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Information extraction in photon-counting experiments
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We demonstrate a comparison of different multiplexing architectures based on quantum detector tomography.
Using the purity of their measurement outcomes, we gain insight into the photon-number-resolving ability of the
devices. Further, we calculate the information each measurement outcome can extract from a Hilbert space with
given dimension. Our work confirms that more multiplexing outcomes enable higher photon-number-resolving
ability; however, the splitting between those outcomes must be optimized as well.
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I. INTRODUCTION

The ability to count photons is crucial for quantum optical
experiments and technologies, such as quantum metrology
[1], quantum information [2], and single-photon imaging [3].
Many types of single-photon detectors have been demon-
strated, all with certain advantages and disadvantages. The
quality of these detectors can be quantified by many figures of
merit, such as efficiency, dark counts, or timing resolution
[4]. However, the ability of a detector to resolve the num-
ber of photons is a crucial quantifier in photon-counting
experiments.

Resolving the photon number can be fully achieved using,
for example, superconducting transition-edge sensors (TESs)
[5]. For monochromatic light, a TES has full photon-number-
resolving ability, which means that a specific photon number
maps to a specific output signal. Some information about
photon number can be obtained using click detectors such as
superconducting nanowire single-photon detectors (SNSPDs)
or single-photon avalanche diodes in combination with mul-
tiplexing schemes. However, multiplexing can only achieve
quasi-photon-number resolution, as some information is lost
due to the nonzero probability of multiple photons causing
the same outcome [6].

Many different multiplexing architectures have been
shown. Some of these schemes rely on equally splitting the
incoming light onto the detectors, such as the conventional
spatial [7] and temporal [8,9] multiplexing trees or detector
arrays [10]. Others make use of logarithmic multiplexing such
as the time-loop detectors [11] or integrated in-line detector
arrays [12].

Multiplexed detectors can be parameterized by figures of
merit such as efficiency, dark counts, and crosstalk [4,13].
Although these quantities provide intuition of the quality of
the detectors, they do not quantify how these figures of merit
combine to determine the utility of the devices for certain
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tasks. The photon-number-resolving ability of the device is
one important example which is not directly described by
these figures of merit.

To overcome this limitation, van Enk introduced the con-
cept of measurement outcome purity [14], which can be
directly linked to the ability of a detector architecture to re-
solve photon number. A related question arises: How much
information can be extracted by a measurement outcome?
In this paper we experimentally investigate measurement
outcome purity and information extraction for a variety of
different detectors to quantify and compare their photon-
number-resolving ability.

II. MEASUREMENT OUTCOME PURITY

The specific detector architectures we consider are shown
in Figs. 1(a)–1(d). In order to compare the different devices in
a common framework, we use quantum detector tomography
[16], which yields a quantum mechanical description of a
detector under test (DUT) in terms of its so-called positive-
operator-valued measures (POVMs). The set of POVMs {πn}
fully describes the detector with different outcomes n. The
operators are non-negative πn > 0 with

∑
n πn = 1.

An important property of a general detection scheme is
that repeated measurements do not necessarily yield the same
outcome, i.e., a measurement may not necessarily project onto
pure states. van Enk [14] showed that it is thus possible to
define a measurement outcome purity of the POVM corre-
sponding to outcome n, which is analogous to the purity of
a quantum state, as

Pur(πn) = Tr[(πn)2]

[Tr(πn)]2
. (1)

The purity is upper bounded by unity, as a perfect measure-
ment would be a one-to-one mapping of one input state to
one outcome. The lower bound is given by the Hilbert space
dimension M as 1

M � Pur(πn) � 1. A nonpure POVM means
that multiple orthogonal input states contribute to the same
outcome with significant probabilities [14]. It is possible to es-
timate the number of orthogonal input states which contribute
to outcome n by the inverse of the purity Pur(πn)−1. This
directly follows from the lower bound of the purity, where the
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FIG. 1. Schematic representations of (a) a commercially avail-
able four-pixel (2×2) SNSPD array, (b) a four-bin time-multiplexed
detector (eight bins can be achieved with an additional fiber loop
of length 2τ ′ and beam splitter), (c) a four-bin spatially multiplexed
detector, and (d) a ten-bin time-multiplexed loop detector with out-
coupling R, bin separation τ , and loop efficiency ηloop, recently
shown in [15].

minimal purity coincides with a contribution from every input
state in the Hilbert space [17].

The investigated multiplexing schemes [shown in
Figs. 1(a)–1(d)] have different dynamic ranges, which
means they are sensitive to different numbers of photons.
This translates to different Hilbert space dimensions M in
the POVM description. Above a certain photon number,
the POVMs of a detector will not change. This can directly
be seen in the outcome statistics, as with increasing mean
photon numbers, the detector will only respond with the
largest outcome. Therefore, the POVM corresponding to that
outcome will be saturated (occur with unit probability), while
the other POVMs converge to zero probability. This can be
seen in Fig. 2, which shows the POVM elements for the
four-bin time-multiplexed detector (TMD) as an example.

In order to compare the detector architectures, we use a
fixed Hilbert space dimension of M = 5000 without loss of
generality, while assuming that the outcome statistics will not
change after saturation of the largest outcome. We use Eq. (1)
to calculate the purities of the detectors, which are shown in
Fig. 3. It can be seen that the detectors with four bins have
comparable purities. This is expected, as the choice in the

FIG. 2. Diagonal elements of the experimentally reconstructed
POVM operators in the photon-number basis for the four-bin time-
multiplexed detector, as an example to give a sense of the narrowness
of outcomes and show saturation of the largest outcome.

FIG. 3. Purities Pur(πn) of the five multiplexed detectors per
outcome n. Different colors and markers correspond to experimental
data of the different multiplexing schemes, as labeled in the legend.
Dashed lines correspond to modeled data (see the text for details).

degree of freedom of multiplexing (in space or time) should
not provide any significant advantages with regard to photon-
number resolution. The small differences can be explained
by slightly different performance metrics of the detectors
(summarized in Table I), with the efficiency being the main
contribution, as the purity suffers most for decreasing effi-
ciencies [17]. Figure 3 also shows that the outcome purities of
the eight-bin TMD are higher compared to the four-bin TMD.
This makes sense, since fewer input states will contribute
to each individual outcome, as more outcomes are available
in the eight-bin TMD. Narrower POVM distributions imply
higher purities.

We verified this behavior by implementing a model of
multiplexed click detectors by Miatto et al. [18]. We modeled
the equal splitting devices (four-pixel, four-bin, and eight-bin
TMD and four-bin spatial) by solely their efficiencies (i.e.,
neglecting noise), which we extracted from the experimental
data. The ten-bin loop detector model is based on previous
work [19].

The measurement outcome purities closely agree with the
experimental data, as can be seen by the dashed lines with
corresponding color in Fig. 3. However, having more available
outcomes does not directly imply higher outcome purities, as
can be seen by the purities of the ten-bin time-multiplexed
loop detector in Fig. 3. This is due to the different multiplex-
ing scheme. The device is based on logarithmic multiplexing,

TABLE I. Figures of merit (efficiency η, dark-count probability
pdark, and crosstalk probability pxtalk) of the five different multiplexed
detectors, obtained from the POVMs as in Ref. [21]. The errors are
based on assuming 5% uncertainty in the amplitudes of the coherent
states.

Detector η (%) pdark (%) pxtalk (%)

four-pixel 63 ± 4 (5.9 ± 1.6)×10−4 14 ± 1
four-bin spatial 61 ± 4 (5.4 ± 1.8)×10−4 3.6 ± 0.1
four-bin TMD 72 ± 4 (1.6 ± 0.1)×10−4 <2×10−4

eight-bin TMD 69 ± 4 <10−5 (4.3 ± 1.1)×10−5

ten-bin loop 44 ± 3 <4.1×10−5 (4.6 ± 2.8)×10−4
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while the other architectures rely on equal splitting. The ten-
bin loop detector responds logarithmically to the number of
photons, which results in broad POVM distributions (many
orthogonal input states contribute to a given outcome) and
thus in poor purities.

III. INFORMATION EXTRACTION

The purity of a photon-counting detection outcome can be
intuitively regarded as the photon-number-resolving ability
of the device or the ability of the detector to distinguish
between different photon-number states. A related concept is
information extraction, namely, how much information about
the photon number can be obtained given a specific outcome.
Here van Enk [14] introduced the entropy

H (n) = −
∑

i

p(i|n) log2[p(i|n)], (2)

which quantifies the information (in bits) about the photon
number i that is still missing after having obtained the out-
come n. This quantity uses the conditional probability p(i|n),
which describes the probability of having a photon number
equal to i given a measurement outcome n.

We are able to obtain the probability p(i|n), utilizing the
POVMs of the detectors. A single element of the POVM πn is
the conditional probability p(n|i) of n clicks occurring given i
incident photons. Using Bayes’ theorem

p(i|n) = p(n|i)p(i)

p(n)
= p(n|i) ∑

i,n p(n|i)
M

∑
i p(n|i) , (3)

it is possible to obtain the probability p(i|n) directly from the
POVMs. Here we assume a flat prior probability p(i) = 1

M ,
meaning that all input states are equally likely.

From Eq. (2) we can calculate the information that can be
extracted by a certain outcome n about the photon number i as

H (n)
extr = Htotal(M ) − H (n), (4)

where Htotal(M ) = − log2( 1
M ) = log2(M ) is the total informa-

tion contained in the Hilbert space of dimension M. Using
Eq. (4), we calculate the amount of information that can be
extracted from the Hilbert space of size M = 5000. The total
information available is calculated to Htotal(5000) = 12.3 bits,
which is shown by the black dashed line in Fig. 4. Having sim-
ilar performance metrics and outcome purities, the detectors
with four bins extract the same amount of information from
the Hilbert space. Figure 4 also shows that the outcomes of
the eight-bin TMD extract the most information. This directly
follows from the argument that more available outcomes lead
to narrower POVMs and make each outcome more specific.
If a narrow outcome is observed, more knowledge about the
photon number can be extracted, as fewer photon-number
states (or orthogonal input states) contribute to this outcome.
This also explains the sudden drop in the extracted informa-
tion for the largest outcome of the detectors based on equal
splitting. These detectors have a low dynamic range (roughly
M ≈ 100) compared to the maximum Hilbert space of size
M = 5000. This means that obtaining the largest outcome
reveals very little about the possible input photon number, due
to the saturation of the outcome (compare Fig. 2).

FIG. 4. Extracted information H (n)
extr in bits of the five multiplexed

detectors per outcome n. The total available information in the
Hilbert space of dimension M = 5000 is shown by the black dashed
line. Different colors and markers correspond to experimental data of
the different multiplexing schemes, as labeled in the legend. Dashed
lines correspond to modeled data (see the text for details).

The outcomes of the ten-bin loop detector, based on log-
arithmic multiplexing, span the Hilbert space with broad
POVM distributions. This leads to less information extracted
per outcome. However, even the largest outcome is able to ex-
tract some information from the total available Hilbert space,
even for large input states with hundreds to thousands of pho-
tons. From this, it is clear that solely increasing the number
of multiplexing outcomes will not yield better photon-number
resolution. Optimizing the photon-number-resolving ability of
a device requires optimizing the splitting between multiplexed
detectors [17].

IV. EXPERIMENTAL METHODS

Calculating the purity and information extraction relies
on a tomographic reconstruction of each detector. We sum-
marize the methods here; more detail can be found in
Refs. [16,19–21].

In order to reconstruct the POVMs, the detector un-
der test needs to be subjected to a set of input states

FIG. 5. Experimental setup for the detector tomography analysis.
A 1556-nm pulsed laser produces coherent states, which can be
attenuated by variable optical attenuators. The polarization can be
controlled to optimize detection efficiencies for the polarization-
dependent SNSPDs, which are connected next. A time tagger records
the electrical responses from the detectors. Solid and dashed lines
represent optical and electrical connections, respectively.
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TABLE II. Total counts in thousands with corresponding uncer-
tainties for the four-pixel detector.

|α|2 n = 1 n = 2 n = 3 n = 4

333(22) 4990.2(23) 4992.5(23) 4993.2(23) 4994.2(23)
290(19) 4997.7(23) 4991.2(23) 4993.1(23) 4992.2(23)
253(17) 4991.0(23) 4993.6(23) 4992.5(23) 4993.7(23)
221(15) 4991.2(23) 4992.8(23) 4991.6(23) 4993.1(23)
193(13) 4990.6(23) 4991.3(23) 4993.9(23) 4993.9(23)
168(11) 4999.7(23) 4992.1(23) 4992.6(23) 4991.7(23)
147(10) 4990.8(23) 4992.1(23) 4992.9(23) 4991.6(23)
123(8) 4989.7(23) 4994.0(23) 4991.6(23) 4992.9(23)
102(7) 4990.6(23) 4993.4(23) 4992.2(23) 4991.9(23)
82(6) 4990.8(23) 4993.2(23) 4992.3(23) 4991.4(23)
65(5) 4990.8(23) 4993.7(23) 4992.5(23) 4984.1(23)
50(4) 4990.5(23) 4993.3(23) 4993.3(23) 4954.9(23)
36.0(24) 4999.0(23) 4993.0(23) 4993.0(23) 4844.9(23)
25.1(17) 4988.0(23) 4992.5(23) 4981.1(23) 4508.6(22)
15.9(11) 4991.8(23) 4984.4(23) 4840.5(23) 3587.7(19)
9.2(6) 4979.7(23) 4832.5(22) 4037.9(21) 2014.8(15)
4.09(27) 4617.3(22) 3490.0(19) 1747.4(14) 445.4(7)
1.00(7) 2340.0(16) 845.2(10) 148.8(4) 17.46(14)
0 1.90(5) 0.150(13) 0(1) 0(1)

spanning the Hilbert space of the given device. Coherent states
are an ideal choice, as they form a tomographically com-
plete set [16]. Here we compare four different multiplexing
schemes (five detectors) in total: a commercially available
four-pixel SNSPD array, a four-bin (and eight-bin) TMD, a
four-bin spatially multiplexed detector, and finally a ten-bin
time-multiplexed loop detector, which relies on a logarithmic
time-multiplexing architecture enabling a high dynamic range
over 120 dB [15] [all shown in Figs. 1(a)–1(d)]. The exper-
imental setup, shown schematically in Fig. 5, begins with
a pulsed laser producing coherent states with a wavelength
of 1556 nm. The mean photon number can be controlled
by variable optical attenuators and the polarization can be
set to optimize the detection efficiency of the polarization-
dependent SNSPDs. Afterward, the different multiplexing

FIG. 6. Total counts per bin for the ten-bin time-multiplexed loop
detector vs mean photon number of the coherent probe states with
corresponding uncertainties. The uncertainty in the total counts is
too small to resolve.

TABLE III. Total counts in thousands with corresponding uncer-
tainties for the four-bin spatially multiplexed detector. Here D1-D4

correspond to the four detectors.

|α|2 D1 D2 D3 D4

122(8) 4997.5(23) 4997.5(23) 4997.5(23) 4997.1(23)
102(7) 4997.8(23) 4997.8(23) 4997.8(23) 4997.4(23)
81(6) 4998.2(23) 4998.4(23) 4998.4(23) 4998.1(23)
65(5) 4996.6(23) 4998.1(23) 4998.4(23) 4997.9(23)
49(4) 4986.1(23) 4994.3(23) 4998.1(23) 4995.8(23)
35.9(23) 4931.0(23) 4968.7(23) 4993.8(23) 4978.8(23)
25.0(17) 4760.6(22) 4863.6(23) 4957.2(23) 4898.7(23)
16.6(11) 4345.7(21) 4551.4(22) 4793.5(22) 4631.0(22)
9.2(6) 3365.1(19) 3676.5(20) 4143.8(21) 3813.0(20)
4.08(27) 1923.0(14) 2194.5(15) 2676.4(17) 2326.7(16)
1.05(7) 590.3(8) 695.4(9) 900.7(10) 751.5(9)
0 0.101(11) 0.134(12) 0.348(19) 1.44(4)

schemes are connected and the outcome statistics are recorded
by a time tagger in a few-nanosecond-wide coincidence win-
dow. The mean photon numbers of the coherent input states
are chosen to scale quadratically to efficiently span the Hilbert
space of the different detectors. Different numbers of input
states are necessary, as the Hilbert space dimension depends
on the detector under test.

The raw data (see the Appendix for total counts for all
different detectors) are converted to the outcome statistic ma-
trix P, depending on the form of the acquired counts. This
conversion is described in detail in Ref. [21] for the four-pixel
detector, in Ref. [22] for the four-bin spatially multiplexed
detector, and in Ref. [19] for the ten-bin loop detector. For the
four- and eight-bin TMDs, the total counts (given in Tables IV
and V, respectively) are divided by the total number of input
pulses to obtain P. After knowing the input states, typically
represented by a matrix F, it is possible to reconstruct the
POVM matrix � of the different multiplexed detectors. This
is done using the Born rule, which allows one to formulate the
matrix equation P = F� and a subsequent matrix inversion
routine [23–25].

TABLE IV. Total counts in thousands with corresponding uncer-
tainties for the four-bin TMD.

|α|2 n = 0 n = 1 n = 2 n = 3 n = 4

49(4) 0(1) 0(1) 0(1) 0.046(7) 100.0(4)
40.1(26) 0(1) 0(1) 0(1) 0.210(15) 99.8(4)
31.3(21) 0(1) 0(1) 0.007(2) 1.17(4) 98.8(4)
23.9(16) 0(1) 0(1) 0.071(9) 4.44(7) 95.5(4)
17.9(12) 0(1) 0.019(5) 0.686(27) 13.01(12) 86.3(3)
12.2(8) 0.010(4) 0.359(19) 5.13(8) 30.32(18) 64.18(26)
8.0(6) 0.269(17) 3.62(7) 19.01(14) 42.25(21) 34.85(19)
4.45(29) 4.08(7) 20.17(15) 36.92(20) 29.98(18) 8.85(10)
1.99(13) 24.10(16) 41.00(21) 26.44(17) 7.58(9) 0.839(29)
0.49(4) 70.20(27) 25.90(17) 3.72(7) 0.190(14) 0.005(2)
0.050(4) 96.4(4) 3.51(6) 0.055(8) 0(1) 0(1)
0.0051(4) 99.6(4) 0.377(20) 0.002(1) 0(1) 0(1)
0.00052(4) 100.0(4) 0.042(7) 0(1) 0(1) 0(1)
0 100.0(4) 0(1) 0(1) 0(1) 0(1)
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TABLE V. Total counts in thousands with corresponding uncertainties for the eight-bin TMD.

|α|2 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

98(7) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0.102(11) 99.9(4)
80(6) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0.558(24) 99.4(4)
63(5) 0(1) 0(1) 0(1) 0(1) 0(1) 0.001(1) 0.033(6) 2.82(6) 97.1(4)
48(4) 0(1) 0(1) 0(1) 0(1) 0(1) 0.012(4) 0.459(22) 9.8(1) 89.7(3)
35.7(23) 0(1) 0(1) 0(1) 1(1) 0.013(4) 0.305(18) 3.66(7) 24.84(16) 71.18(27)
24.4(16) 0(1) 0.001(1) 0.005(2) 0.067(9) 0.686(27) 4.57(7) 17.81(14) 39.2(2) 37.7(2)
15.9(11) 0.002(1) 0.035(6) 0.304(18) 2.09(5) 8.2(1) 20.36(15) 31.23(18) 27.42(17) 10.320(11)
8.9(6) 0.198(15) 2.00(5) 8.3(1) 19.00(14) 26.89(17) 24.63(16) 13.83(12) 4.53(7) 0.610(25)
3.97(26) 6.39(8) 21.44(15) 30.26(18) 24.51(16) 12.41(12) 4.08(7) 0.807(29) 0.10(1) 0.003(1)
0.99(7) 50.80(23) 35.84(19) 11.18(11) 1.93(5) 0.230(16) 0.015(4) 0(1) 0(1) 0(1)
0.100(7) 93.3(4) 6.48(9) 0.202(15) 0.002(1) 0(1) 0(1) 0(1) 0(1) 0(1)
0.0102(7) 99.3(4) 0.692(27) 0.006(2) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)
0.00104(5) 99.9(4) 0.073(9) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)
0 100.0(4) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)

V. CONCLUSION

We have shown that quantum detector tomography is
the basis to enable a comparison of different multiplexing
schemes. The outcome purity, which can be calculated di-
rectly from the POVM elements of given detection outcomes,
indicates how pure a certain outcome is. Quantum detector
tomography enables a mapping to photon-number states; thus
the purity gives insight into the photon-number-resolving abil-
ity of the devices. Narrow POVM distributions are purer, in
the sense that fewer photon-number states contribute to the
given outcome. This directly translates into the amount of
information the outcome can extract from the total available
Hilbert space. More information can be extracted by narrow
POVM distributions. Outcomes of multiplexing architectures
based on equal splitting, such as standard spatial or temporal
multiplexing, show significantly better purities and can extract
larger amounts of information compared to the logarithmic
multiplexing scheme of the ten-bin loop detector. Neverthe-
less, logarithmic multiplexing enables a high dynamic range,
which gives information about large photon numbers, where
the equal splitting schemes are already saturated. Our analy-
sis further confirms that more multiplexing outcomes enable
higher photon-number-resolving ability [6,26,27], but also
that the splitting between those outcomes must be optimized.
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APPENDIX: MEASUREMENT DATA

The total counts of the five different multiplexing architec-
tures are shown in Tables II–V and Fig. 6. The uncertainty
of the mean photon number of the coherent input states is
based on assuming 5% uncertainty for the calibration detector
efficiency. The uncertainty of the total counts is calculated
using Poisson statistics, i.e., the square root of the total counts.
The uncertainty of the total counts is negligible in comparison
to the uncertainty in the coherent state mean photon number.

For the four-pixel detector and the four-bin spatially mul-
tiplexed detector, data were recorded for 10 s at a repetition
rate of 500 kHz, leading to a maximum of 5×106 total counts
in Tables II and III. For the four-bin and eight-bin TMDs, data
were recorded for 1 s at a repetition rate of 100 kHz, leading
to maximum of 1×105 total counts in Tables IV and V. For
the ten-bin time-multiplexed loop detector, data was recorded
for 30 s at a repetition rate of 15 kHz, leading to a maximum
of 4.5×105 total counts in Fig. 6.
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Walmsley, Fiber-assisted detection with photon number resolu-
tion, Opt. Lett. 28, 2387 (2003).

[9] M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D.
Franson, Photon-number resolution using time-multiplexed
single-photon detectors, Phys. Rev. A 68, 043814
(2003).

013701-5

https://doi.org/10.1063/5.0063294
https://doi.org/10.1038/nphoton.2009.230
https://doi.org/10.1038/s42254-019-0056-0
https://doi.org/10.1063/1.121984
https://doi.org/10.1103/PhysRevA.95.023815
https://doi.org/10.1103/PhysRevLett.76.2464
https://doi.org/10.1364/OL.28.002387
https://doi.org/10.1103/PhysRevA.68.043814


TIMON SCHAPELER AND TIM J. BARTLEY PHYSICAL REVIEW A 106, 013701 (2022)

[10] E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W.
Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman,
and K. K. Berggren, Multi-element superconducting nanowire
single-photon detector, IEEE Trans. Appl. Supercond. 17, 279
(2007).

[11] K. Banaszek and I. A. Walmsley, Photon counting with a loop
detector, Opt. Lett. 28, 52 (2003).

[12] Q. Yu, K. Sun, Q. Li, and A. Beling, Segmented waveguide
photodetector with 90% quantum efficiency, Opt. Express 26,
12499 (2018).

[13] M. Bohmann, R. Kruse, J. Sperling, C. Silberhorn, and W.
Vogel, Direct calibration of click-counting detectors, Phys. Rev.
A 95, 033806 (2017).

[14] S. J. van Enk, Photodetector figures of merit in terms of
POVMs, J. Phys. Commun. 1, 045001 (2017).

[15] J. Tiedau, E. Meyer-Scott, T. Nitsche, S. Barkhofen, T. J.
Bartley, and C. Silberhorn, A high dynamic range optical detec-
tor for measuring single photons and bright light, Opt. Express
27, 1 (2019).

[16] J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell,
C. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A.
Walmsley, Tomography of quantum detectors, Nat. Phys. 5, 27
(2009).

[17] R. Nehra, C.-H. Chang, Q. Yu, A. Beling, and O.
Pfister, Photon-number-resolving segmented detectors based on
single-photon avalanche-photodiodes, Opt. Express 28, 3660
(2020).

[18] F. M. Miatto, A. Safari, and R. W. Boyd, Explicit formulas for
photon number discrimination with on/off detectors, Appl. Opt.
57, 6750 (2018).

[19] T. Schapeler, J. P. Höpker, and T. J. Bartley, Quantum de-
tector tomography of a high dynamic-range superconducting
nanowire single-photon detector, Supercond. Sci. Technol. 34,
064002 (2021).

[20] A. Feito, J. S. Lundeen, H. Coldenstrodt-Ronge, J. Eisert, M. B.
Plenio, and I. A. Walmsley, Measuring measurement: theory
and practice, New J. Phys. 11, 093038 (2009).

[21] T. Schapeler, J. P. Höpker, and T. J. Bartley, Quantum detector
tomography of a 2×2 multi-pixel array of superconducting
nanowire single photon detectors, Opt. Express 28, 33035
(2020).

[22] T. Schapeler, Quantum detector tomography of superconduct-
ing detector arrays, M.Sc. thesis, Paderborn University, 2020,
doi:10.17619/UNIPB/1-1374.

[23] T. Schapeler, Detector tomography python code, available
at https://physik.uni-paderborn.de/fileadmin/physik/
Arbeitsgruppen/bartley/Downloads/Detector-Tomography-
CVXPY-Python-Timon-Schapeler.zip (2020).

[24] S. Diamond and S. Boyd, CVXPY: A Python-embedded model-
ing language for convex optimization, J. Mach. Learn. Res. 17,
1 (2016).

[25] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, A
rewriting system for convex optimization problems, J. Control
Decis. 5, 42 (2018).

[26] J. Sperling, W. Vogel, and G. S. Agarwal, True photocounting
statistics of multiple on-off detectors, Phys. Rev. A 85, 023820
(2012).

[27] M. Jönsson and G. Björk, Evaluating the performance of
photon-number-resolving detectors, Phys. Rev. A 99, 043822
(2019).

013701-6

https://doi.org/10.1109/TASC.2007.897372
https://doi.org/10.1364/OL.28.000052
https://doi.org/10.1364/OE.26.012499
https://doi.org/10.1103/PhysRevA.95.033806
https://doi.org/10.1088/2399-6528/aa90ce
https://doi.org/10.1364/OE.27.000001
https://doi.org/10.1038/nphys1133
https://doi.org/10.1364/OE.380416
https://doi.org/10.1364/AO.57.006750
https://doi.org/10.1088/1361-6668/abee9a
https://doi.org/10.1088/1367-2630/11/9/093038
https://doi.org/10.1364/OE.404285
https://doi.org/10.17619/UNIPB/1-1374
https://physik.uni-paderborn.de/fileadmin/physik/Arbeitsgruppen/bartley/Downloads/Detector-Tomography-CVXPY-Python-Timon-Schapeler.zip
http://jmlr.org/papers/v17/15-408.html
https://doi.org/10.1080/23307706.2017.1397554
https://doi.org/10.1103/PhysRevA.85.023820
https://doi.org/10.1103/PhysRevA.99.043822

