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A single paraxial beam reflection at a plane dielectric interface, configured appropriately, can lead to the
formation of a polarization singularity in the inhomogeneously polarized output beam field for any central angle
of incidence. In this paper we derive the necessary condition to realize this effect. We explore the phase singu-
larity characteristics associated with this polarization-singular field and explore the dynamics of the singularities
due to controlled variations of the input polarization. The simulation-generated exact field information lead
to the exploration of the unique Goos-Hänchen, Imbert-Fedorov, and spin shifts of the optical-singular fields
and the anticipation of an exact mathematical characterization of spin-orbit interaction phenomena involved
therein. The formation of a phase singularity independent of a polarization singularity is explained subsequently.
Interrelating these seemingly unconnected beam-field phenomena and generic optical singularities can lead to
a significant and fundamental understanding of the inhomogeneously polarized beam field; additionally, our
singularity generation method can find potential application in experimental characterization of the involved
dielectric media.
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I. INTRODUCTION

The reflection and transmission of an ideal plane electro-
magnetic wave at a plane isotropic dielectric interface is one
of the fundamental problems in electromagnetic optics [1].
However, an ideal plane wave does not physically exist; in-
stead, a real optical beam can be decomposed into constituent
ideal plane waves, each of which can be analyzed individually
to understand their reflection and transmission. The composite
output beams thus generated exhibit fundamentally significant
beam-field phenomena—such as Goos-Hänchen (GH) shift,
Imbert-Fedorov (IF) shift, and longitudinal and transverse
spin shifts—decades of extensive studies on which are present
in the literature [2–27].

A different class of special characteristics of beam fields
are the phase and polarization singularities [28]. A phase
singularity is a point in the beam field where the phase of
the field is indeterminate. This occurs when both the real and
the imaginary parts of the field are zero [28–35]. A C-point
polarization singularity in the beam field is a point where
the orientation of the polarization ellipse is undefined (but
handedness is defined) [28,33,34,36–47]. A point containing
either a σ̂+ or a σ̂− spin polarization, and surrounded by other
polarizations (usually arranged in the beam field in special
patterns such as lemon, star and monstar), is a C-singularity
point.

The formation of phase singularities due to Brewster re-
flection was first identified by Barczyk et al. [48]; and
subsequently, in Refs. [49] and [50], we have examined the
formation and transitional dynamics of generic polarization
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singularities in a Brewster-reflected paraxial beam field. In
the present paper, we show that the above Brewster-reflection
effects constitute a subset of a larger class of phenomena that
occur due to any general central angle of incidence. If an
optical system is configured to give, e.g., a σ̂− spin-polarized
reflected beam in the ideal case for any given angle of in-
cidence, the wavefront curvature of the real beam causes
the appearance of the intended σ̂− polarization only at the
beam center and noncircular (approximately σ̂−) polariza-
tions in the surrounding region. This causes the appearance
of a C-point polarization singularity at the beam center. By
appropriately configuring the input polarization, the above
scheme can be generalized to create a polarization singularity
anywhere in the beam field. We derive the necessary condition
to generate such a singularity in the beam field for a gen-
eral angle of incidence and show that the above-mentioned
Brewster-reflection effects [48–50] can be seamlessly derived
as a special case of the obtained condition. Additionally,
we interpret the σ̂−-polarized C singularity as an attribu-
tion of an associated phase-singular σ̂+-polarized field, and
subsequently demonstrate the dynamics of these phase and
polarization singularities due to controlled variations in the
optical system. The present paper thus provides a fundamental
and significant understanding of the existence of phase and
polarization singularities in a general reflected paraxial beam
field for any given central angle of incidence.

Even though we use a Fresnel-coefficient-based calculation
only at the central plane of incidence to explain the concerned
optical singularity formations, we obtain the simulated field
profiles by using our generalized reflection and transmis-
sion coefficient matrix formalism [51], via which the exact
field information of the final output beam is available. As
explained in Ref. [51], the various novel beam-field proper-
ties and phenomena such as GH and IF shifts, spin shifts,
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FIG. 1. The simulated optical system to analyze the reflection of
a paraxially diverging optical beam.

geometric phase characteristics [52–58]—and spin-orbit in-
teraction (SOI) phenomena in general [15,16,19,56–61]—are
different manifestations of the same fundamental inhomo-
geneously polarized nature of the beam field; and all these
phenomena are exactly characterizable by using the avail-
able complete field information. By using the computationally
generated exact field information, we demonstrate the GH,
IF, and spin shift phenomena in the context of the presently
considered optical-singular fields, and explore their unique
variations due to the variation of the optical system con-
figuration. We then propose that the exact field information
can lead to a complete mathematical characterization of the
SOI characteristics of the beam field, which are anticipated
to be significant and fundamentally interesting, especially in
the context of the presently considered optical-singular fields.
Subsequently, we explain how a phase-singular field can be
achieved independent of a polarization singularity, leading
to a special decomposition of an inhomogeneously polar-
ized field as a superposition of a dominant plane-wave or
near-plane-wave field and a remnant orthogonally polarized
phase-singular field. Such a special decomposition is antic-
ipated to have strong interrelation to the special beam-field
phenomena. To summarize, the special beam-field phenomena
studied in the current literature and the optical-singular phe-
nomena discussed in the present paper are all manifestations
of the same fundamental polarization inhomogeneity of the
beam field; and hence all these phenomena are interrelated.
We explore some of these interrelations in the present paper;
and further interrelations, including a detailed mathematical
characterization of SOI phenomena of the present optical-
singular fields, are to be explored in the future. In addition,
our singularity formation method is anticipated to have po-
tential application in experimental measurements of refractive
indices of dielectric media.

II. THE OPTICAL SYSTEM AND FIELD
TRANSFORMATION

We simulate an optical system (Fig. 1) based on the one
we have used in Ref. [51] (the same coordinate system

conventions are implied). In this system, an initial collimated
Gaussian beam is diverged through a lens L1 (focal length
F1 < 0). The resulting spherically diverging paraxial beam
is incident at a plane isotropic dielectric interface with a
central angle of incidence θi0. The refractive indices of the
incidence and transmission media are respectively n1 and n2.
The reflected spherically diverging paraxial beam propagates
to a lens L2 (focal length F2 > 0) which collimates the beam.
Finally, the beam profile is observed at the screen SR. As
shown in Fig. 1, OF is the focus of L1 (F1 = −OF OI ), and O′

F
is the image of OF (the beam field never truly exists in these
regions; so we validly consider OF and O′

F as point sources of
the incident and reflected diverging beams respectively for the
purpose of the geometrical analysis). So the distances OI OS

and OSOR are adjusted to get OF OI + OI OS + OSOR = F2,
ensuring the final collimation.

We need to consider only the central plane of incidence
(y(I ) = y(S) = y = 0) for the present paper. In this plane,
we consider an arbitrary ray path P0 →PI →PS →PR →P
(Fig. 1), along which a set of constituent wavefront surface
elements are considered to propagate. If the x(I ) coordinate of
PI is xI , then the x coordinate of PR is obtained by the sys-
tem geometry as xR = −αxI , where α = F2/|F1|. The same
geometry also shows that, as an associated spherical surface
element propagates from PI to PR, its area expands by a factor
α2, due to the inverse square law.

We now consider an input surface-element field at P0 as
(suppressing the k · r − ωt phase term)

E (I )
0 = E (I )

0x x̂(I ) + ei�EE (I )
0y ŷ(I ), (1a)

E (I )
0x = E00 GI cos θE , E (I )

0y = E00 GI sin θE , (1b)

where E00 represents the central field magnitude; GI = e−x2
I /w2

0

represents the Gaussian distribution along the x(I ) axis with a
half-width w0; and (θE ,�E ) represent the angle and relative-
phase parameters determining the field polarization. As this
element field propagates to P, it is (1) unaltered along P0 →PI

and PR →P; (2) modified by the lenses L1 and L2 at PI and PR

respectively; (3) reduced in amplitude by a factor g = 1/α due
to the surface-element area expansion along PI →PS →PR;
and (4) modified by Fresnel reflection coefficients at PS . We
have analytically verified that, at the central plane of inci-
dence, the modifications due to L1 and L2 exactly compensate
for each other; and hence, their exact analysis is not required
here.

At the central plane of incidence, the x̂(I ) and ŷ(I ) com-
ponents of E (I )

0 [Eq. (1a)] are respectively the transverse
magnetic (TM) and transverse electric (TE) components.
Hence, at PS these components acquire Fresnel TM and TE
reflection coefficients rTM(θi ) and rTE(θi ) respectively [1],
where, θi is the angle of incidence at PS . The final output field
at P is thus obtained as

E = Ex x̂ + ei�EEy ŷ, (2a)

Ex = ER rTM(θi ) cos θE , Ey = ER rTE(θi ) sin θE , (2b)

ER = gE00 GR, GI ≡ GR = e−x2
R/w2

R , wR = α w0. (2c)

Since the ray path P0 →P is arbitrary, the field E [Eq. (2a)]
truly represents the final output electric field as a function of

013522-2



GENERIC OPTICAL SINGULARITIES AND BEAM-FIELD … PHYSICAL REVIEW A 106, 013522 (2022)

x ≡ xR at the linear section of the screen SR at the central plane
of incidence.

III. POLARIZATION SINGULARITY FORMATION

A. Generalized condition

As understood from Eq. (2b), the Gaussian function GR

is modified by rTM(θi ) and rTE(θi ) respectively to generate
different field functions Ex(x) and Ey(x). However, for a given
specific point x = xS in the beam field, it is possible to find a
specific value θE = θES that satisfies

| tan θES| = |rTM(θi )/rTE(θi )|x=xS , (3)

resulting in |Ex| = |Ey| only at x = xS . Under this condition,
either a σ̂+ or a σ̂− spin polarization can be generated at
x = xS by choosing �E = ±π/2 in Eq. (2a). Equation (2b)
ensures that another σ̂± polarization does not appear in the
immediate vicinity of x = xS , since |Ex| = |Ey| is not satisfied
at other points in the immediate vicinity.

While the condition of Eq. (3) is written based on the field
functions at the x axis only [Eq. (2b)], we have computation-
ally verified based on the formalism of Ref. [51] that no other
immediately neighboring point at the screen SR (xy plane) in
general contains a σ̂± polarization under the above condition.
An isolated σ̂± polarization, i.e., a C-point singularity, is thus
obtained at the specific point x = xS .

Thus, summarizing the central result of the present paper,
a polarization singularity is obtained at a point P(xS, 0) at the
screen SR, for any central angle of incidence θi0, if the initial
input polarization parameter values (θE ,�E ) are chosen as
(θES,�ES ), where

tan θES = ±
∣
∣
∣
∣

rTM(θi )

rTE(θi )

∣
∣
∣
∣
x=xS

, �ES = ±π

2
. (4)

This result reveals the significant fact that, when configured
appropriately, even one simple reflection of a paraxial Gaus-
sian beam at a plane dielectric interface, for any angle of
incidence, can generate a polarization singularity in the re-
flected beam field.

B. Functional variation of θES

For the purpose of simulations and experimental results in
the present paper, it is convenient to show the formation of a
polarization singularity at the central-ray point O (xS = 0) at
the screen SR (Fig. 1). For xS = 0, Eq. (4) gives

tan θES = ±
∣
∣
∣
∣

rTM(θi0)

rTE(θi0)

∣
∣
∣
∣
= ±

∣
∣
∣
∣

cos(θi0 + θt0)

cos(θi0 − θt0)

∣
∣
∣
∣
, (5a)

θt0 = sin−1 [(n1/n2) sin θi0] (Snell’s law), (5b)

obtained using the Fresnel coefficient expressions [1] (ci =
cos θi0, ct = cos θt0)

rTM(θi0) = (n2ci − n1ct )/(n2ci + n1ct ), (6a)

rTE(θi0) = (n1ci − n2ct )/(n1ci + n2ct ). (6b)

The variation of θES as a function of θi0 [Eq. (5a)], for
n1 = 1 and n2 = 1.52, is shown in Fig. 2. Some of the notable
characteristics of this variation are as follows:

FIG. 2. Variation of θES as a function of θi0 [Eq. (5a)], consider-
ing the singularity generation at the reflected beam center. The plot
shows only the positive solution θES = + tan−1 |rTM(θi0)/rTE(θi0)|
for convenience; both ± tan−1 |rTM(θi0)/rTE(θi0)| are valid solutions.

(1) For θi0 = 0◦, we have |rTM(0◦)| = |rTE(0◦)| = (n2 −
n1)/(n2 + n1). So, to satisfy the condition of Eq. (5a), we have
θES = ±45◦.

(2) For θi0 → 90◦, we have rTM(θi0) ≈ rTE(θi0) → −1.
Hence, we have θES → ±45◦ to satisfy the condition of
Eq. (5a).

(3) For Brewster angle incidence θi0 = θB =
tan−1(n2/n1), we have rTM(θB) = 0. Thus, to satisfy Eq. (5a),
we must have θES = 0◦. This is the only special case
where, according to Eq. (2b), both Ex and Ey must become
zero at O to create a singularity. It is thus a higher-order
V -point singularity (both handedness and orientation are
undefined [47]) but not a simple C-point singularity. The
formation of this V -point singularity, however, can be
explained in terms of a merger of two C-point singularities,
as we have explained in our earlier work [50].

Figure 2 clearly shows that the formation of a polarization
singularity due to Brewster reflection is seamlessly identified
by considering θi0 = θB in the general condition of Eq. (5a),
which is a remarkable result, since this generalization has not
been anticipated in previous works [48–50]. Our entire work
of Ref. [50] can thus be considered as a special-case analysis
of the present work on generalized singularity generation due
to paraxial beam reflection.

IV. SIMULATIONS AND EXPERIMENTS

A. Experimental setup

For the purpose of the present paper, we experimentally
recreate the simulated system of Fig. 1, as shown and briefly
captioned in Fig. 3 (adapted from [50]). In addition to the
components of Fig. 1, the setup also includes a quarter wave
plate (QWP) and a Glan-Thompson polarizer (GTP) after the
lens L2 in order to make Stokes measurements [62] on the final
output beam. The various parameters considered for the sim-
ulation and the experiment are refractive indices n1 = 1, n2 =
1.52; power and free-space wavelength of the laser, Pw = 1
mW, λ = 632.8 nm; half width of the input beam, w0 = 0.6
mm; focal lengths of the lenses, F1 = −5 cm, F2 = 12.5 cm;
propagation distances OI OS = 5 cm, OSOR = 2.5 cm.
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FIG. 3. The experimental setup, comprising a He-Ne laser LL ,
a collimating lens-pair LP, a half wave plate H , Glan-Thompson
polarizers G1 and G2, quarter wave plates Q1 and Q2, diverging and
collimating lenses L1 and L2, a glass plate GP whose surface is used
as the dielectric interface, and a CCD camera CC which represents
the screen of observation SR (Fig. 1) (adapted from [50]).

B. Simulated and experimental examples

We have computationally generated field profiles for vari-
ous θi0 values with the condition of Eq. (5a) applied, including
the θi0 = θB case, and have obtained the expected polarization
singularities. Simulated examples of polarization-singular
field profiles for θi0 = 45◦, 56.66◦ (θB), and 70◦ are shown in
Fig. 4 [63]. Corresponding to these θi0 values, the θES values
are obtained from Eq. (5a) as θES ≈ ±17.28◦, 0◦ and ±20.17◦.
The profiles of Fig. 4 are obtained by considering only the
positive parameter values θE = +|θES| and �E = +π/2.

The profile for the θi0 = θB case [Fig. 4(b)] matches well
with the result of our earlier work [50], showing the forma-
tion of a V -point singularity [47] with a node pattern of the
streamlines [28]. The profiles of Figs. 4(a) and 4(c) show
examples of a θi0 < θB case and a θi0 > θB case, which con-
tain a central σ̂− polarization and a central σ̂+ polarization
respectively—i.e., C-point singularities—associated with op-
posite lemon patterns of the streamlines [28]. In the profile of
Fig. 4(a), the σ̂− polarization significantly dominates over the

FIG. 5. Experimentally obtained field profiles [64] correspond-
ing to the simulated profiles of Figs. 4(a) and 4(c), showing a
reasonable match between the simulations and experiments [ex-
perimental verification of the profile of Fig. 4(b) can be found in
Ref. [50]].

σ̂+ polarization, whereas the opposite happens in the profile
of Fig. 4(c). Because of the massive dominance of one spin
polarization over the other, the elliptical natures of the polar-
ization ellipses are not visually recognizable in these figures,
but are understandable only by observing the streamlines. The
central points with abrupt turns of the streamlines (due to
indeterminate ellipse orientation) are the pure spin polariza-
tion points, i.e., the C-point singularities. On the other hand,
in the profile of Fig. 4(b), both σ̂± polarizations have equal
contributions [50], thus squeezing the polarization ellipses to
linear shapes [63]. The central point, where the handedness
and orientation of the polarization ellipse are both indetermi-
nate (because the field is zero), is a V -point singularity [47].

The profiles for the negative parameter values θE = −|θES|
and �E = −π/2 are straightforward to obtain and are not
shown here. We have observed in the simulation that, by trans-
forming either θE → −θE or �E → −�E , the handedness of
the central spin polarization can be flipped, whereas changing
both signs keeps the handedness unchanged.

FIG. 4. Simulated polarization-singular field profiles [63] for (a) θi0 = 45◦ and θE ≈ 17.28◦ (obtained Imax ≈ 4.83 W/m2); (b) θi0 = θB ≈
56.66◦ and θE = 0◦ (obtained Imax ≈ 2.93 mW/m2); and (c) θi0 = 70◦ and θE ≈ 20.17◦ (obtained Imax ≈ 20.73 W/m2). For each profile we
have chosen �E = +π/2. Color codes: The light green ellipses in (a) represent left-elliptical (i.e., σ̂−-dominant) polarizations (LEP); the
dark orange ellipses in (c) represent right-elliptical (i.e., σ̂+-dominant) polarizations (REP); the light green and dark orange line segments in
(b), respectively, represent LEP-transformed-to-linear and REP-transformed-to-linear polarizations [63]. The purple streamlines represent the
major axis orientation patterns of the polarization ellipses.
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Figure 5 shows the experimentally generated field profiles
corresponding to the simulated profiles of Figs. 4(a) and 4(c),
respectively (the θi0 < θB and θi0 > θB cases; the experimental
verification for θi0 = θB [Fig. 4(b)] can be found in Ref. [50]).
We have obtained these experimental field profiles by ana-
lyzing the results of Stokes measurements [62,64] performed
on the output beam [Fig. 3]. The experimental profiles match
the corresponding simulated profiles well, thus verifying the
formation of the expected polarization singularities.

In the light of the above analysis, it is evident that the for-
mation of an isolated C-point singularity in Figs. 4(c) and 6(c)
of Ref. [50] is simply an example of an off-Brewster incidence
case of the present generalized formalism—which is another
remarkable result here.

C. Phase singularity of a spin-component field

Since a C-singularity point is a point of an isolated cir-
cular polarization surrounded by noncircular polarizations,
it is implied that the contribution of the orthogonal circular
polarization is precisely zero at that point and nonzero at the
surrounding points. This indicates that, at the C-singularity
point, the orthogonal circular polarization contains a phase
singularity (vortex). This is exactly the way a phase singular-
ity and a polarization singularity are interrelated—a circularly
polarized field with a constant (or almost constant) phase
profile and the orthogonal-circularly polarized field with a
phase singularity superpose to generate a C-point polarization
singularity [28,45,50].

To examine the phase singularity characteristics in
the present work, we consider the beam-field profile for
(θi0, θE ,�E ) = (45◦, 17.28◦, π/2) [Figs. 4(a) and 5(a)],
which contains a central C-singularity with a σ̂− spin polar-
ization. This implies that the σ̂+-polarized component field
must contain a phase singularity at the beam center in this
case.

To isolate the σ̂+ contribution to the total field, we first
propagate the output beam through a QWP, oriented to in-
troduce an additional +π/2 phase to the x̂ component. This
transforms the σ̂± polarizations to d̂± = (x̂ ± ŷ)/

√
2 polar-

izations. Then, by passing the QWP-output beam through a
GTP, with its transmission axis oriented along d̂+, a controlled
d̂+-polarized output beam is obtained—whose intensity and
phase profiles are equivalent to those of the original σ̂+

component field. The properties of this controlled output
beam are then easily examined to reveal the properties of the
original σ̂+-polarized field.

The simulated phase profile of the σ̂+ component field is
shown in Fig. 6(a), which reveals the existence of an l =−1
phase vortex at the beam center. We experimentally verify
this phase characteristic by obtaining a single-slit diffraction
pattern. We pass the controlled output beam through a sin-
gle vertical slit of width 0.4 mm, placed along x = 0. The
obtained far-field diffraction pattern [Fig. 6(b)] is the char-
acteristic single-slit diffraction pattern of an l =−1 phase
vortex [65]. This observation verifies the existence of the
phase vortex in the controlled output beam.

Thus, by using the methods of the present subsection, the
phase vortex characteristics of the polarization-singular out-
put beam field are analyzed and experimentally verified. This
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FIG. 6. (a) Phase profile of the σ̂+-polarized component field
corresponding to the polarization-singular total beam field of
Fig. 4(a), exhibiting an l =−1 phase vortex. (b) Single-slit diffraction
pattern of the σ̂+-converted-to-d̂+ controlled output beam, showing
the characteristic fringe dislocation due to an l =−1 phase vortex.

vortex nature, and thus an orbital angular momentum (OAM),
clearly manifests itself due to the inhomogeneous nature of the
reflection process, even when the initial input beam contains
only spin angular momentum. This indicates some amount of
spin-to-orbital angular momentum conversion—a manifesta-
tion of SOI—happening in the system due to the reflection
process.

D. Variation of θE for a fixed θi0

Until now, for a fixed θi0 value, we have used θE = θES

determined by Eq. (5a) to obtain the intended singularity at
x = 0. In this subsection, we vary θE around this central θES

value for the fixed θi0 to observe the shift of the singularity
from the beam center, following the general condition of
Eq. (4).

We choose the fixed value θi0 = 45◦ as in Figs. 4(a) and 6.
We then choose displaced θE values 17.08◦ and 17.48◦, which
are ±0.2◦ shifted from the previously used value 17.28◦ that
produces the central singularity [Figs. 4(a) and 6(a)]. The
simulated polarization-singular total beam fields for θE ≈
17.08◦, 17.28◦, and 17.48◦ are shown in Figs. 7(a), 7(b),
and 7(c), respectively, which show the singularity positions in
the x < 0 region, at x = 0, and in the x > 0 region. The phase-
singular σ̂+ component field also undergoes corresponding
transformations—as understood from its casewise simulated
intensity profiles of Figs. 7(d), 7(e), and 7(f)—because the
polarization singularity of the total field and the phase singu-
larity of the σ̂+ field appear at the same point. The casewise
experimentally observed σ̂+-converted-to-d̂+ controlled out-
put intensity profiles are shown in Figs. 7(g), 7(h), and 7(i),
respectively, which match the corresponding simulated σ̂+

intensity profiles [Figs. 7(d), 7(e), and 7(f)] well. Thus, the
condition of Eq. (4) is verified from a general perspective in
terms of central as well as off-central singularity formations.

One can easily visualize that, as the θE value is gradually
taken from 17.08◦ to 17.48◦ through 17.28◦, the singular-
ity position xS moves from the x < 0 to the x > 0 region
through x = 0. Correspondingly, the Fig. 7(a) [or Fig. 7(d)
or Fig. 7(g)] profile gradually transforms to the Fig. 7(c) [or
Fig. 7(f) or Fig. 7(i)] profile through the intermediate profile of
Fig. 7(b) [or Fig. 7(e) or Fig. 7(h)]. This phenomenon reveals a
significant transitional dynamics of the polarization and phase
singularities that are demonstrated in the present paper [63].
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FIG. 7. (a, b, c) Simulated polarization-singular total field profiles for θi0 = 45◦ and θE ≈ 17.08◦, 17.28◦, 17.48◦, showing the singularity
positions in the x < 0 region, at x = 0, and in the x > 0 region respectively. The obtained Imax values are respectively 4.78 W/m2, 4.83 W/m2,
and 4.88 W/m2. (d, e, f) Simulated intensity (I+) profiles of the phase-singular σ̂+ component field corresponding to (a), (b), and (c). The
obtained I+max values are respectively 1.25 mW/m2, 0.74 mW/m2, and 1.29 mW/m2 [63]. (g, h, i) Corresponding experimentally observed
intensity profiles of the σ̂+-converted-to-d̂+ controlled output field.

V. BEAM SHIFTS, SPIN SHIFTS, AND A GENERALIZED
PERSPECTIVE

The central content of the present paper, as demonstrated
above, is the identification and control of generic optical sin-
gularity characteristics of a reflected paraxial beam field; and
we have used a Fresnel-coefficient-based calculation only at
the central plane of incidence to identify these singularities.
However, we emphasize that these singularity characteristics
are a subset of a much larger set of phenomena exhibited
by the concerned inhomogeneously polarized reflected beam
field. Following our work of Ref. [51], we have obtained the
simulated fields via the generalized reflection and transmis-
sion coefficient matrix formalism, due to which the complete
and exact vectorial information on the reflected beam field
is available. As discussed in Ref. [51], the availability of
the complete field information serves as the foundation for
determining all special beam-field properties such as GH and
IF shifts, longitudinal and transverse spin shifts including the

spin-Hall effect of light (SHEL) [16,19], and the underlying
geometric phase properties of the field. From this perspective,
we assert that all these special beam-field phenomena and the
optical singularity generation discussed in the present paper
are interrelated, since they are manifestations of different
properties of the same inhomogeneously polarized field. In
this section we demonstrate the GH, IF, and spin shift phe-
nomena of the reflected field under the considered context of
singularity formation in order to show the interdependence of
these seemingly unrelated effects. Then we identify possible
ways to achieve further generalization of our work from the
perspective of availability of the complete field information.

A. GH and IF shifts

The GH shift of the beam is the longitudinal (i.e., along
the x axis) shift of the beam centroid from the central-ray
point O (Fig. 1). As discussed in Ref. [51], the reflected fields
corresponding to the individual E (I )

0x x̂(I ) and E (I )
0y ŷ(I ) input
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FIG. 8. Variation of the GH shift 〈x〉GH of the total output beam
field as a function of θi0, considering the associated θE variation as
θE = θES [Eq. (5a), Fig. 2] for singularity generation at the beam
center. The plot shows large GH shifts (comparable to the half-
beam-width wR) for near-Brewster incidence. A zero centroid shift
is observed not exactly for the Brewster angle, but for a nearby angle
θi0 ≈ 56.65◦, due to the slight asymmetry of the Brewster-reflected
intensity profile [Fig. 4(b)] with respect to the y axis.

fields [Eq. (1a)] experience their own GH shifts which vary
with θi0—and these individual GH shifts contribute to the GH
shift of the total beam field E [Eq. (2a)]. The contribution of
the E (I )

0x x̂(I ) and E (I )
0y ŷ(I ) fields in the total input is determined

by θE [Eq. (1b)], which, in the present context of singularity
generation, is set to θES determined by Eq. (5a). This results
in a unique variation of GH shift of the total beam field as
a function of θi0, with the readjustment of θE for every θi0

value taken into account (Fig. 8) [63]. This variation also
reveals an unobvious fact that the polarization singularities
in the field profiles of Fig. 4 are not in general formed at
the beam-centroid positions because the condition of Eq. (5a)
ensures the formation of the singularities at the central point
O, whereas the beam-centroid positions are GH-shifted ac-
cording to the variation shown in Fig. 8. The variation also
shows particularly large (comparable to the effective half-
beam-width wR [Eq. (2c)]) GH shifts for near-Brewster angles
of incidence, which is consistent with the effects described by
Chan and Tamir [7].

Unlike the GH shift, which does not depend on the phase
�E [Eq. (1a)], the IF shift depends on all the three parameters
(θi0, θE ,�E ). As explained graphically in Ref. [50], the output
fields corresponding to the E (I )

0x x̂(I ) and E (I )
0y ŷ(I ) inputs, for

a general �E , superpose to create an asymmetry in the total
beam field with respect to the x axis. Because of this asymme-
try, the centroid of the total beam field undergoes a transverse
(i.e., along the y axis) shift, which is the IF shift of the total
beam field. However, we have verified that the assignment
�E = �ES = ±π/2 [Eq. (4)] eliminates this asymmetry in
the total intensity profile in the present case. The y shift of
the total beam centroid is thus reduced to zero, resulting in a
zero IF shift in the presently considered case.

B. Spin shifts and spin-Hall effect

In terms of the presently available complete field informa-
tion, the spin shifts are interpreted straightforwardly as the
centroid shifts of the σ̂± field intensity profiles. These centroid
shifts also depend on the three parameters (θi0, θE ,�E ). For

FIG. 9. Variations of the longitudinal centroid shifts 〈x〉± of the
output σ̂± intensity profiles as functions of θE around the central
θES value 17.28◦ for θi0 = 45◦ [Eq. (5a)]. The plot shows large σ̂+

spin shifts (comparable to the half-beam-width wR) on both sides
of θE = 17.28◦. A zero centroid shift is observed for θE = 17.27◦

but not for 17.28◦, due to the slight asymmetry of the σ̂+ intensity
profile [Fig. 7(e)] with respect to the y axis. The σ̂− spin shift has
much smaller values as compared to the σ̂+ spin shift; and hence it
is represented here by multiplying with 40.

the present demonstration we consider the fixed θi0 = 45◦
case of Sec. IV D (Fig. 7) and show the centroid-shift char-
acteristics by varying θE around the central θES value 17.28◦.

As mentioned in Fig. 7, the maximum intensity of the
total field for (θi0, θE ) = (45◦, 17.28◦) is Imax = 4.83 W/m2,
whereas that of the σ̂+ field for the same parameter values
is I+max = 0.74 mW/m2. The dominant σ̂− field thus hugely
outweighs the remnant σ̂+ field, because of which, the σ̂−

field characteristics are nearly identical to the total beam-field
characteristics. In particular, the longitudinal and transverse
shifts of the σ̂− intensity centroid are respectively nearly
identical to the GH and IF shifts of the total field—a spe-
cial behavior of the presently considered polarization-singular
field.

The variation of the longitudinal shift of the σ̂− intensity
centroid in a θE range ±5◦ around the central value 17.28◦
is shown in Fig. 9. As θE is varied, the contribution of the
E (I )

0x x̂(I ) and E (I )
0y ŷ(I ) fields in the total input varies [Eq. (1b)]—

resulting in a variation of the GH shift of the total field and a
consequent variation of the longitudinal σ̂− spin shift. How-
ever, due to the consideration of �E = ±π/2, we obtain a
σ̂− intensity profile which is symmetric with respect to the x
axis. This results in a zero transverse shift of the σ̂− intensity
centroid, which is consistent with the zero IF shift of the total
field.

The transverse shift of the σ̂+ intensity centroid is zero
likewise. However, due to the transitional dynamics of the
phase singularity of the σ̂+ field [Figs. 7(d), 7(e), and 7(f)],
a significant variation of the longitudinal (x) position of the
σ̂+ intensity centroid is observed. As seen in Fig. 7, as the
phase singularity moves from the x < 0 region to the x > 0
region, the centroid of the I+ profile shifts drastically along the
opposite direction—resulting in enormous longitudinal cen-
troid shifts on both sides of x = 0, comparable to the effective
half-width wR [Eq. (2c)] of the total field [63]. The variation
of the longitudinal centroid shift of the I+ intensity profile is
shown in Fig. 9 for a θE range ±5◦ around the central value
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17.28◦—where the unique nature of this longitudinal σ̂+ spin
shift is clearly observed.

Finally, since the longitudinal shifts of the σ̂± intensity
centroids are different, a well-defined longitudinal spin sep-
aration is obtained in the present case. However, since the
transverse shifts of these centroids are both zero, no cor-
responding transverse separation is obtained. The spin-Hall
effect of light, which signifies the transverse spin separation
in the beam field, is thus zero in the presently considered
polarization-singular fields. We have verified in the simulation
that, if we move away from the singularity formation condi-
tion of Eq. (4) by taking �E 
= ±π/2, we obtain σ̂± intensity
profiles which are asymmetric with respect to the x axis. This
results in nonzero transverse shifts of the σ̂± intensity cen-
troids. Except for two special cases �E = 0, π , these centroid
shifts are unequal, resulting in a transverse separation between
the centroids. Nonzero spin-Hall shifts are thus achieved in
such cases by perturbing the singularity formation.

C. Further generalization and future directions

In Sec. IV C we have interpreted the manifestation of SOI
by identifying the partial conversion from spin to orbital an-
gular momentum. Due to the availability of the complete field
information, the next step in the present formalism would
be to mathematically characterize this phenomenon by deter-
mining the exact spin and orbital contributions to the total
angular momentum of the field—which can be achieved by
following the methods of Allen et al. [59], Berry [60], and
Barnett [61]. The relevant detailed mathematical analysis is
outside the scope of the present paper. But this anticipation
further strengthens our assertion that all the unique beam-field
phenomena are manifestations of different characteristics of
the same inhomogeneously polarized beam field—and with
the complete information on the beam field, all these phenom-
ena and their interrelations can be seamlessly explained under
the same formalism. We strongly anticipate that the complete
mathematical characterization of SOI would be particularly
significant and fundamentally interesting in the context of the
generic optical singular fields considered in the present paper.

Even though we have demonstrated our central context
of singularity generation by considering the interrelation of
phase and polarization singularities, we emphasize that a
phase singularity can exist without an associated polarization
singularity. For example, if the optical system is configured
to give a certain elliptical polarization ê1 in an ideal reflected
plane-wave field, the reflected paraxial beam field attains the
polarization ê1 only at the beam center, surrounded by other
elliptical polarizations. Clearly, this inhomogeneously polar-
ized beam field can be interpreted as a superposition of (1) the
dominant ê1-polarized field with a constant or almost-constant
phase profile and (2) the remnant orthogonally polarized (e.g.,
ê2, orthogonal to ê1 on the Poincaré sphere) field with a
phase singularity. Thus, a phase-singular ê2-polarized field
is obtained, even though the total field does not contain a
polarization singularity. Interpreted from an experimental per-
spective, one can exactly cancel the elliptical polarization at
a specific point in the beam field by using an appropriately
configured QWP-GTP combination. This operation removes
the contribution of that specific elliptical polarization from

the entire beam field. The controlled output thus obtained
contains contribution from only the orthogonal elliptical po-
larization, with a phase singularity at the point where the
original field has been exactly canceled.

Clearly, any general inhomogeneously polarized paraxial
beam field can be expressed in this way as a dominant-
remnant field superposition. Since the beam shifts, spin
shifts, and SOI phenomena are simply different manifesta-
tions of the fundamental inhomogeneity of the beam field,
the above discussion indicates the significant possibility that
all such special phenomena arising in a complex reflected
(or transmitted) beam field must be strongly correlatable to
the superposition characteristics of a dominant plane-wave or
near-plane-wave field and a remnant orthogonally polarized
phase-singular field. This possible perspective is a fundamen-
tally appealing generalized view of our present formalism,
which can potentially lead to a different direction for future
exploration.

Finally, we emphasize that our method of generic singu-
larity formation can find potential application in experimental
measurement of refractive indices of dielectric materials. As
seen in Fig. 7, the singularity position in the beam field is
very sensitive to θE . The central θES value, as determined by
Eq. (5a), depends on θi0 as well as on the refractive indices n1

and n2. Experimentally determined (θi0, θE ) pairs that create
the central singularity as in Fig. 7(h) thus contain information
on n1 and n2 with significant accuracy. This measurement
can thus be utilized to determine an unknown refractive index
n2 (while using n1 = 1 for air)—a potential technique whose
efficiency and accuracy is to be explored in the future.

VI. CONCLUSION

In the present paper, we have identified a generalized con-
dition on the input polarization that can generate a C-point
polarization singularity in a reflected paraxial beam field for
any central angle of incidence. Associated with this polariza-
tion singularity, we have characterized the phase singularity
of the constituent field whose polarization is orthogonal to
the central circular polarization. Singularity generation due
to Brewster reflection [48–50] is seamlessly understood as a
special case of the present formalism. We have demonstrated
these polarization and phase singularities via simulated pro-
files and have verified them experimentally. Finally, we have
demonstrated the dynamics of the singularities due to con-
trolled variation of the input polarization. The result that phase
and polarization singularities can be generated by a single
reflection of a paraxial beam at a plane isotropic dielectric
interface—due to any general central angle of incidence—is
the central feature of our formalism.

Even though we have derived the singularity generation
condition by using a Fresnel-coefficient-based calculation
only at the central plane of incidence, we have demonstrated
the simulated field profiles by obtaining exact output field
information via our generalized reflection and transmission
coefficient matrix formalism. By virtue of this availability
of complete field information, we have explored the unique
natures of the GH, IF, and spin shifts of the optical-singular
beam fields. We have proposed that the SOI phenom-
ena of the presently considered fields can be completely
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characterized mathematically by using the available exact
field information, which would be fundamentally significant
to explore especially due to the involvement of optical singu-
larity formations. Finally, by explaining the generation of a
phase-singular field independent of a polarization singularity,
we have demonstrated a special decomposition of an inho-
mogeneously polarized field as a superposition of a dominant
plane-wave or near-plane-wave field and a remnant orthog-
onally polarized phase-singular field. The special beam-field
phenomena studied in the literature and the optical-singular
phenomena discussed in the present paper are all interrelated,
as they are manifestations of the same fundamental polariza-
tion inhomogeneity of the beam field. While some of these
interrelations are explored in the present paper, we anticipate

that further detailed exploration in this direction—especially
a complete mathematical characterization of SOI phenomena
in the present singularity formation context—would provide
a very rich and significant understanding of the fundamen-
tal polarization-inhomogeneity characteristics of a reflected
paraxial beam field. Additionally, our singularity formation
method can have potential application in experimental char-
acterization of dielectric media, especially in measurements
of unknown refractive indices.
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