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Frequency perturbation theory of bound states in the continuum in a periodic waveguide
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In a lossless periodic structure, a bound state in the continuum (BIC) is characterized by a real frequency and
a real Bloch wave vector for which there exist waves propagating to or from infinity in the surrounding media.
For applications, it is important to analyze the high-Q resonances that either exist naturally for wave vectors
near that of the BIC or appear when the structure is perturbed. Existing theories provide quantitative results for
the complex frequency (and the Q factor) of resonant modes that appear or exist due to structural perturbations
or wave vector variations. When a periodic structure is regarded as a periodic waveguide, eigenmodes are often
analyzed for a given real frequency. In this paper, we consider periodic waveguides with a BIC and study the
eigenmodes for a given real frequency near the frequency of the BIC. It turns out that such eigenmodes near
the BIC always have a complex Bloch wave number, but they may or may not be leaky modes that radiate out
power laterally to infinity. These eigenmodes can also be the so-called complex modes that decay exponentially
in the lateral direction. Our study is relevant for applications of BICs in periodic optical waveguides, and it is
also helpful for analyzing photonic devices operating near the frequency of a BIC.
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I. INTRODUCTION

In recent years, bound states in the continuum (BICs) have
been the central topic of many studies in photonics [1–4].
For a structure with at least one open spatial direction, a
photonic BIC is an eigenmode of the governing Maxwell’s
equations satisfying two conditions: (i) it decays rapidly in
the open spatial direction, and (ii) at the same frequency as
the BIC, there exist waves that propagate to or from infinity in
the open spatial direction. For a periodic structure sandwiched
between two homogeneous media, such as a photonic crystal
slab [5–14] or a periodic array of cylinders [15–22], a BIC
is characterized by its frequency and Bloch wave vector, the
direction perpendicular to the periodic layer is the open spa-
tial direction, and propagating diffraction orders compatible
with the BIC frequency and wave vector are the waves that
propagate to or from infinity. For optical waveguides with
an invariant direction [23–26], a BIC is characterized by its
frequency and propagation constant.

Most applications of BICs are related to high-Q resonances
that exist near a BIC or appear when a BIC is destroyed. In a
periodic structure, a resonant mode is an outgoing solution of
the Maxwell’s equations with a real Bloch wave vector and a
complex frequency [27,28]. A high-Q resonance leads to local
field enhancement [29–33] and sharp features in scattering
spectra [34–39] that are useful for lasing, sensing, switch-
ing, nonlinear optics, etc. To obtain a high-Q resonance, the
standard way is to perturb the structure [40–42]. Actually, a
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structural perturbation does not always destroy a BIC. If the
BIC is protected by a symmetry, it continues to exist when the
structure is perturbed preserving the symmetry. Some BICs
are not protected by symmetry in the sense of symmetry
mismatch, but can nevertheless persist under certain structural
perturbations [26,43–46]. In general, if a structural perturba-
tion contains a sufficient number of parameters, a generic BIC
can survive the perturbation if the parameters are properly
tuned [47,48]. On the other hand, high-Q resonant modes
naturally exist near a BIC in a periodic structure without any
structural perturbation. In fact, a BIC is a special point in
a band of resonant modes that depend on the Bloch wave
vector continuously. For a lossless structure, the Q factor of
the resonant mode tends to infinity as its wave vector tends
to that of the BIC. The asymptotic relation between the Q
factor and the wave vector difference can be determined using
a perturbation method [42,49,50]. It is known that, for some
special BICs, the Q factor of the nearby resonant mode tends
to infinity extremely quickly [42,50,51].

A periodic structure sandwiched between two homoge-
neous media can be considered as a periodic waveguide.
Eigenmodes in optical waveguides are often analyzed for a
given real frequency. In this paper, we study eigenmodes
of a periodic waveguide for frequencies near the frequency
of a BIC. For simplicity, we consider two-dimensional (2D)
structures with a single periodic direction and study only
eigenmodes in the E polarization. At a real frequency, a
waveguide mode is either a guided mode that decays exponen-
tially in the lateral direction or a leaky mode that radiates out
power to infinity (also in the lateral direction). In the case of a
periodic waveguide (with a periodicity along the waveguide
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axis), the propagation constant is the Bloch wave number
in the periodic direction. For a lossless waveguide, regular
guided modes below the light line have a real propagation
constant and form bands that depend on the frequency contin-
uously. A BIC is also a guided mode, but it lies above the light
line and is usually an isolated point in the real wave-number-
frequency plane. For open lossless periodic waveguides, there
exist guided modes with a complex propagation constant and
they are the so-called complex modes [52]. A complex mode,
like a complex eigenvalue of a real nonsymmetric matrix,
exists because the periodic-waveguide eigenvalue problem for
a given frequency is not self-adjoint. Complex modes are well
known for waveguides with shielded boundaries [53], but they
also exist in open lossless dielectric waveguides [54–56]. It
should be emphasized that the complex propagation constant
of a complex mode is not caused by material or radiation
loss, and a complex mode is still a guided mode, since it
decays exponentially in the lateral direction. A different kind
of waveguide mode with a complex propagation constant is
the well-known leaky mode [57–59]. Due to the radiation loss
(power is radiated out in the lateral direction), the propagation
constant of a leaky mode is always complex. Unlike a complex
mode, the amplitude of a leaky mode grows exponentially
in the lateral direction. Both complex and leaky modes form
bands, and each band is given by the propagation constant
being a complex-valued function of the real frequency. The
purpose of this work is to reveal the connection between BICs
and leaky or complex modes. Using a perturbation method,
we show that when the frequency is perturbed, a BIC does not
always become a leaky mode. In fact, it can also become a
complex mode.

The rest of this paper is organized as follows. In Sec. II, we
present a summary and an example for various eigenmodes
in a periodic structure. In Sec. III, we use a perturbation
method to analyze the waveguide modes near a BIC. Nu-
merical examples are presented in Sec. IV to validate the
perturbation theory. The paper is concluded with some com-
ments in Sec. V.

II. EIGENMODES IN 2D PERIODIC STRUCTURES

In this section, we recall the definitions of various
eigenmodes in 2D periodic structures and illustrate their
connections by a numerical example. Consider a periodic
structure that is invariant in x, periodic in y with period d ,
bounded in z by |z| < h/2 for some h > 0, and surrounded by
air. The dielectric function ε is a real function of r = (y, z)
and satisfies ε(y + d, z) = ε(r) for all r, ε(r) = 1 for |z| >

h/2, and max ε(r) > 1. Two examples are shown in Fig. 1.
Figure 1(a) shows a periodic array of circular cylinders with
radius a and dielectric constant ε1, and Fig. 1(b) depicts a slab
of thickness h and dielectric constant ε2, containing a periodic
array of cylinders with radius a and dielectric constant ε1.

For the E polarization, the x component of the time-
harmonic electric field, denoted as u, satisfies the following
2D Helmholtz equation:

∂2
y u + ∂2

z u + k2ε(r)u = 0, (1)

where k = ω/c is the free-space wave number, ω is the angu-
lar frequency, and c is the speed of light in vacuum, and the

FIG. 1. Schematic diagrams of two periodic structures with pe-
riod d along the y axis.

time dependence is e−iωt . An eigenmode of such a periodic
structure is a solution of Eq. (1) given by

u(r) = φ(r) eiβy, (2)

where β is the Bloch wave number satisfying |Re(β )| � π/d ,
and φ(r) is periodic in y with period d . In the free space
given by |z| > h/2, the eigenmode can be expanded in plane
waves as

u(r) =
∞∑

m=−∞
û±

mei(βmy±αmz), ±z > h/2, (3)

where û±
m are the expansion coefficients, β0 = β,

βm = β + 2πm

d
, αm =

√
k2 − β2

m, (4)

and the square root is defined using a branch cut along the
negative imaginary axis.

An eigenmode must satisfy a proper boundary condition as
z → ±∞. If φ(r) → 0 as |z| → ∞, then the eigenmode is a
guided mode. If both β and k are real, and k < |β|, the guided
mode is a regular one below the light line. The regular guided
modes form bands that depend on β and k continuously. A
BIC is also a guided mode, but it is above the light line.
More precisely, both β and k of a BIC are real and k > |β|.
Since a BIC must decay as z → ±∞, if for any m, αm is real
(note that at least α0 > 0), then û±

m in Eq. (3) must vanish,
because they are the coefficients of propagating plane waves.
The periodic structure can also support complex modes which
are guided modes with a complex β [52]. Since the structure
is nonabsorbing and the field decays to zero as z → ±∞,
the complex modes are unrelated to absorption and radiation
losses. They exist because the eigenvalue problem for a given
frequency (where β is the eigenvalue) is not self-adjoint [54].
The existence of complex modes is similar to the existence of
complex eigenvalues for a real nonsymmetric matrix.

Eigenmodes can also be defined using an outgoing radia-
tion condition. In that case, the eigenmode radiates out power
to infinity in the lateral direction, i.e., as z → ±∞. A leaky
mode is an eigenmode with a real k and an outgoing wave field
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FIG. 2. Normalized real parts of k and β for different modes
near the light line. We show resonant (red), guided (green), improper
(gray), leaky (purple), and complex (blue) mode curves.

[57–59]. Since a leaky mode is losing power as it propagates
forward, β should have a positive imaginary part, so that the
amplitude of the mode decays as it propagates forward. On the
other hand, a complex β implies that Im(α0) < 0, and thus,
the plane waves exp[i(βy ± α0z)] blow up and the field of
a leaky mode grows exponentially as z → ±∞. A resonant
mode is also an eigenmode satisfying the outgoing radiation
condition, but it is given for a real β [27,28]. Since β is real,
the amplitude is uniform in the y direction, and to radiate out
power to infinity in the lateral direction, a resonant mode must
have a complex frequency (with a negative imaginary part),
so that it decays with time. This implies that Im(α0) is also
negative, and the field is unbounded as z → ±∞.

To illustrate the different eigenmodes, we present an exam-
ple for the periodic structure shown in Fig. 1(b). For ε1 = 1,
ε2 = 11.56, h = 1.8d , and a = 0.25d , we calculate the disper-
sion curves for various eigenmodes using a numerical method
based on a nonlinear eigenvalue formulation [19,20,60]. The
results are shown in Fig. 2. The dispersion curves for regular
guided, leaky, complex, resonant, and the so-called improper
modes are shown as green, purple, blue, red, and gray curves,
respectively. For resonant and complex/leaky modes, only the
real parts of k or β are shown in the figure. The dashed
line is the light line k = β. Two guided modes emerge from
the light line tangentially. The dispersion curve of the lower
guided mode has a local maximum where a complex mode
appears [52]. An improper mode is a solution with a real k
and a real β, but it grows exponentially as z → ±∞. Two
improper modes emerge at the same points on the light line
as the regular guided modes. A leaky mode appears at the
minimum point on the dispersion curve of an improper mode
[28]. The resonant modes are connected to the improper
modes where the dispersion curves (of the improper modes)
have an infinite slope [28]. At a particular value of β, the
two resonant modes coalesce and form an exceptional point
[60,61].

III. PERTURBATION ANALYSIS

In this section, we develop a perturbation theory for waveg-
uide modes (leaky or complex modes) near a BIC in a periodic
structure. As in Sec. II, we consider a 2D lossless periodic
structure that is translationally invariant in x, periodic in y with
period d , and surrounded by air for |z| > h/2, and we focus on
E -polarized Bloch eigenmodes with a real frequency. Suppose
the periodic structure supports a BIC u∗(r) = φ∗(r)eiβ∗y with
Bloch wave number β∗ and frequency ω∗ (free-space wave
number k∗ = ω∗/c), we assume k∗ satisfies

|β∗| < k∗ <
2π

d
− |β∗|, (5)

and then α∗ = √
k2∗ − β2∗ is positive, and for m �= 0, α∗

m =
[k2

∗ − (β∗ + 2πm/d )2]1/2 is pure imaginary with a positive
imaginary part. This means that for the pair {β∗, k∗}, there
is only one radiation channel for positive or negative z, re-
spectively. Now, for a given real k near k∗, we seek a Bloch
eigenmode u(r) = φ(r)eiβy that either decays exponentially or
radiates out power as z → ±∞. In terms of φ, Eq. (1) takes
the form

∂2
y φ + ∂2

z φ + 2iβ∂yφ + [k2ε(r) − β2]φ = 0. (6)

Since the periodic structure is embedded in a homogeneous
medium, a BIC is an isolated point in the real β-k plane (when
d is the true minimum period of the structure), and if k �= k∗,
β is always complex. To find the Bloch mode with a complex
β, we use a perturbation method assuming |(ω − ω∗)/ω∗| =
|(k − k∗)/k∗| is small. For simplicity, we let δ = k2 − k2

∗ and
expand β and φ in power series of δ. It turns out that we need
to use power series of

√|δ| when the BIC carries zero power.

A. BIC with nonzero power

For δ �= 0, we seek β and φ from the following power
series:

β = β∗ + β1δ + β2δ
2 + · · · , (7)

φ = φ∗ + φ1δ + φ2δ
2 + · · · . (8)

Inserting the above into Eq. (6) and comparing terms of equal
powers of δ, we obtain

O(1) : Lφ∗ = 0, (9)

O(δ) : Lφ1 = 2β1(β∗φ∗ − i∂yφ∗) − ε(r)φ∗, (10)

O(δ2) : Lφ2 = 2β1(β∗φ1 − i∂yφ1) − ε(r)φ1 (11)

+2β2(β∗φ∗ − i∂yφ∗) + β2
1φ∗,

where L ≡ ∂2
y + ∂2

z + 2iβ∗∂y + k2
∗ε − β2

∗ .
Equation (9) is simply the governing equation of the BIC.

The inhomogeneous equations (10) and (11) are singular and
have no solution unless the right-hand sides are orthogonal to
φ∗. Let 
 be the domain given by 0 < y < d and −∞ < z <

∞. Multiplying φ∗ to both sides of Eq. (10) and integrating
on 
, we obtain

β1 = 1

P

∫



ε|φ∗|2dr, (12)
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where

P = −2i
∫




u∗
∂u∗
∂y

dr, (13)

and it is assumed to be nonzero. In the Appendix, we show
that P is real and proportional to the power carried by the BIC
in the y direction. Since we assume the BIC carries a nonzero
power, P �= 0, it is clear that β1 is real. In addition, we note
that

β1 = dβ

dk2

∣∣∣∣
k=k∗

= 1

2k∗

dβ

dk

∣∣∣∣
k=k∗

.

Thus, the slope of the dispersion curve at the BIC point is
related to β1.

To reveal the nature of this eigenmode, it is necessary
to find the first term with a nonzero imaginary part in the
power series of β. It is possible to write down a formula for
β2, but it is given in terms φ1, which satisfies Eq. (10). In
the Appendix, we show that the imaginary part of β2 can be
expressed (without involving φ1) as

Im(β2) = |F1|2 + |F2|2
4dα∗P

, (14)

where F1 and F2 are given by

Fj =
∫




ψ j (r)G(r) dr, j = 1, 2, (15)

where G(r) = −2iβ1∂yφ∗ + [2β∗β1 − ε(r)]φ∗ is the right-
hand side of Eq. (10), ψ1 and ψ2 are related to w1 and w2

by

w j (r) = ψ j (r)eiβ∗y, j = 1, 2. (16)

Here w1 and w2 are diffraction solutions of Eq. (1) (with k
replaced by k∗) corresponding to incident waves exp[i(β∗y ±
α∗z)] given for z < −h/2 and z > h/2, respectively.

We assume the BIC is generic in the sense that (F1, F2) �=
(0, 0). Since β1 is real and Im(β2) �= 0, we have

Im(β ) = O(δ2) = O(|ω − ω∗|2). (17)

If P is positive, then β1 is positive, the imaginary part of
β is positive, α0 =

√
k2 − β2 has a negative imaginary part,

the plane wave ei(βy+α0z) grows exponentially as z → +∞,
and the eigenmode is a leaky mode. On the other hand, if
P < 0, then β1 < 0, Im(β ) < 0, Im(α0) > 0, the plane wave
ei(βy+α0z) decays exponentially as z → +∞, and the eigen-
mode is a complex mode. Therefore, if a BIC has a nonzero
power, it is a special point on the dispersion curve for a band
of eigenmodes with a complex β. If the power of the BIC is
positive, then the dispersion curve has a positive slope at the
BIC point and the eigenmodes are leaky modes. If the power
of the BIC is negative, then the dispersion curve has a negative
slope at the BIC point and the eigenmodes are complex modes.
If we assume β∗ > 0, the BIC with a negative power is a
backward wave.

B. BIC with zero power

If the BIC carries no power in the y direction, the per-
turbation method based on power series of δ fails. For a
typical standing wave with β∗ = 0, the power is indeed zero.

Therefore, it is important to analyze this special case. To find
the eigenmodes near a BIC with a zero power, we try power
series in

√|δ|. It is convenient to introduce an integer s, such
that s = 1 if δ > 0 and s = −1 if δ < 0, and we expand β and
φ as

β = β∗ + β1

√
sδ + β2δ + · · · , (18)

φ = φ∗ + φ1

√
sδ + φ2δ + · · · . (19)

Inserting the above expansions into Eq. (6) and collecting
terms at the same order, we obtain the following equations for
φ∗, φ1, and φ2:

O(1) : Lφ∗ = 0, (20)

O(
√

|δ|) : Lφ1 = 2β1(β∗φ∗ − i∂yφ∗), (21)

O(δ) : Lφ2 = 2sβ1(β∗φ1 − i∂yφ1) + sβ2
1φ∗

+ 2β2(β∗φ∗ − i∂yφ∗) − ε(r)φ∗. (22)

Since the power of the BIC is zero, the right-hand side of
Eq. (21) is orthogonal to φ∗, and thus β1 cannot be determined
from the solvability condition of φ1. To remove the unknown
β1, we define φ̂1 such that φ1 = β1φ̂1 and then φ̂1 satisfies

Lφ̂1 = G(r) = 2β∗φ∗ − 2i∂yφ∗. (23)

Multiplying φ∗ to both sides of Eq. (22), replacing φ1 by
β1φ̂1, and integrating on 
, we get

sβ2
1

∫



[|φ∗|2 + R(r)]dr =
∫




ε(r)|φ∗|2dr, (24)

where R(r) = 2φ∗(β∗φ̂1 − i∂yφ̂1). Multiplying Eq. (24) by

β
2
1, and comparing the imaginary parts of both sides, we

obtain

Im
(
β

2
1

)
= s|β1|4

Im
∫



R(r)dr∫



ε|φ∗|2dr
. (25)

In the Appendix, we show that

Im
∫




R(r)dr = −|F1|2 + |F2|2
4dα∗

, (26)

where F1 and F2 are defined as in Eq. (15) with a new G(r)
given in Eq. (23). This leads to

Im
(
β2

1

) = s|β1|4(|F1|2 + |F2|2)

4dα∗
∫



ε|φ∗|2dr
. (27)

Therefore, if the BIC satisfies the condition (F1, F2) �= (0, 0),
then β1 has a nonzero imaginary part and

Im(β ) = O(
√

|δ|) = O(|ω − ω∗|1/2). (28)

For k > k∗, i.e., s = 1, Im(β2
1 ) is positive, and thus β1 is

in the first or third quadrant of the complex plane. It is clear
that Eq. (24) has two solutions for β1. Let these two solutions
be β

(1)
1 and β

(2)
1 , where β

(1)
1 is in the first quadrant and β

(2)
1 =

−β
(1)
1 is in the third quadrant. If β∗ of the BIC is positive,

then the mode corresponding to β
(1)
1 has a positive Re(β ),

a positive Im(β ), and a negative Im(α0), and it is a leaky
mode; the mode corresponding to β

(2)
1 has a positive Re(β ),
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a negative Im(β ), and a positive Im(α0), and it is a complex
mode. The results are opposite if β∗ < 0. Since BICs with zero
power are usually standing waves, the most important case
is β∗ = 0. In that case, the two modes corresponding to β

(1)
1

and β
(2)
1 are both leaky modes, and they are reciprocal to each

other.
If k < k∗, i.e., s = −1, then Im(β2

1 ) < 0, and β1 is in the
second or fourth quadrant of the complex plane. Let the two
solutions of Eq. (24) be β

(1)
1 (in the second quadrant) and

β
(2)
1 = −β

(1)
1 (in the fourth quadrant). For a BIC with β∗ > 0,

the mode corresponding to β
(1)
1 has a positive Re(β ), a posi-

tive Im(β ), and a negative Im(α0), and it is a leaky mode; the
mode corresponding to β

(2)
1 has a positive Re(β ), a negative

Im(β ), and a positive Im(α0), and it is a complex mode. The
opposite results are obtained for β∗ < 0. For β∗ = 0, the two
modes corresponding to β

(1)
1 and β

(2)
1 are both complex modes.

IV. NUMERICAL RESULTS

In this section, we numerically verify the theoretical re-
sults obtained in the previous section. The first example is a
periodic array of circular cylinders shown in Fig. 1(a). The di-
electric constant and the radius of the cylinders are ε1 = 11.56
and radius a = 0.3d , respectively. For the E polarization, the
structure supports a few BICs. We consider three BICs that
are shown as the small red dots and marked by 1©, 2©, and 3©
in Fig. 3(a). BICs 1© and 2© are antisymmetric standing waves
with β∗ = 0 and their electric fields are odd functions of y.
The frequencies of BICs 1© and 2© are ω∗ = 0.5907(2πc/d )
and 0.4119(2πc/d ), respectively, and their field patterns [real
part of u∗(y, z)] are shown in Figs. 3(c) and 3(d). BIC 3©
is a propagating BIC with β∗ = 0.2041(2π/d ) and ω∗ =
0.5764(2πc/d ). The field pattern of BIC 3© is quasiperiodic
(not periodic) in y and is shown in Fig. 3(e).

For BICs 1© and 2©, we found leaky modes for k > k∗ and
complex modes for k < k∗, in agreement with the perturbation
theory of Sec. III B. In Figs. 3(a) and 3(b), the dispersion
curves of the leaky and complex modes are shown in purple
and blue, respectively. For each band of leaky or complex
modes, β is a complex-valued function of k. The real and
imaginary parts of β are shown, as the horizontal axis, in
Figs. 3(a) and 3(b), respectively. As k is decreased from k∗, the
complex mode that emerges from BIC 2© ends below the light
line [the black dashed line with positive slope in Fig. 3(a)]
at a local maximum on the dispersion curve of a regular
guided mode [52]. The solid green curve in Fig. 3(a) is the
dispersion curve of the regular guided mode. The complex
mode that emerges from BIC 1© exists up to Re(β ) = π/d and
turns to a different complex mode with a fixed Re(β ) = π/d
[52]. The leaky modes that emerge from these two BICs exist
continuously as k is increased and Re(β ) passes π/d with a
finite derivative dβ/dk.

On the dispersion curve of the leaky mode that emerges
from BIC 2©, there is a special point with Im(β ) = 0, and it is
precisely BIC 3©. Notice that this BIC is not on the dispersion
curve of the complex mode that emerges from BIC 1©, since
Im(β ) of the complex mode at k∗ (of BIC 3©) is clearly
nonzero, as shown in Fig. 3(b). From Fig. 3(a), it is clear that
dβ/dk > 0 at k∗. This is consistent with the theory developed

FIG. 3. Example 1: A periodic array of circular cylinders. Panels
(a) and (b) show dispersion curves of complex (blue) and leaky
(purple) modes, with BICs shown as the red dots: (a) k versus Re(β )
and (b) k versus Im(β ). Panels (c)–(e) show field profiles of BICs:
(c) BIC 1©, (d) BIC 2©, and (e) BIC 3©. (f) Coefficient û±

0 of leaky
modes near BIC 3©.

in Sec. III A. That is, β1 is positive and the power of the BIC
is positive. In Fig. 3(f), we show the radiation amplitude û±

0
[defined in Eq. (3)] of the leaky mode as a function of β. Since
û±

0 depends on the scaling, we assume the leaky mode satisfies
u(y, h/2) = 1. It is clear that û±

0 = 0 for β = β∗. Therefore,
as k → k∗ and Im(β ) → 0, the leaky mode ceases to decay
along the y axis and it stops radiating power in the transverse
direction.

The second example is a slab with a periodic array of
air holes, as shown Fig. 1(b). The parameters are ε1 = 1,
ε2 = 11.56, a = 0.3d , and h = d . Like the first example,
this periodic structure supports a few BICs. In Fig. 4(a),
four BICs are shown as the red dots and they are marked
by 4©, 5©, 6©, and 7©, respectively. BICs 4© and 5© are
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FIG. 4. Example 2: A slab with a periodic array of air holes.
Panels (a) and (b) show dispersion curves of complex (blue) and
leaky (purple) modes, with BICs shown as the red dots: (a) k versus
Re(β ) and (b) k versus Im(β ). Panels (c)–(f) show field profiles of
BICs: (c) BIC 4©, (d) BIC 5©, (e) BIC 6©, and (f) BIC 7©.

antisymmetric standing waves. Their frequencies are ω∗ =
0.6902(2πc/d ) and 0.5204(2πc/d ), respectively. The other
two BICs are propagating BICs with a nonzero β∗. BIC 6© has
Bloch wave number β∗ = 0.1632(2π/d ) and frequency ω∗ =
0.6890(2πc/d ). For BIC 7©, we have β∗ = 0.3829(2π/d ) and
ω∗ = 0.5864(2πc/d ).

As predicted by the theory developed in Sec. III B, for each
antisymmetric standing wave, a leaky mode and a complex
mode emerge at β = 0 for k > k∗ and k < k∗, respectively.
The complex mode that emerges from BIC 5© ends at the max-
imum point on the dispersion curve of a regular guided mode
below the light line [52]. The complex mode that emerges from
BIC 4© turns to a leaky mode at a transition point with a real
β. This transition point corresponds to a special diffraction
solution with an incident wave from one diffraction channel
and an outgoing wave in a different radiation channel [52]. For
the leaky and complex modes that emerge from BIC 4©, the

real and imaginary parts of β have complicated dependence
on k. The propagating BIC 6© lies on the dispersion curve of
the leaky mode that emerges from BIC 5©. Consistent with
the theory in Sec. III A, this BIC has a positive power and
the derivative dβ/dk is positive at k∗. The propagating BIC
7© appears on the dispersion curve of the complex mode that

emerges from BIC 4©. Since dβ/dk is negative at k∗, BIC 2©
has a negative power, consistent with the theory of Sec. III A.

V. CONCLUSION

In periodic structures, a BIC is often considered as a special
state in a band of resonant modes with a real Bloch wave
vector and a complex frequency, but for optical waveguides,
eigenmodes are often studied for a given real frequency. In
this paper, we have shown that a BIC in a periodic waveguide
is a special guided mode in a band of waveguide modes with a
complex Bloch wave number β. While the complex-frequency
modes near a BIC are all resonant modes radiating out power
laterally, the waveguide modes with a complex β can be leaky
modes that radiate out power laterally or complex modes that
decay exponentially in the lateral direction. These two cases
are simply determined by the sign of the power carried by the
BIC. If the BIC carries no power, as in the case of standing
waves, both leaky and complex modes appear for frequencies
near the frequency of the BIC.

Our study provides a useful guidance for applications of
BICs in periodic optical waveguides. For simplicity, we stud-
ied only eigenmodes of E polarization in 2D structures with
a single periodic direction. Our theory can be extended to
other wave-guiding structures with BICs, such as fibers with
a periodic Bragg grating [62], periodic arrays of spheres or
disks [63,64], and uniform optical waveguides with lateral
leaky channels [23,26]. The current work is limited to generic
cases so that Im(β ) satisfies Eq. (17) or (28) for BICs with
nonzero or zero power, respectively. It is probably useful to
analyze nongeneric BICs for which Im(β ) exhibits higher-
order relations with the frequency difference.
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APPENDIX

To find β1 for Sec. III A, we multiply Eq. (9) by φ∗ and
integrate on 
. Since φ∗ satisfies Lφ∗ = 0, standard inte-
gration by parts gives

∫



φ∗Lφ1dr = 0. Therefore, Pβ1 =∫



ε|φ∗|2dr, where

P = 2
∫




φ∗(β∗φ∗ − i∂yφ∗)dr.

Since
∫



∂y(φ∗φ∗)dr = 0,
∫



φ∗∂yφ∗dr is pure imaginary and
thus P is real. Since u∗ = φ∗eiβ∗y, P is also given in Eq. (13).
The power in the y direction caerried by the BIC is

P∗ = 1

2Z0k∗

∫ ∞

−∞
Im(u∗∂yu∗)dz, (A1)
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where Z0 is the free-space impedance, and it is independent of
y. Therefore, P = 4dZ0k∗P∗.

Multiplying Eq. (11) by φ∗ and integrating on 
, we get

Pβ2 + β2
1

∫



|φ∗|2dr +
∫




R(r)dr = 0, (A2)

where R(r) = φ∗[2β∗β1φ1 − 2iβ1∂yφ1 − ε(r)φ1]. It is easy to
show that∫




R(r)dr =
∫




φ1G(r)dr =
∫




φ1Lφ1dr,

where G(r) is the right-hand side of Eq. (10). Therefore,

P Im(β2) = −Im
∫




φ1Lφ1dr. (A3)

If φ1 has the far-field expression

φ(y, z) ∼ b±
0 eiα∗z, z → ±∞,

then we can show that

Im
∫




φ1Lφ1dr = −dα∗(|b+
0 |2 + |b−

0 |2).

Therefore,

Im(β2) = dα∗(|b+
0 |2 + |b−

0 |2)

P . (A4)

The functions ψ1 and ψ2 are related to diffraction solutions
w1 and w2 by Eq. (16), and they have the following far-field
expressions:

ψ1(r) ∼ eiα∗z + R1e−iα∗z, z → −∞,

ψ1(r) ∼ T1eiα∗z, z → +∞,

ψ2(r) ∼ T2e−iα∗z, z → −∞,

ψ2(r) ∼ e−iα∗z + R2eiα∗z, z → +∞,

where R1, R2, T1, and T2 are the reflection and transmission
coefficients. Using these asymptotic expressions, we can cal-
culate F1 and F2, satisfying

Fj =
∫




ψ jG(r)dr =
∫




ψ jLφ1dr.

The result can be written as[
F1

F2

]
= 2idα∗S

[
b−

0

b+
0

]
, S =

[
R1 T2

T1 R2

]
. (A5)

The scattering matrix S is unitary. Therefore,

|F1|2 + |F2|2 = 4d2α2
∗ (|b+

0 |2 + |b−
0 |2).

Inserting the above into Eq. (A4), we get Eq. (14).
For Sec. III B, the functions G and R are defined differently.

For R(r) given after Eq. (24), it is easy to show that∫



R(r)dr =
∫




φ̂1G(r)dr =
∫




φ̂1Lφ̂1dr,

where G is given in Eq. (23). Following the same steps above,
we get

Im
∫




φ̂1Lφ̂1dr = −|F1|2 + |F2|2
4dα∗

, (A6)

where F1 and F2 are given by

Fj =
∫




ψ jG(r)dr =
∫




ψ jLφ̂1dr.

The above leads to Eq. (26).
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