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Inelastic light scattering from a dielectric sphere with a time-varying radius
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This work reports on light scattering by a homogeneous dielectric sphere with a periodically time-varying ra-
dius. The off-shell inelastic scattering T matrix, which describes the dynamically changing particle, is evaluated
using the Floquet method, and some remarkable phenomena, emerging in the strong- and weak-coupling regimes,
are discussed. In particular, the limits of validity of the approximate quasistatic solution are established through
comparison with the results of fully dynamic calculations, and the scattering in the strong-coupling regime is
analyzed in terms of the general behavior of parametrically driven oscillators. Additionally, the influence of
damping of the sphere vibrations on the optical spectra is also investigated.
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I. INTRODUCTION

Electromagnetic (EM) wave propagation in time-varying
environments constitutes a very broad class of research that in-
volves a plethora of individual problems [1]. Morgenthaler, in
his pioneering works during the 1950s, dealt with monochro-
matic waves in a medium with changing phase velocity [2],
while many other various aspects of EM wave propagation in
time-varying media were studied by other groups [3–7]. From
one point of view, time can be considered an extra degree of
freedom to mold light propagation and control light-matter
interaction. In this respect, media modulated in both time
and space offer additional possibilities to control the optical
response. Especially, with the emergence of time-periodic, so-
called time-Floquet, photonic crystals [8–13], the field gained
renewed interest.

For applications operating in the visible and near-infrared
part of the spectrum, dynamic control of the medium per-
mittivity is possible through elastic or spin waves. For
instance, time modulation of optical cavities using phonons
and magnons has been demonstrated in the frame of cavity
optomechanics [14–16] and cavity optomagnonics [17–20],
respectively, and combinations with other fields such as cavity
magnomechanics [21], electromechanics [22], and electro-
optomechanics [23]. A common platform for combining
optics with dynamic excitations of other wave fields is based
on whispering-gallery-mode (WGM) resonators since they
strongly confine the EM field in high-finesse resonances,
while they can be easily realized and experimentally probed
using Brillouin light scattering (BLS) spectroscopy.

A few examples of works on WGM optomechanical
cavities can be found in Refs. [24–28], while respective re-
alizations of optomagnonic WGM resonators can be found
in Refs. [29–32]. However, optical WGM resonators exhibit
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a large modal volume, which translates to a weaker optome-
chanical and optomagnonic coupling compared to nano- and
micronsized Mie scatterers. Therefore, to achieve stronger
coupling in optomechanics (optomagnonics), efforts have
been devoted to designing resonators of smaller size that ex-
hibit optical Mie resonances [33–35] (Ref. [36]).

Gantzounis et al. [33] studied the interaction between
optical Mie modes and a breathing mode of vibration in a
(sub)micron-sized dielectric sphere, in the framework of the
adiabatic quasistatic approximation. This approximation is
valid for vibration frequencies much smaller than the photon
decay rate; however, a fully dynamic approach is required to
go beyond this limit. For this purpose, in the present work
we develop a time-Floquet method for homogeneous spheri-
cal particles with a time-varying radius (breathing vibration).
This method calculates the spherical-wave expansion coef-
ficients of the elastically and inelastically scattered beams
generated by an incoming wave. In this respect, energy trans-
fer to the inelastically scattered light beams, mediated by the
vibration, is accurately described. Our rigorous calculations
reveal the occurrence of many interesting phenomena associ-
ated with inelastic light scattering from a vibrating particle
and elucidate the underlying physical mechanisms. On the
other hand, the time-Floquet method can easily be gener-
alized to include temporal variation of the permittivity, as
demonstrated in a previous work [37], or dynamic variation
of the magnetization, but most importantly, it can readily be
implemented in our layer-multiple-scattering computational
methodology [38], which can be used for designing, e.g.,
nonreciprocal metamaterials and metasurfaces.

The rest of this paper is organized as follows: In Sec. II
we develop a time-Floquet method for light scattering from a
spherical particle with a periodically time-varying radius. In
Sec. III we demonstrate the applicability of the method for
a specific case of a vibrating microparticle and discuss some
interesting effects emerging from inelastic light scattering in
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(a)

(b)

FIG. 1. (a) Graphical representation of the system under study. A
silicon microparticle of radius R = R0 vibrates in a breathing mode,
so that R(t ) = R0[1 + η cos (�t )]. Linearly polarized monochro-
matic light of angular frequency ω, scattered by the particle,
generates outgoing beams at frequencies ω,ω ± �, ω ± 2�, . . . .
(b) Scattering cross section of the static sphere of radius R0, about
the first-order TE�=12 Mie resonance (solid line). The scattering
cross-section spectra for different radii of the sphere, R = R0(1 −
η) for η = 10−10 (dashed line) and η = 10−9 (dotted line), are
also displayed. The electric-field-intensity profile at the resonance
frequency, in a plane that cuts the center of the sphere and is perpen-
dicular to the polarization direction of the incident light, is depicted
in (a).

different regimes of vibration frequencies and amplitudes.
Finally, in Sec. IV we summarize our main findings.

II. SCATTERING BY A PARTICLE WITH
A PERIODICALLY VARYING RADIUS

In the present work we are concerned with light scatter-
ing by a spherical particle of relative permittivity εM and
permeability μM in a homogeneous medium with relative
permittivity ε and permeability μ. The particle has a radius
varying in time according to the equation R = R0 f (t ), where
f (t ) is a periodic function with a period T = 2π/�. We
assume an EM wave of angular frequency ω, with electric field
component E0(r, t ) = Re[E0(r) exp (−iωt )], incident on the
given oscillating particle, as shown in Fig. 1(a). Such a plane
wave can be expanded into regular vector spherical waves
about a given origin at the center of the particle as follows
[38]:

E0(r) =
∞∑

�=1

l∑
m=−�

[
i

k
a0

E�m∇ × j�(kr)X�m(r̂)

+ a0
H�m j�(kr)X�m(r̂)

]
, (1)

where k = ω
√

εμε0μ0 = ω
√

εμ/c is the wave number (ε0

and μ0 are the vacuum permittivity and permeability, and
c is the velocity of light), a0

P�m are expansion coefficients,
j� are spherical Bessel functions, and X�m(r̂) are the vector
spherical harmonics. By P = E and H we denote electric
[transverse magnetic (TM)] and magnetic [transverse electric
(TE)] polarization, respectively, where � = 1, 2, . . . and m =
−�,−� + 1 . . . , � are the usual angular momentum indices.
We note that, in the case of a static particle [ f (t ) = 1], the
field in its interior can be expanded in a similar manner as
in Eq. (1), with expansion coefficients aM

P�m and replacing k
with q = ω

√
εMμM/c. Similarly, for the scattered field, out-

going vector spherical waves are used, with spherical Hankel
functions h+

� in the place of j� and corresponding expan-
sion coefficients a+

P�m. These are connected to a0
P�m through

a diagonal and m-independent on-shell scattering T matrix as
follows: a+

P�m = TP�a0
P�m.

A. Inelastic scattering matrix

To describe scattering by a particle with a periodically
time varying radius, we use the Floquet approach and expand
the EM fields into series of time-harmonic monochromatic
beams with angular frequencies ωn = ω − n�, where n =
0,±1,±2, . . . . In the problem considered here, the vibration
frequencies �/2π are several orders of magnitude smaller
than the EM wave frequency. In particular, typical vibrational
frequencies of micron-sized spheres do not exceed on the or-
der of gigahertz, while larger spheres exhibit lower vibrational
frequencies, reaching on the order of kilohertz for diameters
of a few centimeters. This means that, on the one hand, the
sphere radius does not vary substantially within a period of
the EM field, while, on the other hand, the instantaneous
velocity of the boundary [39] is negligibly small compared
to the velocity of light in vacuum. Therefore, the coefficients
in the spherical wave expansions of the fields can be obtained
by applying the usual boundary conditions of continuity of
the tangential field components at the surface of the vibrating
sphere and using Fourier series expansions for the time-
periodic quantities j�(kR0 f (t )), j�(qR0 f (t )), h+

� (kR0 f (t )),
etc., as detailed in Appendix A [40]. We note here that this ap-
proximation is also valid for a high-Q optical resonance, such
as the one discussed in Sec. III, where our results are validated
under the adiabatic quasistatic approximation. Since spherical
symmetry is preserved, the off-shell scattering T matrix for
the dynamic problem under consideration becomes a super-
matrix that connects the expansion coefficients of beams with
different frequencies ωn, but each submatrix (n, n′) remains
diagonal and independent of m, i.e.,

a+(n)
P�m =

∑
n′

T nn′
P� a0(n′ )

P�m . (2)

For a monochromatic incident wave of angular frequency ω,
the scattered field consists of an infinite number of beams with
angular frequencies ωn emerging from elastic (n = 0) and
inelastic (n �= 0) scattering. In practice, we truncate all infinite
series involved at a maximum order |n| = N . The resulting
normalized (dimensionless) scattering cross section, averaged
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over a period of the radius variation, is given by [37]

σsc =
N∑

n=−N

2

(knR0)2

∑
P�

(2� + 1)
∣∣T n0

P�

∣∣2
, (3)

where kn = ωn
√

εμ/c. We note that here, in the fully dynamic
description of the problem, EM energy is not conserved even
in the absence of material losses and can be exchanged with
the sphere vibration. In this respect, absorption or gain can
occur even with particles made of completely lossless and
passive materials. The corresponding absorption cross sec-
tion takes the form [37]

σabs = −
N∑

n=−N

2

(knR0)2

∑
P�

(2� + 1)
{∣∣T n0

P�

∣∣2 + Re
[
T n0

P�

]
δn0

}
.

(4)

This approach is general and applies to any type of periodic
variation of the sphere radius. In this respect, damped vibra-
tions or pulses can also be studied by considering periodically
repeating pulse trains. However, in these cases, an increased
truncation order N is usually required to describe accurately
the vibration of the sphere.

B. The adiabatic quasistatic approximation

Since we are mainly interested in periodic oscillations of
the radius which are very slow compared to the variation of
the EM field, it is worth comparing our fully dynamic solution
with the adiabatic quasistatic approximation. In this approx-
imation, the dynamic process is described as a sequence of
snapshots of the vibration evolution, and we can introduce
time-dependent coefficients a+

P�m(t ) for the scattered field that
result from a time-dependent scattering T matrix, assuming
they are constant over a period of the EM wave. The qua-
sistatic (QS) normalized scattering cross section is calculated
as

σsc;QS(t ) = 1

(k0R0)2|E0|2
∑
P�m

|a+
P�m(t )|2. (5)

Since the scattered field is periodic with angular frequency �,
the scattering cross section can be expanded in a Fourier series
as detailed in Ref. [41]:

σsc;QS(t ) =
∑

n=0,±1,...

σ
(n)
sc;QSein�t . (6)

It is worth noting that this approach is valid only in the limit
�/ω → 0, as shown in Ref. [37] and discussed also in the
next section.

III. RESULTS AND DISCUSSION

We shall study the optical response of a homogeneous
spherical particle of radius R0, dielectric permittivity εM =
12, and magnetic permeability μM = 1, which is appropriate
for silicon, subject to a sinusoidal variation of the radius with
angular frequency �. The particle is embedded in air and
illuminated by a plane EM wave of angular frequency ω. We
focus on the first-order TE Mie mode of the particle with
angular momentum � = 12 (TE�=12) at ωr = 4.6422c/R0.
This resonance has a rather high quality factor Q = ωr/2γ ≈

FIG. 2. Fourier components of the optical scattering cross sec-
tion for a silicon sphere with a time-varying radius, R(t ) = R0[1 +
η cos (�t )], for incident light of angular frequency ω = ωr (see
Fig. 1). Results obtained with the fully dynamic time Floquet
method (black symbols) and with the adiabatic quasistatic approx-
imation (gray symbols) for (a) � = γ /6, η = 10−10, (b) � = γ ,
η = 10−10, (c) � = 6γ , η = 10−10, (d) � = γ /6, η = 10−9, (e)
� = γ , η = 10−9, and (f) � = 6γ , η = 10−9.

6.8×108, where γ is its half-width at half maximum, and the
corresponding electric field profile is shown in Fig. 1(a). The
scattering cross section in the vicinity of the resonance for the
static particle is presented in Fig. 1(b) by the solid black line.
When the particle vibrates with an angular frequency � we
expect scattering at frequencies ωn around the frequency of
the incoming light, as is schematically depicted in Fig. 1(a).

In the quasistatic picture, subsequent snapshots of the vi-
bration are considered, and the optical spectrum exhibits a
rigid shift following the variation of the radius [33]. In the case
of our homogeneous and dispersionless dielectric scatterer,
due to the scaling properties of Maxwell equations, changes
in the radius R(t ) = R0[1 + η cos (�t )] result in a temporal
variation of the optical resonance frequency

ωr (t ) = ωr
1

1 + η cos (�t )
≈ ωr[1 − η cos (�t )], η � 1,

(7)

where η is the relative oscillation amplitude of the radius. In
Fig. 1(b) we see the maximum shift of the optical scattering
cross section spectrum of a static particle of radius R0(1 − η)
for η = 10−10 and η = 10−9. In the latter case, the maximum
shift of the resonance exceeds its half-width at half maximum
γ , so we expect abrupt changes in the scattering cross sec-
tion within one vibration period.

We next consider a dynamic sphere with its radius vibrating
sinusoidally and present results for different vibration fre-
quencies and amplitudes. In Fig. 2 we compare the Fourier
components of the scattering cross section obtained using
the time-Floquet method and the quasistatic approximation.
The incident light frequency is fixed on resonance (ω = ωr).
The top panels show the results for the smaller vibration
amplitude, η = 10−10, and vibration frequencies � = γ /6
[Fig. 2(a)], � = γ [Fig. 2(b)], and � = 6γ [Fig. 2(c)]. In this
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FIG. 3. Fourier components of the optical scattering cross sec-
tion for a silicon sphere with a time-varying radius R(t ) = R0[1 +
η cos (�t )] (see Fig. 1). (a) Results for incoming light frequency ω =
ωr + γ and vibration frequency � = γ . (b) Results for incoming
light frequency ω = ωr + 6γ and vibration frequency � = 6γ . Open
symbols correspond to η = 10−10, and solid squares correspond to
η = 10−9.

case we see that the quasistatic approximation (gray bars and
symbols) generally overestimates the higher-order inelastic
scattering components and this discrepancy is more pro-
nounced in the case of the higher vibration frequency � = 6γ .
For lower values of � the differences between the quasistatic
and the fully dynamic calculations are smaller [37]. For the
larger vibration amplitude, η = 10−9, the interaction between
light and sphere vibration is stronger, which is manifested in
a slower decay of the inelastic scattering intensities, as shown
in Figs. 2(d) to 2(f). Probing the particle on resonance results
in symmetric Stokes and anti-Stokes components, as expected
for a symmetric resonance line shape with respect to ωr.
Generally, the adiabatic quasistatic approximation works rea-
sonably well for low vibration frequencies but overestimates
the inelastic scattering intensities as the vibration frequency
increases.

We proceed by considering the scattering of light at
frequencies detuned from the optical resonance at ωr. In
particular, in order to observe resonant phenomena, we dis-
cuss two cases: first, for a vibration frequency � = γ and
light frequency ω = ωr + γ and, second, for � = 6γ and
ω = ωr + 6γ . The corresponding Fourier components of the
scattering cross section, calculated using the time-Floquet
method, are shown in Figs. 3(a) and 3(b), respectively, for the
two vibration amplitudes, η = 10−10 and η = 10−9. In typical
BLS experiments [42–44], the regime of � � γ depicted in
Fig. 3(a) is often termed the nonresolved-sideband regime
[45–47], while the regime when � > γ presented in Fig. 3(b)
is called the resolved-sideband regime [48–50]. Generally,
the strength of the inelastic components shows trends sim-
ilar to the case of zero detuning (ω = ωr) discussed above.
However, detuning results in an asymmetry of the Stokes and
anti-Stokes scattering intensities, as shown in Figs. 3(a) and
3(b). Interestingly, in the resolved-sideband case [Fig. 3(b)],
the asymmetry is stronger, while for incident light with ω =
ωr − �, the ratio between the n = 1 and n = −1 components
is inverted, which is a direct consequence of the symmetry of
the optical resonance around ωr.

(a)

(b)

(c)

(d)

FIG. 4. From top to bottom: Fourier components of the optical
scattering cross section σ (n)

sc for n = 0, ±1 and absorption cross sec-
tion σabs of a silicon sphere with radius R(t ) = R0[1 + η cos (�t )]
vibrating with frequency � = 6γ versus the frequency detuning
ω − ωr of the incoming light from the first-order TE�=12 Mie res-
onance for three different vibration amplitudes: η = 5×10−10 (light
gray line), η = 10−9 (dark gray line), and η = 2×10−9 (black line).

Next, we fix the vibration frequency of the radius and scan
over the frequency of the incoming light. In Figs. 4(a), 4(b)
and 4(c) we present the variation of the elastic (n = 0) and
inelastic (n = ±1) scattering intensities under a sinusoidal
vibration of the sphere radius with frequency � = 6γ . Each
one of the three curves in each diagram corresponds to differ-
ent values of the vibration amplitude, namely, η = 5×10−10,
η = 10−9, and η = 2×10−9. When � = 6γ we are in the
weak-coupling, resolved-sideband regime. As we increase the
amplitude of the oscillation, we see increased scattering in the
first-order inelastic beams (n = ±1), manifested as a double-
peak structure with maxima at ωr and ωr ∓ �, respectively,
which correspond to high initial and final optical densities
of states in the respective photon transitions. Apart from a
redistribution of light intensity to different frequencies, the
vibration leads to absorption or gain of energy, which is man-
ifested in the absorption cross section [see Eq. (4)] displayed
in Fig. 4(d). As already discussed previously [37], contrary
to the adiabatic approximation, the fully dynamic description
is able to account for the exchange of energy between the
optical and vibrational modes. Again, due to the symmetry of
the optical resonance, the absorption curves are antisymmetric
with respect to ωr. Another interesting point is that the energy
transfer increases with the oscillation amplitude.

When the frequency of the vibration is of the order of the
half-width of the optical resonance γ , the behavior of the
system shows some remarkable features. This is depicted in
Fig. 5, where we present the results for the elastic and inelastic
components of the scattering cross section for � = γ . For
small vibration amplitudes (η = 5×10−10, light gray curves),
the calculations show an elastic scattering peak at ω = ωr, but
the n = 1 (n = −1) inelastic scattering intensities exhibit a
maximum at frequencies which are smaller than −� (�). This
is different from the behavior discussed previously for the
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(a)

(b)

(c)

(d)

FIG. 5. From top to bottom: Fourier components of the optical
scattering cross section σ (n)

sc for n = 0, ±1 and absorption cross sec-
tion σabs of a silicon sphere with radius R(t ) = R0[1 + η cos (�t )]
vibrating with frequency � = γ versus the frequency detuning ω −
ωr of the incoming light from the first-order TE�=12 Mie resonance
for three different vibration amplitudes: η = 5×10−10 (light gray
line), η = 10−9 (dark gray line), and η = 2×10−9 (black line).

weak-coupling regime. By increasing the vibration amplitude
(η = 10−9, dark gray curves), we observe a decrease in the
elastic scattering intensity followed by a respective increase
in the inelastically scattered beams. For higher vibration am-
plitudes (η = 2×10−9, black curves), we see a splitting in
both the elastic and inelastic scattering components. The oc-
currence of this splitting indicates strong coupling in systems
of coupled oscillators [51,52] and has also been observed in
optomechanical systems as well as in the coupling of EM
radiation with atoms and molecules (Rabi splitting). However,
in our case here, this is due to the parametric coupling of the
mechanical vibration with the optical resonator, which have
very dissimilar frequencies.

The mode splitting mentioned here can be explained by
invoking a mechanical analog, namely, a driven oscillator
with displacement x and periodically varying eigenfrequency
ωr (t ), given by Eq. (7). For η � 1, we have ωr

2(t ) ≈ ω2
r [1 −

2η cos (�t )], and in the absence of external stimulus, we can
look for the normal modes solving the homogeneous differen-
tial equation

d2x(t )

dt2
+ ω2

r [1 − 2η cos (�t )]x(t ) = 0. (8)

Equation (8) is the so-called Mathieu’s equation [53], intro-
duced more than a century ago for the description of a variety
of forced mechanical oscillators. In the special case consid-
ered here and in the quasistatic adiabatic limit (�/ω → 0), we
can find analytical solutions of Eq. (8) (see Appendix B). The
normal modes with maximum projection on the elastic scat-
tering component (n = 0) are those with the largest detuning
from ωr. If ω+ and ω− are the corresponding eigenfrequen-
cies, we obtain a mode splitting that varies linearly with η,

FIG. 6. (a) Elastic Fourier component (n = 0) of the optical scat-
tering cross section of a silicon sphere with an oscillating radius,
R(t ) = R0[1 + η cos (�t )], calculated by the adiabatic quasistatic
approximation (�/ω → 0) versus the vibration amplitude η and the
frequency detuning ω − ωr of the incoming light from the first-order
TE�=12 Mie resonance. (b) The same as in (a) for � = γ (fully
dynamic calculations). (c) Variation of the parametric-coupling con-
stant g obtained from the frequency difference between the two peaks
of the elastic scattering cross-section component, with the vibra-
tion amplitude, for different vibration frequencies �. Solid circles,
crosses, and open circles correspond to fully dynamic calculations
for � = γ /4, � = γ /2, and � = γ [taken from (b)], respectively.
The dashed gray line corresponds to Eq. (9), and the orange solid
line is obtained from the adiabatic spectra shown in (a).

following Eq. (B5):

ω+ − ω− ≡ 2g � 2ηωr, (9)

where g defines the parametric-coupling constant. On the
other hand, numerical calculations can easily be carried out
in the framework of the adiabatic quasistatic approximation,
as described in Sec. II B. In Fig. 6(a) we show the elastic
scattering cross-section spectra σ (0)

sc for different vibration
amplitudes η, calculated using the adiabatic quasistatic ap-
proximation, and mark the characteristic splitting 2g that
increases with increasing η. The values of g obtained in this
manner are depicted in Fig. 6(c) by the orange solid line, while
the analytic expression of Eq. (9) is presented by the dashed
gray line. The two lines are in rough agreement, indicating
that the mechanical analog can provide an approximate de-
scription of the behavior of the actual system. For comparison,
we also show the results of fully dynamic calculations using
our time-Floquet method for very small values of �, namely,
� = γ /4 and � = γ /2. The coincidence is obvious.

Let us now examine what happens when � increases and
the system deviates from the adiabatic limit. In particular, we
set � = γ , which is the case studied in Fig. 5. In Fig. 6(b)
we show σ (0)

sc for different values of η. Figure 6(b) is a more
detailed version of Fig. 5(a). The spectra of σ (0)

sc for relatively
small values of η begin with a single peak, which then splits
into two distinct modes for η = 1.2×10−9 to η = 1.4×10−9.
This splitting, marked as 2g, is also plotted in Fig. 6(c) with
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FIG. 7. Fourier components of the optical scattering cross sec-
tion of a silicon sphere with a radius oscillating according to Eq. (10),
with angular frequency � = γ , amplitude η = 10−9, and two differ-
ent damping constants: � = 0.033γ (green squares) and � = 0.2γ

(blue circles). The incoming light impinges on resonance ω = ωr

(see Fig. 1). The damped oscillations have a repetition period τ =
20T , which produces the fine-grained Fourier spectrum. The gray
open symbols show the Fourier components for the undamped vibra-
tion, depicted also in Fig. 2(c).

open symbols. However, now, for higher values of η the
spectrum is more complex, and more side peaks appear. In
this regime, for higher �, the simple analytic approximation
for the parametric-coupling constant g is no longer valid, and
fully dynamical computations are required.

In actual implementations, damping of optical and me-
chanical oscillators cannot be avoided and could significantly
influence effects which are based on high-quality-factor res-
onators, such as those we consider in the present study.
Optical losses are expected to broaden the Mie resonances.
These losses can easily be included in our study, and their
influence can readily be estimated. However, the influence of
damping in the elastic vibration is worth a closer investiga-
tion. Our time-Floquet method is valid for periodic variations
of the radius, so a damped vibration can be simulated as a
periodic sequence of decaying vibrations with a sufficiently
long repetition period τ � T . We consider such a pulse train
of damped vibrations with frequency � and damping rate �,

R(t ) =
∞∑

p=−∞
(t − pτ )R0{1 + ηe−�(t−pτ ) cos [�(t − pτ )]},

(10)

where (t ) = 1 for 0 < t < τ and 0 otherwise. The long
period τ is independent of the vibration frequency � and
controls only the discretization in the frequency domain. In
Fig. 7 we show the Fourier components of the optical scatter-
ing cross section of the vibrating sphere under consideration
for a relatively small damping constant, � = 0.033γ . As � in-
creases, the amplitude of the Fourier components (n = ±1, in
Fig. 2) decreases while contributions from frequencies around
� grow in magnitude. In particular, the elastic Fourier com-
ponent σ (0)

sc increases by approximately 12% for � = 0.033γ

and 30% for � = 0.2γ compared to the case without dumping
(� = 0, gray symbols), while the inelastic scattering intensi-
ties at ω − ωr = ±� are reduced by 26% for � = 0.033γ and
by almost 90% for � = 0.2γ .

FIG. 8. Elastic Fourier component (n = 0) of the optical scatter-
ing cross section of a silicon sphere undergoing damped vibrations
with angular frequency � = γ and decay rate: (a) � = 0.033γ and
(b) � = 0.066γ versus the vibration amplitude η and the frequency
detuning ω − ωr of the incoming light from the first-order TE�=12

Mie resonance.

We now examine the impact of mechanical damping on
the results displayed in Fig. 6(b). In Fig. 8(a) we show the
corresponding σ (0)

sc spectra for the same vibration frequency
� = γ with a decay rate � = 0.033γ for amplitudes ranging
from η = 10−9 to η = 4×10−9. It can be seen that vibration
damping hinders the appearance of parametric mode splitting,
which is the fingerprint of the strong-coupling regime, and
this splitting occurs at higher vibration amplitudes η, while
all other spectral features are slightly smoothed and reduced.
This is more clearly manifested if we increase the decay con-
stant, as shown in Fig. 8(b) for � = 0.066γ . Quite generally,
mode splitting in the strong-coupling regime is washed out
by mechanical damping; however, it can still be recovered
for larger vibration amplitudes. Optical absorption also has
a similar effect. For example, assuming an imaginary part
in the permittivity Im{ε} = 10−4, the vibration amplitude η

required to achieve the mode-splitting characteristic of the
strong-coupling regime increases by almost two orders of
magnitude. Frequency dispersion can also be taken into ac-
count, e.g., along the lines suggested in Refs. [54,55].

The effects discussed above can also be reproduced with
other modes with different �; however, there are differences.
Generally, lower-� modes have lower quality factors. This
means that they are less sensitive, and thus, larger vibration
amplitudes η are required to achieve similar effects. On the
other hand, sensitivity increases for modes that confine the
EM field closer to the surface of the particle, which results in
better coupling with the breathing mode. The � = 12 mode,
discussed here, was chosen as an example of a high-quality-
factor resonant mode with a field profile confined close to the
particle surface [see Fig. 1(a)]. Apart from the dependence
of the optical-vibrational coupling constant g on the optical
mode profile, we found no distinctive difference between TE
and TM modes. The influence of a periodically varying radius
on a resonant optical mode of a dielectric sphere should be
observable at different length scales. The vibration frequency
required is controlled by the quality factor of the optical
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resonance. For light in the visible and infrared, the vibration
frequency can vary from megahertz to gigahertz for micron-
sized particles, which is experimentally achievable [21,56,57].
As an indicative example, for a particle of radius R0 = 1 μm,
the optical resonance frequency is ωr � 2π×222 THz, and
the corresponding half-width at half maximum γ � 1 MHz,
indicating vibrational frequencies on the order of megahertz.

IV. CONCLUSIONS

In summary, we presented an extension of Mie theory
to the case of a spherical scatterer with a periodically time
varying radius using a time-Floquet method. Elastic and in-
elastic cross-section spectra, in the vicinity of a high-Q Mie
resonance, were analyzed in conjunction with the quasistatic
adiabatic approximation, providing a consistent interpreta-
tion of the underlying physics. In the weak-coupling regime,
perturbation theory predicts enhanced inelastic scattering to
frequencies of high optical densities of states. Therefore, if the
incident wave is red- or blueshifted from the resonance fre-
quency, stronger anti-Stokes or Stokes intensities are favored,
leading to resonant energy transfer from the oscillating sphere
to the EM field (optical gain) or vice versa (optical losses).
This effect, which cannot be accounted for by the adiabatic
approach, becomes more pronounced as the oscillation ampli-
tude increases and higher-order inelastic components become
progressively important. In the strong-coupling regime, we
reveal the occurrence of parametric interaction effects which,
with an increase in the vibration amplitude, lead to a split-
ting in both elastic and inelastic scattering components, as
predicted by the solutions of Mathieu’s equation in the
proper limit. Finally, vibration damping results in reduced
inelastic scattering effects and hinders parametric mode
splitting.
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APPENDIX A: SCATTERING T MATRIX FOR A SPHERE
WITH A PERIODICALLY TIME VARYING RADIUS

Electromagnetic scattering by a homogeneous sphere with
a periodically time varying radius, R(t ) = R(t + T ), can be
efficiently described by the T -matrix method. We assume that
the sphere has a relative permittivity εM and permeability μM

and is embedded in a homogeneous medium characterized
by relative permittivity and permeability ε and μ, respec-
tively. There have been several works dealing with wave
scattering from dynamically varying objects, among which
are a formal generalization of multiple-scattering theory to
time-varying elastic scatterers [58] and a theoretical treatment

of a spatiotemporally modulated ultrasonic circulator [59].
More recently, light scattering by a sphere with a periodically
varying refractive index was also elaborated [37,54,55]. Here,
we restrict our analysis to periodic oscillations of the sphere
radius. The effect of decaying oscillation amplitudes can
also be considered by assuming a periodic train of decaying
pulses [58].

In a periodically varying medium, the electric component
of the EM field can be written in the Floquet form

E(r, t ) =
∞∑

n=−∞
Re[E(n)(r) exp (−iωnt )], (A1)

with a similar expression for the magnetic component H(r, t ).
The period T of the vibration determines the frequencies
of the different beams ωn = ω − n�, where ω is the Flo-
quet quasifrequency, � = 2π/T , and n = 0,±1,±2, . . . .
The electric and magnetic components of an incoming EM
field (E0, H0) are expanded in a spherical-wave basis,

E(n)
0 (r) =

∞∑
�=1

�∑
m=−�

[
i

kn
a0(n)

E�m∇ × j�(knr)Xlm(r̂)

+ a0(n)
H�m j�(knr)X�m(r̂)

]
, (A2)

H(n)
0 (r) =

√
εε0

μμ0

∞∑
�=1

�∑
m=−�

[
a0(n)

E�m j�(knr)Xlm(r̂)

− i

kn
a0(n)

H�m∇ × j�(knr)X�m(r̂)

]
,

(A3)

where kn = ωn
√

εμ/c is the corresponding wave number.
The scattered field (Esc, Hsc) is expressed in the same
manner as in Eq. (A1), while its spherical-wave expan-
sion is similar to Eqs. (A2) and (A3) with expansion
coefficients a+(n)

P�m , P = E , H , instead of a0(n)
P�m, and spheri-

cal Hankel functions h+
� , which are appropriate for out-

going waves, in place of the spherical Bessel functions
j�. Finally, the field inside the particle (EM, HM) is also
expressed in the form of Eqs. (A1), (A2), (A3), with expan-
sion coefficients aM(n)

P�m and wave number qn = ωn
√

εMμM/c
instead of kn in the argument of the spherical Bessel
functions.

Continuity of the tangential components of the (complex)
EM field at the vibrating surface of the sphere for every time
t is expressed through the equations

X∗
�m(r̂) · (E0 + Esc − EM) = 0, (A4)

[r̂ × X∗
�m(r̂)] · (E0 + Esc − EM) = 0, (A5)

X∗
�m(r̂) · (H0 + Hsc − HM) = 0, (A6)

[r̂ × X∗
�m(r̂)] · (H0 + Hsc − HM) = 0. (A7)

One can proceed further by taking advantage of the follow-
ing properties of the vector spherical harmonics:∫

X∗
�m(r̂) · X�′m′ (r̂)d r̂ = δ��′δmm′ , (A8)
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∫
[r̂ × X∗

�m(r̂)] · X�′m′ (r̂)d r̂ = 0, (A9)∫
X∗

�m(r̂) · [∇ × f�′ (kr)X�′m′ (r̂)]d r̂ = 0, (A10)∫
[r̂ × X∗

�m(r̂)] · [∇ × f�′ (kr)X�′m′ (r̂)]d r̂

= 1

r

∂

∂r
[r f�′ (kr)]δ��′δmm′ , (A11)

where f� can be any linear combination of the spherical Bessel
and Hankel functions.

Integrating Eq. (A4) over the surface of a sphere with
radius R(t ), with the help of the above properties, one obtains

∞∑
n=−∞

[
a0(n)

H�m j�(knR(t )) + a+(n)
H�mh+

� (knR(t ))

− aM(n)
H�m j�(qnR(t ))

]
exp (−iωnt ) = 0. (A12)

Similar expressions result from the other boundary condition
equations. We now expand the spherical Bessel and Hankel
functions of time-dependent argument into Fourier series,

j�(knR(t )) =
∞∑

p=−∞
A(�)

p,n exp (ip�t ), (A13)

h+
� (knR(t )) =

∞∑
p=−∞

B(�)
p,n exp (ip�t ), (A14)

j�(qnR(t )) =
∞∑

p=−∞
C(�)

p,n exp (ip�t ), (A15)

1

x
[x j�(x)]′

∣∣∣∣
x=qnR(t )

=
∞∑

p=−∞
D(�)

p,n exp (ip�t ), (A16)

1

x
[xh+

� (x)]′
∣∣∣∣
x=knR(t )

=
∞∑

p=−∞
E (�)

p,n exp (ip�t ), (A17)

1

x
[x j�(x)]′

∣∣∣∣
x=knR(t )

=
∞∑

p=−∞
F (�)

p,n exp (ip�t ), (A18)

and introducing n′ = n + p, we obtain the following set of
four linear equations for every n′, l, m:

∞∑
n=−∞

(
−B(�)

n′−n,na+(n)
H�m + C(�)

n′−n,naM(n)
H�m

)
=

∞∑
n=−∞

A(�)
n′−n,na0(n)

H�m,

(A19)

∞∑
n=−∞

(
−E (�)

n′−n,na+(n)
H�m +

√
εMμ

εμM
D(�)

n′−n,naM(n)
H�m

)

=
∞∑

n=−∞
F (�)

n′−n,na0(n)
H�m, (A20)

∞∑
n=−∞

(
−B(�)

n′−n,na+(n)
E�m +

√
εMμ

εμM
C(�)

n′−n,naM(n)
E�m

)

=
∞∑

n=−∞
A(�)

n′−n,na0(n)
E�m, (A21)

∞∑
n=−∞

(
−E (�)

n′−n,na+(n)
E�m + D(�)

n′−n,naM(n)
E�m

)

=
∞∑

n=−∞
F (�)

n′−n,na0(n)
E�m. (A22)

It is worth noting that, since the spherical symmetry of the
vibrating particle is conserved, the polarization (E , H) and
angular momentum (�) modes are decoupled, while m is im-
material; that is, the solution of Eqs. (A19) to (A22) does not
depend on the value of m. In practice, the above infinite system
of equations is truncated to a maximum order n = N . By
defining the block matrices M(�), with elements M (�)

n′−n,n, for
M = A, B,C, D, E , F , with dimensions (2N + 1)×(2N + 1),
the system of equations can be cast in matrix form,(−B(�) C(�)

−E(�)
√

εMμ

εμM
D(�)

)(
a+

H�m

aM
H�m

)
=

(
A(�)a0

H�m

F(�)a0
H�m

)
, (A23)

(
−B(�)

√
εMμ

εμM
C(�)

−E(�) D(�)

)(
a+

E�m

aM
E�m

)
=

(
A(�)a0

E�m

F(�)a0
E�m

)
, (A24)

where a0,+,M
P�m ≡ [a0,+,M(−N )

P�m , a0,+,M(−N+1)
P�m , . . . , a0,+,M(N )

P�m ]T

are column vectors of dimension 2N + 1.
Solving for the coefficients of the scattered field, we have

a+
H�m =

[
B(�) −

√
εμM

εMμ
C(�)(D(�) )−1E(�)

]−1

×
[√

εμM

εMμ
C(�)(D(�) )−1F(�) − A(�)

]
a0

H�m, (A25)

a+
E�m =

[√
εμM

εMμ
B(�) − C(�)(D(�) )−1E(�)

]−1

×
[

C(�)(D(�) )−1F(�) −
√

εμM

εMμ
A(�)

]
a0

E�m, (A26)

and the T matrix is readily deduced through Eq. (2).

APPENDIX B: MECHANICAL ANALOG
TO A VIBRATING SPHERE

As discussed in the main text, the problem of the optical
response of the sphere under consideration with a periodically
time varying radius is equivalent to that of an oscillator with
a time-varying eigenfrequency, described by Mathieu’s equa-
tion [Eq. (8)]. The behavior of such a system can easily be
analyzed in the special case where η � 1 and in the frame-
work of the adiabatic quasistatic approximation. The normal
modes are obtained by seeking Floquet solutions of the form

x(t ) =
∞∑

n=−∞
Ane−i(ω−n�)t . (B1)

By truncating the sum to 2N + 1 terms, Eq. (8) leads to a
system of equations expressed in matrix form as follows:

Band2N+1
[−ω2

r η, ω2
r − (ω − n�)2,−ω2

r η
]

×(A−N , . . . , A0, . . . , AN )T = 0, (B2)
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where by BandM[a, b, c] we denote a banded matrix of di-
mension M×M, with a, b, and c being the elements of the
lower diagonal, diagonal, and upper diagonal, respectively,
and n varies from −N to N along the diagonal. In the adiabatic
approximation we let � → 0, and Eq. (B2) takes the form of
the eigenvalue equation of the symmetric tridiagonal Toeplitz
matrix Band2N+1[−η, 1,−η], which has eigenvalues [60]

(
ω2

/
ω2

r

)
ν

= 1 − 2η cos

(
νπ

2N + 2

)
(B3)

and associated eigenvectors

A(ν) =
(

sin

(
νπ

2N + 2

)
, sin

(
ν2π

2N + 2

)
, . . . ,

sin

(
ν(2N + 1)π

2N + 2

))
, (B4)

where ν = 1, 2, . . . , 2N + 1. According to Eq. (B3), the
smallest and largest eigenvalues are obtained for ν = 1 and
ν = 2N + 1, respectively, and the corresponding eigenvec-
tors have maximum projection on the elastic component:
|A(1)

0 | = |A(2N+1)
0 | = 1. Therefore, we expect maxima in the

elastic component at

ω− = ωr

√
1 − 2η cos

(
π

2N + 2

)

� ωr

[
1 − η cos

(
π

2N + 2

)]
,

ω+ = ωr

√
1 − 2η cos

(
(2N + 1)π

2N + 2

)

� ωr

[
1 − η cos

(
(2N + 1)π

2N + 2

)]
.

From the above analysis it turns out that, in the quasistatic
limit (� → 0), the elastic (n = 0) component is dominated
by two normal modes, separated in frequency by

�ω = ω+ − ω− � 2ωrη sin

(
π

2

)
sin

(
Nπ

2N + 2

)
→ 2ωrη.

(B5)
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