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Exploiting billiard theory to calculate the mean path length of light in refractive spheroids
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A technique is introduced to calculate the mean path length of light rays diffusely incident on a refractive
object. It uses the phase portrait from billiard theory to determine the criteria for which chords are accessible for
a given refractive index. The mean path length is given as an integral over the lengths of chords accessible via
refraction, which implicitly accounts for total internal reflections. We demonstrate this method by calculating the
mean path length in ellipses and spheroids. The mean path length is given by a double integral for the ellipse and
a triple integral for the spheroid, which may be evaluated numerically, and also allows us to deduce simple series
expansions for low eccentricity. These results give analytic expressions for the orientation averaged absorption
cross sections in the geometric optics limit.
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I. INTRODUCTION

This study aims to calculate the mean path length traveled
by light rays diffusely incident on a refractive spheroid in the
geometric optics limit. The purpose of calculating the mean
path length is that it applies as the short wavelength limit to
the electromagnetic scattering problem for a wave incident on
a dielectric boundary, in particular the mean path length is
directly related to the absorption of a weak absorber. This is a
followup on two recent papers [1,2], which studied the mean
path length in simple geometries such as spheres, cubes, cylin-
ders, polygons, and prisms. Those geometries were treated
with ideas that only apply in specific circumstances with high
symmetry, while this paper aims to make a step in the di-
rection of more complex analytical calculations with ellipses
and spheroids, introducing techniques from billiard theory
that should allow generalization to more complex shapes.
Spheroids are a common model for atmospheric aerosols and
in solution [3], where analytic solutions are known in terms of
the T-matrix method. However, computations are difficult for
large particles, and no large size asymptotic expressions are
known for the absorption in the weakly absorbing case. The
mean path length derived here will provide an expression for
the high -frequency limit of the absorption cross section.

We may now note some simple theorems for general
shapes. For nonrefractive convex bodies one can simply use
the mean chord length theorem [4–7], which states that the
mean chord length 〈C〉 depends only on the ratio of volume
V to surface area � as 〈C〉 = 4V/�. For nonrefractive bodies
with imperfections that scatter the light into a random walk,
the similar mean path length theorem applies. This states that
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the mean path length traveled by the rays inside the object is
still 〈L〉 = 4V/�, independent of the scattering properties [8].

For refractive objects with scattering, the problem is also
simple and given by

〈Lsca〉 = 4
V

�
s2 (1)

for refractive index s relative to its surroundings [9]. This
surprisingly is independent of the amount of scattering, as
long as it is nonzero.

But for perfectly nonscattering refractive objects, the mean
path length is much more complex due to refraction and
internal reflections. There is no overarching theorem for
calculating the mean path length and so far only simple ge-
ometries such as spheres and regular polygons have been
studied analytically [1,2,10]. Billiard theory is a well-studied
area of mathematics, which analyzes the different types of
trajectories of billiard balls confined to a billiard table of
any shape. The balls can be interpreted as light rays, which
reflect off a boundary in the same way, if one then also
adds the refractive effects. This link has been explored in the
past two decades in relation to whispering gallery modes in
hexagonal optical cavities [11,12], deformed circular cavities
[13–15], quasibound modes in partially chaotic refracting bil-
liards [16], and the escape of trapped modes [17,18].

While zero scattering of any kind is unachievable, the
nonscattering case determines the limit of the absorption of
a weakly absorbing object when scattering is weaker than
absorption [1]. This is therefore relevant to applications to
particles such as aerosols, where the absorption together with
the extinction (of twice the particle area) are important optical
properties [19–21]. This study focuses purely on the geomet-
ric optics limit, while wave effects such as dispersion and
interference may be added to increase the range of validity
to smaller particles [22–29].

In this paper we consider the zero-scattering case of el-
lipses and spheroids, and devise a method of calculating the
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mean path length via concepts in billiard theory. The results
are expressed as integrals, which are tested against Monte
Carlo simulations. We then consider the general implications
of billiard theory on the mean path length through particles of
arbitrary shape.

II. ELLIPSE

We will study the ellipse first to introduce the general
method before applying it to spheroids.

A. No refraction

First let us consider just the average chord length with
s = 1, meaning no refractive boundary. An ellipse lies in the
xz plane with width 2a along x and 2c along z, in a diffuse
distribution of rays, which may cross the ellipse, tracing out
chords. The mean chord length 〈C2D〉 could be calculated
simply by using the two-dimensional (2D) mean path length
theorem (Cauchy’s formula),

〈C2D〉 = π
A

P
(2)

with area A = πac and perimeter P = 4cEi(e−2), where Ei

is the complete elliptic integral of the second kind and e =√
1 − a2/c2 is the eccentricity.

But for purposes of generalizing to refractive ellipses, we
will calculate the mean path length as an integral over the
phase space. The chord length C depends on the point of
incidence x, z and the entry angle θ to the normal. The rays are
incident on the perimeter in a uniform distribution 1/P with
respect to arc length t , and at each point, rays are distributed
about θ in a Lambertian distribution with probability density
1
2 cos θ . For any 2D shape, the mean chord length is given the
following integral over all chords:

〈C2D〉 = 1

P

∫ P

0

∫ π/2

−π/2
C(θ, t )

1

2
cos θdθdt . (3)

For an ellipse we must parametrize in terms of z because there
is no straightforward analytic expression for the chord length
C directly in terms of t . For an ellipse, the infinitesimal arc
length dt is related to dz by

dt = dt

dz
dz =

√
1 +

(
dx

dz

)2

dz =
√

1 + a2z2

c2(c2 − z2)
dz (4)

so the mean chord length may be expressed as

〈Cellipse〉 = 2

P

∫ c

0

∫ π/2

−π/2
C(θ, z) cos θ

dt

dz
dθdz, (5)

where C(θ, z) is calculated in Appendix A as

C(θ, z) = 2a(a2z2 − c2z2 + c4)3/2

2acz(a2 − c2)
√

c2 − z2 sin θ + (a4z2 − a2c4 − c4z2 + c6) cos θ + a2c4 sec θ
. (6)

The integral (5) agrees numerically with Cauchy’s formula
(2).

B. Refraction

For a refractive boundary, when a ray hits the surface with
angle θi it has a probability of reflecting back out, or refracting
in to an angle θ to the normal according to Snell’s law:

sin θ = 1

s
sin θi (7)

while the ray cannot refract in to an angle θ greater than the
critical angle θc where

θc = asin
1

s
. (8)

All incident rays that refract though the boundary get com-
pressed into the range |θ | � θc, and rays inside the ellipse that
hit the boundary at an angle θ ′ to the normal will undergo total
internal reflection if |θ ′| > θc. Once inside it may reflect back
inside any number of times before finally refracting out. An
example of a ray reflecting once inside an ellipse is shown
in Fig. 1. Probabilistic reflections are also possible, with
probabilities given by the Fresnel coefficients, but to simplify
the problem we may replace all probabilistic reflections with
refractions since this does not affect the mean path length, as
proved in Ref. [1] and supported by Monte Carlo simulations.

We define the path length of a ray as the total distance trav-
eled by the ray inside the object. Naively the mean path length

can be calculated by generalizing the integral (3); replacing
the chord length C with path length L, changing the bounds
of integration for θ by ±θc and renormalizing the Lambertian
distribution to s

2 cos θ [1]:

〈L2D〉 = 1

P

∫ θc

−θc

∫ P

0
L(θ, t )dt

s

2
cos θdθ, (9)

but calculating L(θ, t ) would be extremely complex, as one
would have to determine if and how many times the ray will
undergo total internal reflection, and how long each of the
chord lengths are.

Instead, the main idea in this work is to calculate the mean
path length by integrating over all free chords: the chords that
are accessible by rays that refract in from outside. For this we
use the concept of a phase space from billiard theory.

FIG. 1. Light ray refracting through an ellipse, refracting in at an
angle θ < θc, reflecting inside at an angle θ ′ > θc to the normal, and
refracting out from an angle θ ′′ < θc.
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FIG. 2. Phase portrait for an ellipse of aspect ratio 2, refrac-
tive index s = 1.5, showing a range of curves for F = −2, −
0.5, 0, 0.2, 1/s2 ≈ 0.444, 0.8. F = −2 are the innermost purple
ovals, which are part of the same orbit that crosses the focal line.
F = 0 is called the separatrix where rays pass through the foci. F =
0.8 defines clockwise and anticlockwise whispering gallery modes.
The black dashes mark p = ±1/s where rays leave the billiard if they
pass below this line. F = 1/s2 (black) mark the innermost curves that
lie entirely in the range |p| � 1/s, and divide the free region (white)
and trapped regions (gray) of the phase space.

C. Elliptical billiard and its phase portrait

A billiard is basically an idealized billiard table where
point billiard balls are fired in straight lines and reflect inwards
off the boundary. This is similar to our refracting object, but
in our case the light enters in from outside and may also
leave, hence refracting objects are sometimes called “open
billiards” [30], and we may use the term “closed billiard”
for the other type. Trajectories, also known as orbits, are
described on a phase space, which encodes the points and
angles on the boundary. Specifically, the phase space is a
two-dimensional space parameterized by arc length t ∈ [0, P)
around the perimeter, and angle θ ∈ [−π/2, π/2] to the nor-
mal inside the surface. Each time a ray hits the boundary it
puts a mark on the phase space according to its point and angle
of incidence. An orbit in a closed billiard maps out infinitely
many points as the ray is trapped. An example of a phase space
with a few select orbits is shown in Fig. 2.

For an open billiard we can divide the phase space into
two regions corresponding to free and trapped modes. The free
regions of the phase space are those that can be reached by
rays incident from outside, and the rest of the phase space is
trapped. We know at least all points on the phase space with
|θ | < θc are free due to direct refraction from outside, but the
free phase space also includes points and angles that a ray can
reach via total internal reflection.

If no scattering is present, the trapped phase space is un-
occupied while the free phase space is uniformly filled with a
density of s (or s2 in three dimensions) relative to outside.
For all points with |θ | < θc, the factor of s is due to the
compression of angles as the light refracts in. The rest of the
free phase space must also have a density of s, which can be

justified by considering that the rates of flux in and out of this
region must be equal to maintain equilibrium.

If any amount of scattering is present, the entire phase
space is free and uniformly filled with a density of s. This
is backed by Monte Carlo simulations, and an argument for
this is presented in Ref. [2], which applies to arbitrarily low
scattering.

A key observation is that the mean path length is propor-
tional to the total ray mass inside the object. This mass is the
integral of the ray density over the phase space, weighted by
the chord lengths corresponding to each point. In the scatter-
ing case the mean path length is the integral over all chord
lengths in the phase space filled with a uniform density of
s (or s2 in three dimensions), which evaluates to sπA/P (or
s24V/� in three dimensions). Similarly in the nonscattering
case the mean path length is the integral of the chord lengths,
but only over the free (populated) regions of the phase space.

So we need to determine exactly where the boundary be-
tween the free and trapped subspaces lies. For very simple
objects where every point on the perimeter is identical–circles,
spheres, infinite strips, slabs, and cylinders, no total internal
reflection can occur so the boundary is simply θ = θc. For
polygons the boundary is also independent of t [2].

Ellipses and ellipsoids are also special cases, because their
phase spaces are nonergodic, which means that any thin beam
of rays will follow a predictable curve in the phase space. For
the ellipse these curves are parameterized by Refs. [31,32],
denoting p = sin θ :

p(t, F ) = ±
√

F − e2(F − 1)

(1 − e2)2z2/x2 + 1
, (10)

where e =
√

1 − a2/c2 is the eccentricity and we have used
z and x in place of arc length t , because the expression in
terms of t is not easily expressed analytically. F is a constant
of motion, which defines the orbit uniquely up to a reverse
of its direction. Physically F is related to the product of the
angular momenta of the ball about the two foci of the ellipse
[31], and ranges from −1/(1 − e−2) (oscillation across the
narrow part of the ellipse on the x axis) to 1 (grazing clockwise
or anticlockwise around the perimeter). The phase space of
an ellipse is shown in Fig. 2 with contours of Eq. (10) for
selected values of F . The portrait shows two types of curves:
waves and double ovals. In a closed billiard, the waves cor-
respond to rays traveling around the ellipse in one direction,
anticlockwise for p > 0 and clockwise for p < 0. The ovals
come in pairs for t and t + P/2 corresponding to the same
orbit, where the ball bounces across the thinner width of the
ellipse, avoiding the tips.

Now considering the open billiard, rays are still confined
to the same curves, but only curves that extend into the region
|p| < 1/s (|θ | < θc) may be populated by rays refracting in
from outside the billiard. Any curve of the double-oval type
(F < 0) is free since these loops touch p = 0, while only
some wave-type trajectories are free. All free trajectories lie
between the two wavelike curves that touch p = ±1/s at their
minimum value of |p|, which occurs at the tips t = 0, P/2.
These curves are parameterized by F = 1/s2, and we denote
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FIG. 3. Mean path length in an ellipse for a range of refractive
indices s and eccentricities e, as calculated by the integral (12),
normalized by the mean chord length. The dashed line is the mean
path length when scattering is included.

them by p f ( f for free):

p f =p

(
z, F = 1

s2

)
= 1

s

√
1 + e2(s2 − 1)

(1 − e2)2z2/x2 + 1
(11)

and an example is plotted in black in Fig. 2, enclosing the
white region, which is the free phase space.

D. Mean path length

Now we can calculate the mean path length under diffuse
illumination. This is calculated by integrating the chord length
C(θ, t ), given in Eq. (6), over the free phase space |p| < p f ,
times the ray density, which we argued in Sec. II C is uni-
formly equal to s. We parametrize this in terms of p, z as

〈Lellipse〉 = s

P

∫ p f

−p f

∫ c

−c
C(p, z)

dt

dz
dzd p. (12)

This is evaluated numerically and plotted in Fig. 3 for a
range of aspect ratios and refractive indices. Monte Carlo
simulations of 108 rays were also used to calculate the mean
path length (which included the Fresnel probabilities). The in-
tegral (12) agrees with Monte Carlo simulation data to within
a relative error of ∼10−5, about the standard deviation of the
simulation.

The integral can also provide simple approximations in the
limit as the aspect ratio e goes to zero, i.e., as the ellipse tends
towards a circle. Expanding P, dt/dz, C, p f and keeping only
terms up to order e4 gives for the mean path length:

〈Lell〉
〈Cell〉 = 2

π

(
sθc +

√
1 − 1

s2

)
+ (s2 − 1)3/2

πs
e2

+ (4 − 3s2)
(s2 − 1)3/2

16πs
e4 + O(e6). (13)

This is plotted alongside the exact integral in Fig. 3, which
shows it is a good approximation for e � 0.5 (c/a � 1.15) in

the range s � 2 (accuracy decreases with s). For e = 0.5, the
fourth-order term is only beneficial for s � 3.

In the limit of high eccentricity, e → 1, the trapped region
of the phase space shrinks and the mean path length tends
towards that in the scattering case, Eq. (1). Correction terms
in the expansion are difficult to determine due to singularities
in the integrand.

III. PROLATE SPHEROID

The mean path length in a spheroid can be calculated using
the same technique of integrating the chord length over the
phase space of free orbits. We use spheroidal coordinates (ξ ,
η, φ), with focal length 2 f :

ξ =
√

(z + f )2 + ρ2 +
√

(z − f )2 + ρ2

2 f
(14)

η =
√

(z + f )2 + ρ2 −
√

(z − f )2 + ρ2

2 f
, (15)

where ρ2 = x2 + y2. ξ ∈ [1,∞) defines a spheroidal surface
with semimajor axis c along z and semiminor axis a, while
η ∈ [−1, 1] is analogous to the latitude, and φ is the usual
azimuthal angle.

A. Constants of motion

The constants of motion of a given ray’s orbit (in a closed
billiard) are important to us because they define curves and
surfaces (in three dimensions) on the phase space, for which
we want to compare to the critical angle and the boundary be-
tween free and trapped modes. The phase spaces of spheroids
have been analyzed in Ref. [33,34] using Hamiltonian me-
chanics. For clarity we will follow their derivations in detail
to obtain the phase space curves and surfaces, before linking
these to free and trapped modes in Sec. III B.

Consider a closed spheroidal billiard, where a ray may be
taken as a unit point mass inside with fixed velocity, whose
kinetic energy (the Hamiltonian) can be expressed as

H = 1

2

(
v2

ξ + v2
η + v2

φ

)
(16)

= f 2

2

(
ξ 2 − η2

ξ 2 − 1
ξ̇ 2 + ξ 2 − η2

1 − η2
η̇2 + (ξ 2 − 1)(1 − η2)φ̇2

)
,

(17)

where, for example, vξ is the speed of the ball in direction ξ̂,
and ξ̇ is the time derivative of ξ . The conjugate momenta Pξ ,
Pη, Pφ are determined by Hamilton’s equations:

Pξ = ∂H

∂ ( f ξ̇ )
Pη = ∂H

∂ ( f η̇)
Pφ = ∂H

∂ ( f φ̇)
. (18)

Using conjugate momenta, the Hamiltonian is then expressed
in a separable form:

H = 1

2

(
ξ 2 − 1

ξ 2 − η2
P2

ξ + 1 − η2

ξ 2 − η2
P2

η + P2
φ

(ξ 2 − 1)(1 − η2)

)
.

(19)

One advantage of using spheroidal coordinates is that reflec-
tions in the spheroid are simply described by

(ξ, η, φ, Pξ , Pη, Pφ ) → (ξ, η, φ,−Pξ , Pη, Pφ ) (20)
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so that reflections do not affect any of the terms in the Hamil-
tonian (19). The equations of motion are straight lines, which
can be expressed in spheroidal coordinates via separation
of variables. Multiplying H by (ξ 2 − η2) = (ξ 2 − 1) + (1 −
η2), it can be separated into terms containing only ξ , η, or φ.
And conservation of energy implies H = E for constant E , so
Eq. (19) becomes

(ξ 2 − η2)2E = (ξ 2−1)P2
ξ + (1−η2)P2

η + P2
φ

ξ 2−1
+ P2

φ

1−η2

(21)

and E simply scales the particle’s speed so we may set E =
1/2.

There are two constants of motion. First, Pφ must be con-
stant since it is the only φ-dependent term and physically is
the angular momentum about the z axis. Geometrically Pφ is
proportional to the closest approach of the ray to the z axis.
For instance, a ray with Pφ = 0 travels exactly as it would in
an ellipse in the x-z plane. The other constant is determined
by noting that the ξ - and η-dependent parts of (21) should not
vary individually, so we may we set them equal to constants
±κ2:

(ξ 2 − 1)P2
ξ + P2

φ

ξ 2 − 1
− ξ 2 = − κ2 (22)

(1 − η2)P2
η + P2

φ

1 − η2
+ η2 =κ2. (23)

Equation (23) shows that Pφ is maximized for Pη = 0, η =
0; here Pφ = κ and motion is restricted to the equator. And
Eq. (22) shows that Pφ is further maximized for Pξ = 0, giving
Pφ max = ±

√
ξ 2 − 1, and in this case the rays reflect off the

equatorial surface at infinitesimally small intervals, essentially
traveling in a circle around the equator. So the range of P2

φ is

0 � P2
φ � ξ 2 − 1.

And for a fixed Pφ , one can determine the range of κ to be

P2
φ � κ2 � ξ 2 − P2

φ

ξ 2 − 1
.

B. Phase space and the boundary between free and
trapped modes

Having determined the constants of motion, we want to
consider their corresponding curves in the phase space. The
phase space for a spheroid is technically four dimensional;
chords are described by two coordinates for the surface point,
η, φ, and two angles for the ray’s direction, θ, ϕ, where ϕ

is the angle of rotation about the surface normal. Due to the
rotational symmetry of a spheroid we can ignore the azimuthal
surface coordinate φ, so the phase space is effectively three
dimensional.

We may also now consider the open billiard, and which
constants of motion correspond to free or trapped modes. A
ray will undergo total internal reflection when p ≡ sin θ >

1/s (note that in three dimensions, 0 � θ � π/2 and 0 � p �
1). p is related to the velocities as

p =
√

v2
η + v2

φ√
v2

ξ + v2
η + v2

φ

, (24)

where the velocities can be converted into the conjugate mo-
menta via

vξ =
√

ξ 2 − 1

ξ 2 − η2
Pξ (25)

vη =
√

1 − η2

ξ 2 − η2
Pη (26)

vφ = Pφ√
(ξ 2 − 1)(1 − η2)

(27)

and Pξ , Pη can in turn be expressed in terms of κ, Pφ , and η

by solving Eqs. (22), (23), to give

p(η, κ, Pφ ) =
√

(κ2 − η2)(ξ 2 − 1) + P2
φ

(ξ 2 − η2)(ξ 2 − 1)
. (28)

It will also be convenient for us to express Pφ and κ in terms
of the angle of rotation around the surface normal ϕ, since the
distribution of rays is uniform with respect to ϕ. This is related
to the velocities as

cos ϕ = vη√
v2

φ + v2
η

. (29)

For ϕ = 0, π , rays cross the z axis and bounce as if they were
in an ellipse, and for ϕ = ±π/2, the rays bounce in a circle
on the equator, with p(η,±π/2) constant.

If we parametrize the phase space by p ∈ [0, 1], η ∈
[−1, 1], ϕ ∈ (−π, π ], each set of constants κ, Pφ defines a
curve p(η), ϕ(η) for which any one ray must be confined to,
and a curve κ (Pφ ) defines a surface p(η, ϕ). For a given re-
fractive index s, there is a critical surface p f (η, ϕ) defined by
κ = κ f (Pφ ), where the minimum value of p f is 1/s. All free
chords lie in the phase space volume 0 � p � p f (η, ϕ). In
order to find p f , we must find where p(η, κ f , Pφ ) is minimized
in terms of η, and equate this value of p to 1/s to solve for
κ f (Pφ ). Equation (28) tells us that p(η, κ f , Pφ ) is minimized

at η2 = η2
0 = 1

2 (κ2 + 1 −
√

(κ2 − 1)2 + 4P2
φ ) (not all orbits

reach the tips η = ±1). Substituting this into Eq. (28), the
condition p f (η0, κ f , Pφ ) = 1/s tells us κ f (Pφ ):

κ2
f = 1 + ξ 2 − 1

s2
− P2

φ s2

ξ 2 − 1
. (30)

This is illustrated in the κ, Pφ space in Fig. 4. To obtain
the corresponding surface in the phase space p f (η, ϕ), we
want to express Pφ in terms of η, ϕ when κ = κ f . This is
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FIG. 4. Allowed range of κ as a function of Pφ for a prolate
spheroid of apsect raqtio 1.81, (ξ = 1.2). κ must lie in the shaded
regions.

done by substituting κ f into Eq. (29), and rearranging for
Pφ, f = Pφ (κ = κ f ) gives

Pφ, f = sin ϕ

s

√
(1 − η2)(ξ 2 − 1)[ξ 2 − 1 − (η2 − 1)s2]

ξ 2 − 1 − (η2 − 1)[s2 − (s2 − 1) cos2 ϕ]
.

Now we can express p f in terms of η and ϕ:

p f = 1

s

√
ξ 2 − 1 + (1 − η2)s2

ξ 2 − 1 + (1 − η2)(s2 − (s2 − 1) cos2 ϕ)
, (31)

which satisfies p f � 1/s as required. p f (ϕ, t ) is plotted in
Fig. 5 for a representative spheroid, where t is the arc length

FIG. 5. Phase space p, ϕ, t for a prolate spheroid of aspect ratio
2.4, refractive index s = 1.9, where p is measured on the color scale.
t is the arc length along a line of constant longitude and f is the
half-focal length. The free modes lie below the surface p = pf (ϕ, t ).

from the north pole. One may reparameterize p f in terms of z
through η = z/c, and we also have ξ = c/ f = c/

√
c2 − a2.

C. Mean path length

With p f we can now derive the mean path length under
diffuse illumination. This is given by an integral over all free
chords:

〈Lpro〉= s2

�

∫ c

−c

∫ 2π

0

∫ θ f

0
C(θ, ϕ, z)ρ

dt

dz
sin 2θdθdϕdz, (32)

where θ f = asin(p f ), � = 2πa2(ξ csc−1(ξ )c/a + 1) is the
surface area, ρ = a

√
1 − z2/c2 is the distance from the z axis,

sin 2θ is the angular distribution of diffuse rays incident on a
surface in three dimensions, and the chord length C is derived
in the Appendix to be

C = 2a cos θ (a2z2 − c2z2 + c4)3/2

a2c2z2 sin2 θ sin2 ϕ − c4 sin2 θ cos2 ϕ(c2 − a2 − z2) − acz(c2 − a2)
√

c2 − z2 sin 2θ cos ϕ + a4z2 cos2 θ + c4(c2 − z2)
.

(33)

Numerically the integral (32) agrees with Monte Carlo simu-
lations to within their standard deviation of ∼10−4.

For a near spherical spheroid, the chord length (33) and the
integral (32) can be expanded as a series about the eccentricity
e → 0:

〈Lpro〉 = 4c

3s
(s3 − (s2 − 1)3/2)

− 2c

9s
(2s3 − 5(s2 − 1)3/2)e2

− c

270s
((36s2 − 41)(s2 − 1)3/2 + 56s3)e4 + O(e6),

(34)

where the first term is the mean path length in a sphere. This
expansion closely approximates the exact mean path length
plotted in Fig. 7 for low aspect ratios.

We can now obtain the absorption of a weakly absorbing
spheroid in the high-frequency limit. Both the absorption of a
spheroid under diffuse illumination, and the orientation aver-
aged absorption in a directional wave, are expressed as

Cabs = �

4
α〈L〉, (35)

where α is the absorption coefficient and �/4 is the ori-
entation averaged surface area (due to Cauchy’s theorem).
The extinction cross section in this limit is twice the
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FIG. 6. Phase spaces for oblate spheroids of different aspect ratios and refractive indices, where p is measured on a color scale. (a)
c = 0.832a (χ = 1.5) and s = 1.5 <

√
χ 2 + 1. In this case pf ,out is a smooth function of t and independent of ϕ, given by (36). (b) c = 0.447a

(χ = 0.5) and s = 3 >
√

χ 2 + 1. In this case the critical surface is the intersection of two curves, p = min(pf ,out, pf ,in ), where pf ,out is given
in Eq. (36) and pf ,in in Eq. (39). t is the arc length from the equator and d is the focal disk radius.

cross-sectional area, i.e., �/2. Edge effect corrections may
be added to account for first-order wave effects, but are not
currently refractive index dependent for absorption [27–29].

IV. OBLATE SPHEROID

The derivations for the oblate spheroid are more complex
than for the prolate spheroid, so the details are left for the
Appendix. The mean path length is still obtained via inte-
grating the chord lengths over the free phase space, except
that for high aspect ratios, the boundary between the free and
trapped phase space may be defined by the intersection of two
surfaces. This is due to two different types of trajectory, inner
modes that pass through the focal disk, and outer modes that
do not.

We may define the surface by ρ2

a2 + z2

c2 = 1. The coordinate
χ (analogous to ξ ) also defines a surface, by fixing χ = c/d
where d = √

a2 − c2 is the focal disk radius. The angular
coordinate is η = z/c on the surface.

For s �
√

χ2 + 1, i.e., relatively low aspect ratio and re-
fractive index, the outer modes are the only ones that can be
trapped, and a single surface p = p f ,out marks the boundary
between the free and trapped modes:

p f ,out = 1

s

√
χ2 + η2s2

χ2 + η2
, (36)

which is plotted in Fig. 6(a) for a representative spheroid. Note
that it is independent of the angle ϕ.

The mean path length is then calculated as the following
integral, expressed in z, ϕ, θ coordinates:

〈Lobl〉 = s2

�

∫ c

−c

∫ 2π

0

∫ θ f ,out

0
C(θ, ϕ, z)ρ

dt

dz
sin 2θdθdϕdz,

(37)

where � = 2πa2(χcsch−1(χ )c/a + 1) is the surface area,
θ f ,out = asin(p f ,out ), ρ = a

√
1 − z2/c2, and the chord length

C is given in Eq. (33).
For a near spherical spheroid, the integral (37) and the

chord length (33) can be expanded as a series of the (imag-
inary) parameter e = c/

√
c2 − a2:

〈Lobl〉 = 4c

3s
(s3 − (s2 − 1)3/2)

− 2c

9s
(2s3 + (s2 − 1)3/2)e2

− c

270s
(56s3 + 19(s2 − 1)3/2)e4 + O(e6), (38)

which closely matches the exact mean path length for low
aspect ratios as shown in Fig. 7. Note that the mean path length
does not vary smoothly from prolate to oblate spheroids–the
gradient changes at e = 0 (h = 1).

For s �
√

χ2 + 1, i.e., relatively high aspect ratio and re-
fractive index, the trapped phase space also includes inner
modes. The surface p f ,in that divides the free and trapped
modes of the inner type is given by

p f ,in = 1

s

√
(η2 − 1)s2 + χ2 + 1

χ2 + 1 + (η2 − 1)(s2 − (s2 − 1) cos ϕ2)
. (39)

The surfaces p f ,in, p f ,out intersect at ϕ = ϕi/o given by

cos ϕi/o = η

√
(η2 − 1)s2 + χ2 + 1

(η2 − 1)(η2s2 + χ2)
, (40)

where p f ,in < p f ,out for ϕ > ϕi/o (due to the fourfold symme-
try about ϕ we can focus on 0 � ϕ < π/2). The combination
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FIG. 7. (a) Mean path length in spheroids of varying aspect ratio
h, normalized by the corresponding mean chord length. The stars
are data from Monte Carlo simulations. In the scattering case the
normalized mean path length would simply be s2, independent of
h. For h < 1 the spheroid is oblate, and the dot-dash lines mark
s = √

χ 2 + 1 (equivalently h = √
1 − s−2), where Eq. (41) is used

to the left of the vertical dashed line and Eq. (37) is used to the right
until h = 1. For h > 1, the prolate case, Eq. (32) is used. (b) Zoomed
region near h = 1, showing the approximations (38) for h � 1 and
(34) for h � 1.

of the surfaces (36) and (39) is shown in Fig. 6(b). The mean
path length is calculated as the piecewise integral [θ f ,in =
asin(p f ,in )]:

〈Lobl〉 = 4s2

�

∫ c

−c

[ ∫ ϕi/o

0

∫ θ f ,out

0
+

∫ π/2

ϕi/o

∫ θ f ,in

0

]

× C(θ, ϕ, z)ρ(z)
dt

dz
sin 2θ dθdϕdz, (41)

which numerically agrees with Monte Carlo simulations of
108 rays.

FIG. 8. Phase portrait of a quadrupole billiard, reprinted with
permission from Ref. [16] ©The Optical Society, showing phase
space curves and their respective orbits in the quadrupole (right).
Half the phase space is shown, and sin χ on the vertical axis is our p,
and ϕ is the polar angle which is related to the arc length t .

Figure 7 plots the mean path length normalized by the
mean chord length, with varying aspect ratio h = c/a, cov-
ering prolate and oblate spheroids using Eqs. (32), (37), (41)
piecewise. The integrals for the oblate spheroids transition
into each other smoothly. The mean path length is minimum
for a sphere, which is related to the fact that a smaller range
of orbits are accessible from outside in a sphere for a given
refractive index: the phase space for a sphere is flat and the
integration domain is simply θ < θc, whereas for spheroids
the integration domain expands to include chords that can be
reached via total internal reflection.

V. ERGODICITY, BILLIARD THEORY, AND MEAN
PATH LENGTH

Let us discuss the implications of this proposed approach
on the mean path length for a general shape. We have seen that
ellipses are nonergodic, which means that any given ray maps
out a fixed curve in the phase space. Some of these curves
are trapped from the perspective of refraction through the
boundary. Only a specific few shapes are completely noner-
godic, while most shapes will at least contain ergodic regions
in their phase space, where the dynamics are chaotic but
confined to these subregions. Examples of this are Limaçons
[13,15,35,36] and tunable circular-polygonal billiards [37].
Any convex shape with a sufficiently smooth boundary has
a nonergodic region near p → ±1, where the orbits are whis-
pering gallery modes [38]. These modes also have very short
chords so their absence only subtracts a tiny amount from
the mean path length, that is, 〈L〉 � 〈Lsca〉. A representative
example of a partially ergodic phase space is shown in Fig. 8
for a quadrupole (squashed circle) billiard. The dotted ergodic
regions surround islands of stability and at the top are the
whispering gallery modes. To calculate 〈L〉 using Eq. (12),
we would make p f (t ) the lowest curve such that all curves
and ergodic regions above p f (t ) do not bleed into the region
p < 1/s. Unfortunately, analytic expressions for curves in the
phase portraits of most billiards are rare, so the integral would
have numerical bounds.

In a fully ergodic (closed) billiard, every ray covers the
whole phase space, so there are no trapped modes in the
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open billiard. Therefore in Eq. (12) we set p f = 1, which
leads to 〈L〉 = 〈Lsca〉 for all refractive indices. Of course in
an experimental setting no refractive object has a perfectly
analytical boundary, and we should expect that the boundary
imperfections make the dynamics completely ergodic, so the
mean path length in any case is simply 〈L〉 = 〈Lsca〉. Then
any idealized simulation or calculation of 〈L〉 such as the
one conducted in this paper will be an underestimate of the
physical value. Even adding infinitesimally small imperfec-
tions to the boundary of an idealized shape introduces orbits,
which are confined to the (previously) trapped phase space
for an arbitrarily long time, yet still accessible. Nevertheless,
the idealized value for 〈L〉 should still provide the correct
approximation to the absorption of a weak absorber. This
was argued in Refs. [1,2] in the case of a small scattering
coefficient and for a regular polygon with a very large number
of sides, approaching a circle. The idea is that the arbitrarily
long trajectories that are introduced by the small imperfec-
tions get absorbed early on anyway, and therefore have a
negligible contribution to the mean path length because of
their scarcity. This scenario relies on the rate of absorption
being significantly higher than the rate of diffusion due to the
imperfections, but also that the absorption be not too high as
to significantly affect the typical paths of rays that behave as
they would in the idealized case. Whether this scenario occurs
in nature or is feasible to create in a laboratory is another
question.

VI. CONCLUSION

This paper demonstrates the link between billiard the-
ory and optical mean path length, where the concept of the
phase portrait provides an elegant alternative to brute force
calculation of individual path lengths. The link has the im-
mediate consequence for ergodic shapes that the mean path
length is equal to that in the scattering case. This implies that
in an imperfect experimental setting, the mean path length
will always be equal to scattering mean path length. How-
ever, we have argued that the idealized value for the mean
path length is relevant for calculating absorption in some
limits.

Specifically we have derived analytic expressions for the
mean path length in ellipses and spheroids, by integrating the
chord length over the free regions of the phase space. For
the ellipse we found the phase space curves corresponding
to rays on the boundary between being free and trapped, for
which we integrated the chord lengths below this curve. For
spheroids the curves generalized to surfaces in a 3D phase
space, determined by two constants of motion. We examined
the relationship between the parameter space of constants of
motion and the phase space, and found that the two types
of orbit in the oblate spheroid create a two piece boundary
between free and trapped modes. Our analytic expressions
for the mean path length may be applied to calculating the
absorption of large weakly absorbing spheroids, and the series
expansions for small eccentricity provide fast approximations
for modeling near-spherical particles.

FIG. 9. Chord in an ellipse.
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APPENDIX A: CHORD LENGTH IN AN ELLIPSE

Here we calculate the chord length of a ray that enters
the ellipse at a point x � 0, z � 0 on the boundary (where
x = a

√
1 − z2/c2), with an angle θ to the normal as shown

in Fig. 9. The chord length C is the distance from (x, z) to the
next point that the ray hits the boundary at x2, z2. This may be
expressed as

C = z − z2

sin α
, (A1)

where α is the angle between the ray and the x axis, which is
related to θ by

α = atan(mn) + θ (A2)

and

mn = az

c
√

c2 − z2
(A3)

is the gradient of the normal at point x, z. The equation of a
straight line (z − z2) = (x − x2) tan α gives z2 as

z2 = c2z − a2 tan2 αz − 2ac
√

c2 − z2 tan α

c2 + a2 tan2 α
. (A4)

Then combining Eq. (A1) with (A4) and (A2), and using the
sum angle formulas gives the chord length (6).

APPENDIX B: CHORD LENGTH IN A SPHEROID

Here we calculate the chord length of a ray that enters
at x, y, z with angle θ to the normal, ϕ around the normal,
where ϕ = 0 points towards the north pole of the spheroid.
This derivation applies for both prolate and oblate spheroids.
Without loss of generality we may let the incident ray hit
x � 0 and y = 0. We can project the problem on to the xz
plane and follow the derivation for the ellipse, but this time
what was the chord length becomes the major axis of an
elliptic cross section Ē whose major axis subtends an angle
θ ′ from the surface normal and whose minor axis is parallel to
the y axis, as depicted in Fig. 10. The ray lies on this ellipse
and its trajectory is defined by a second angle φ′ which varies
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FIG. 10. Schematic of a ray (thick dashed arrow) across a
spheroid, and flat view of the ray lying on the elliptic section Ē .

perpendicular to θ ′. The angles θ ′ and φ′ can be related to the
angles θ, ϕ by inspection of Fig. 11:

tan θ ′ = tan θ cos ϕ (B1)

sin φ′ = sin θ sin ϕ. (B2)

Looking at the spheroid, the gradient of the ray in the θ ′
direction (the gradient of the projection of the ray onto the

FIG. 11. Decomposition of the angles θ , φ into components
θ ′, φ′. The light ray (bold solid arrow) enters the particle from below
and travels a unit distance into the spheroid. The cube is not real and
only to visualize the angles more clearly.

y = 0 plane) is

mθ = tan(atan(mn) + θ ′), (B3)

where mn = az
c
√

c2−z2 is the gradient of the normal at the in-
cident point. We denote x2, y2 = 0, z2 as the 3D coordinates
of the opposite end of the ellipse arE . x2 and z2 may be
calculated as

z2 = c2z − a2m2
θ z − 2acmθ

√
c2 − z2

c2 + a2m2
θ

x2 = x − z − z2

mθ

. (B4)

On the ellipse Ē , we denote the semimajor and semiminor
axes by c̄ and ā, the Cartesian coordinates by x̄, z̄, and the
ray’s exit point by x̄2, z̄2, as shown in Fig. 10. c̄ is found from
the half-distance from x, z to x2, z2:

c̄ = 1

2

√
(x − x2)2 + (z − z2)2 (B5)

and ā can be obtained from the intersection of the spheroid
surface at ( x+x2

2 , y = ā, z+z2
2 ):

ā = a

√
1 −

(
z + z2

2c

)2

−
(

x + x2

2a

)2

. (B6)

The chord length C is the distance across this ellipse from the
tip x̄ = 0, z̄ = c̄ to the exit point x̄2, z̄2:

C = c̄ − z̄2

cos φ′ . (B7)

φ′ is defined in Eq. (B2), and z̄2 is found by solving z̄2 − c̄ =
mφ x̄2, where mφ = − cot φ′ is the gradient of the ray in Ē :

z̄2 = 2c̄3

c̄2 + ā2m2
φ

− c̄. (B8)

Substituting z̄2, c̄ and φ′ in to Eq. (B7) gives the chord length
(33) for both prolate and oblate spheroids.

APPENDIX C: MEAN PATH LENGTH IN AN OBLATE
SPHEROID

Here we cover the details in deriving the mean path length
for the oblate spheroid. The oblate spheroidal coordinates are

χ =i

√
(z + f )2 + ρ2 +

√
(z − f )2 + ρ2

2 f
(C1)

η =
√

(z + f )2 + ρ2 −
√

(z − f )2 + ρ2

2 f
, (C2)

where f = √
c2 − a2 is imaginary, a is the half width, c the

half-height, and the focal disk radius is d = −i f . χ is real
and defines the surface by χ = c/d .

1. Constants of motion

The oblate constants of motion are not just a reparameteri-
zation of those the prolate spheroid; there are a few surprising
differences, which alter the analysis significantly. So we will
outline the derivation of Ref. [33] to determine the constants
of motion.
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FIG. 12. Allowed range of κ as a function of Pφ : κ must lie in the colored regions. The red (top) region corresponds to trapped modes,
green (bottom) to free modes, and the dotted to inner modes. For s = 1.2, which is less than

√
χ 2 + 1, the line κ f ,out lies entirely in the outer

mode region and defines the boundary of free modes without the need for κ f ,in. For s = 2 >
√

χ 2 + 1, κ f ,out intersects κ f ,in at the boundary of
inner and outer modes, at p̂φ . For κ < κmin 1, κ f ,in defines the maximal free modes above the intersection κ f ,in = κmin 2.

The Hamiltonian in oblate spheroidal coordinates is ex-
pressed in terms of the conjugate momenta as

H = 1

2

(
χ2 + 1

χ2 + η2
P2

χ + 1 − η2

χ2 + η2
P2

η + P2
φ

(χ2 + 1)(1 − η2)

)
.

(C3)

Fixing H = 1/2, this may be separated by multiplying by
χ2 + η2, rearranging into χ and η dependent sides and setting
both sides equal to a positive constant κ2:

(1 + χ2)
(
1 − P2

χ

) + P2
φ

1 + χ2
=κ2 (C4)

(1 − η2)
(
1 + P2

η

) + P2
φ

1 − η2
=κ2. (C5)

We added 1 to each equation so that κ is proportional to
the definition in Ref. [33], where κ reduces to the angular
momentum in the spherical case. The other constant of motion
is again Pφ . Following the same approach as for the prolate
spheroid, we can show that Pφ lies in the range

0 � P2
φ � χ2 + 1. (C6)

The range of κ is not as simple as for the prolate spheroid.
Its maximum occurs for rays grazing the surface with Pχ = 0;
here Eq. (C4) gives

κ2
max = 1 + χ2 + P2

φ

1 + χ2
. (C7)

κmin depends casewise on Pφ , and can be found by analyz-
ing Eq. (C5) with Pη = 0. If P2

φ > 1, the minimum occurs
at η = 0, where κ2 = P2

φ + 1 and the ray travels in the xy
plane outside the focal disk. If P2

φ < 1, then minima lie at
η2 = 1 − |Pφ|, where κ2 = 2|Pφ|, and the ray crosses the focal
disk, in and out of the xy plane. In summary,

κ2
min =

{
κ2

min 1 = P2
φ + 1 P2

φ < 1
κ2

min 2 = 2|Pφ| P2
φ � 1

. (C8)

The allowed range of values of κ, Pφ is plotted in Fig. 12.
Reference [33] discusses two types of modes and their condi-
tions in terms of Pφ and κ . Type 1, which we will call outer
modes, do not cross the focal disk and tend to circle around
the spheroid. Type 2 or inner modes pass through the focal
disk.1

The domain of inner modes is the region κmin 2 � κ �
κmin 1 (dotted region in Fig. 12), over the interval P2

φ � 1.
There are no inner modes for P2

φ > 1 because the minimum
approach of rays to the rotation axis is greater than the focal
disk radius.

1In fact a similar distinction could have been made for prolate
spheroids depending on whether the rays pass though the focal seg-
ment, but only a vanishing quantity of rays pass exactly through the
focal segment, so for the purposes of calculating mean path length
we could treat all modes as being outer.
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2. Phase space and the boundary between free
and trapped modes

Now we would like to obtain the phase space curves
p(η, κ, Pφ ), ϕ(η, κ, Pφ ). For the oblate spheroid p = sin θ

may be calculated as

p =
√

v2
η + v2

φ√
v2

χ + v2
η + v2

φ

, (C9)

where the velocities can be converted into conjugate momenta
via

vχ =
√

χ2 + 1

χ2 + η2
Pχ (C10)

vη =
√

1 − η2

χ2 + η2
Pη (C11)

vφ = Pφ√
(χ2 + 1)(1 − η2)

(C12)

and Pχ , Pη can be expressed in terms of κ, Pφ , and η by
solving Eqs. (C4), (C5):

Pχ =
√

−κ2

χ2 + 1
+ P2

φ

(χ2 + 1)2
+ 1 (C13)

Pη =
√

κ2

1 − η2
− P2

φ

(1 − η2)2
− 1. (C14)

Pχ is always real, while Pη is only real for a range of η0− �
|η| � η0+ where

η0± =
√

1 − κ2

2
±

√
κ4

4
− P2

φ . (C15)

This will affect the boundary between free and trapped modes
for high s, in Sec. C.

Any pair of constants κ, Pφ defines a curve p(η), ϕ(η) on
the phase space. Such a curve p(η) can be expressed in terms
of η, κ, Pφ by using Eqs. (C9)–(C14) as

p(η, κ, Pφ ) =
√

κ2 − 1 − P2
φ + η2 + (κ2 − 1 + η2)χ2

(1 + χ2)(η2 + χ2)
(C16)

and for ϕ(η, κ, Pφ ),

cos ϕ = vη√
v2

η + v2
φ

= ±
√√√√1 + χ2

1 − η2

κ2 − P2
φ − 1 + η2 − η2(κ2 − 1 + η2)

κ2 − P2
φ − 1 + η2 + χ2(κ2 − 1 + η2)

.

(C17)

To express a phase space surface p(η, ϕ), we must define some
function κ (Pφ ) as we did for the prolate spheroid.

The integration domain over free chords is the volume
bounded between surfaces p = 0 and p f (η, ϕ), which is the
lowest surface such that p f � 1/s everywhere. Again in order
to find p f , we must find where p is minimized in terms of η,

and equate this to 1/s to find the critical curve κ f (Pφ ). To do
this we will need to break down case by case depending on s.

3. Case s �
√

χ2 + 1

This is the simpler case where all inner modes are free.
The inner mode region illustrated in the κ, Pφ space in Fig. 12
where the inner modes lie in the region κmin 2 � κ � κmin 1.
For s �

√
χ2 + 1 the boundary between the trapped and

free phase spaces is defined by a surface of outer orbits.
For outer orbits p is minimum at η = 0, and the condition
p(η = 0, Pφ, κ = κ f ,out (Pφ )) = 1/s tells us the critical curve
κ f ,out (Pφ ):

κ f ,out =
√

1 + χ2

s2
+ P2

φ

χ2 + 1
. (C18)

The boundary is simply determined by κ � κ f ,out, and this
gives for p f ,out = p(η, Pφ, κ = κ f ,out ) (note that the Pφ depen-
dence drops out unlike for the prolate case):

p f ,out = 1

s

√
χ2 + η2s2

χ2 + η2
, (C19)

which is Eq. (36) in the main text, and the mean path length
may then be calculated from the integral (37).

4. Case s >
√

χ2 + 1

For s >
√

χ2 + 1 not all inner orbits are free. Rays
in inner orbits may not reach η = 0, so p is minimum
at η = ±η0±. The condition p(η0±, Pφ, κ f ,in ) = 1/s [con-
veniently p(η0+, Pφ, κ ) = p(η0−, Pφ, κ )] tells us the critical
curve κ f ,in(Pφ ):

κ2
f ,in = χ2 + 1

s2
+ s2P2

φ

χ2 + 1
. (C20)

κ f ,in is only relevant in the range of inner orbits, κ < κmin1,
and is plotted in Fig. 12(b) for a representative spheroid.

The corresponding surface p f ,in may be expressed in terms
of η, ϕ as

p f ,in = 1

s

√
(η2 − 1)s2 + χ2 + 1

χ2 + 1 + (η2 − 1)(s2 − (s2 − 1) cos ϕ2)
,

(C21)

which is Eq. (39) of the main text.
Now we have two surfaces p f ,in and p f ,out, which de-

fine the boundary between free and trapped modes. p f ,out �
p f ,in occurs only for s �

√
χ2+1
1−η2 , or more generally if s �√

χ2 + 1. So for s �
√

χ2 + 1, the domain of free modes is
simply p � p f ,out, while for s >

√
χ2 + 1 we have to consider

the intersection of p f ,out and p f ,in.
The expression (C21) is of an analogous form to Eq. (31)

in the prolate case but here it actually contains three
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disjoint surfaces on either sides of ηi = ±
√

s2 − χ2 − 1/s.
For |η| > ηi, Eq. (C21) has real values, which correspond to
inner modes, which are all free, analogous to the inner modes
in an ellipse. In Fig. 12(b) these lie on the line segment κ f ,in

left of the intersection with κmin 2, but these do not represent
the boundary between free and trapped modes. So for |η| > ηi,
the boundary for free modes is simply p f ,out. For |η| � ηi, the
surfaces p f ,in and p f ,out intersect, so we integrate from p = 0

to min(p f ,in, p f ,out ) over this interval. The surfaces intersect
at ϕ = ϕi/o given by

cos ϕi/o = η

√
(η2 − 1)s2 + χ2 + 1

(η2 − 1)(η2s2 + χ2)
, |η| � |ηi|, (C22)

which is Eq. (40) of the main text. To obtain the mean path
length we integrate to p f ,in over the interval ϕ > ϕi/o, and
integrate to p f ,out otherwise, giving Eq. (41).
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