
JC-type interactions are alternatively formed when the two
dipole moments of atoms are parallel or antiparallel, which
leads to the appearance of hybrid magnon-atom entanglement
and magnon blockade. We show that the good entanglement
and magnon blockade are strongly dependent on the relative
amplitude of the two strong driving fields. This provides an ef-
fective way to control quantum effects and may find potential
applications in quantum information processing.
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APPENDIX: DRESSED ATOMIC POPULATIONS

The atomic damping term in Eq. (7) is written in terms of
the dressed atomic states in an explicit form

Laρ̃ =
j �=k∑

j,k=0̃,1̃,2̃

(
L jk

k j ρ̃ + Lph
k j ρ̃

) +
j �=k∑

j,k=1̃,2̃

Lin
k j ρ̃, (A1)

where

L jk
k j ρ̃ = γ jk

2
(2σ jk ρ̃σk j − σk jσ jk ρ̃ − ρ̃σk jσ jk ),

Lph
k j ρ̃ = γ

ph
k j

4

(
2σ k j

p ρ̃σ k j
p − σ k j

p σ k j
p ρ̃ − ρ̃σ k j

p σ k j
p

)
,

Lin
k j ρ̃ = γ c

k j (σ j0ρ̃σk0 + σ0k ρ̃σ0 j ) (A2)

with σ
k j
p = σkk − σ j j . The parameters in the above expres-

sions are

γ0̃2̃ = γ0̃1̃ = γ1 sin4 θ

2
+ γp sin2 2θ

16
,

γ2̃0̃ = γ1 cos4 θ

2
+ γ2 cos2 θ

2
+ γp sin2 2θ

16
+ γ12 cos3 θ,

γ1̃0̃ = γ1 cos4 θ

2
+ γ2 cos2 θ

2
+ γp sin2 2θ

16
− γ12 cos3 θ,

γ2̃1̃ = γ1 sin2 2θ

16
+ γ2 sin2 θ

4
+ γp(cos2 θ + 1)2

8

+γ12 sin2 θ cos θ

2
,

γ1̃2̃ = γ1 sin2 2θ

16
+ γ2 sin2 θ

4

+ γp(cos2 θ + 1)2

8
− γ12 sin2 θ cos θ

2
,

γ
ph
0̃2̃

= γ1 sin2 2θ

4
+ γp sin4 θ

2
+ γ12 sin2 θ cos θ,

γ
ph
0̃1̃

= γ1 sin2 2θ

4
+ γp sin4 θ

2
− γ12 sin2 θ cos θ,

γ
ph
2̃1̃

= −γ1 sin2 2θ

8
+ γ2 sin2 θ

2
− γp sin4 θ

4
,

γ c
2̃1̃ = −γ1 sin2 2θ

8
+ γp sin2 2θ

16
+ γ12 sin2 θ cos θ

2
,

γ c
1̃2̃ = −γ1 sin2 2θ

8
+ γp sin2 2θ

16
− γ12 sin2 θ cos θ

2
. (A3)

Neglecting the quantized modes temporarily, we can obtain
the steady-state populations of the dressed states

N0 = N
γ0̃1̃γ1̃2̃ + (γ0̃1̃ + γ2̃1̃ )γ0̃2̃

D
,

N1 = N
γ1̃2̃γ2̃0̃ + (γ0̃2̃ + γ1̃2̃ )γ1̃0̃

D
, (A4)

N2 = N
γ1̃0̃γ2̃1̃ + (γ0̃1̃ + γ2̃1̃ )γ2̃0̃

D
,

where N0, N1, N2 represent the steady-state populations of
the dressed states, and D = γ1̃0̃ (γ1̃2̃ + γ0̃2̃ + γ2̃1̃ ) + γ1̃2̃ (γ0̃1̃ +
γ2̃0̃ ) + (γ0̃1̃ + γ2̃1̃ )(γ0̃2̃ + γ2̃0̃ ). The decay rate of the spin
down flip operator can be derived as

� = 2γ
ph
2̃1̃

+ 1
2

(
γ

ph
0̃2̃

+ γ
ph
0̃1̃

) + γ2̃1̃ + γ1̃2̃ + γ0̃2̃ + γ0̃1̃. (A5)
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