
PHYSICAL REVIEW A 106, 013517 (2022)

Cold-resonance-mediated self-stabilization of Kerr frequency combs in a Si3N4 microring resonator

Sauradeep Kar,1,* Maitrayee Saha,2 Saawan Kumar Bag,3 Rajat K. Sinha,4 Shubhanshi Sharma,1

Sridhar Singhal,1 and Shailendra K. Varshney 1,†

1Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, India
2Department of Physics, Indian Institute of Technology, Kharagpur 721302, India

3The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
4Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S

(Received 4 March 2022; revised 26 May 2022; accepted 15 June 2022; published 19 July 2022)

Kerr frequency combs (KFCs) generated from continuous-wave pumped microresonators have been vastly
exploited for a plethora of applications. Along with an appreciable bandwidth, most of the applications demand
a stable and coherent frequency comb, which is a challenging quest. Several complex experimental approaches
were reported to attain stable frequency combs. In this paper, we report an innovative and simple approach to
achieve stabilized KFCs in a Si3N4 racetrack microring resonator. Intensive numerical simulations reveal an
enhancement of the comb bandwidth when the temperature is reduced slightly lower than the room temperature.
The maximum temperature rise due to the propagating dissipative Kerr soliton (DKS) has also been studied
through finite element simulations. Through homogeneous steady-state analysis we validate that the stability of
a single DKS state is enhanced at the temperatures reported in this paper. We believe that the proposed thermal
route may help in reducing the complex experimental procedures for stabilization of KFCs.
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I. INTRODUCTION

Temporally localized ultrashort optical pulses, commonly
known as dissipative Kerr solitons (DKSs) [1], manifest
as equidistant frequency lines called Kerr frequency combs
(KFCs) in the frequency domain. Interplay between dis-
persion and nonlinearity, triggered by cascaded four wave
mixing (FWM), is the predominant mechanism responsible
for generation of frequency combs [2,3]. KFCs sustained by
parametric gain from FWM have been studied in all opti-
cal fiber cavities [4] as well as in microresonators [5]. On
chip microresonator based KFCs [6–8] are robust in na-
ture. Due to their robustness such KFCs can be utilized in
the development of optical atomic clocks with unparalleled
stability [9,10], optical frequency synthesizers [11,12], and
generation of microwave frequency signals with low phase
noise [13]. Moreover, KFCs spanning in the mid IR frequency
range have shown the ability to detect gas at ppb level [14],
thereby justifying their significant contributions in the area of
spectroscopy as well.

Along with a wide spectral bandwidth, various applica-
tions demand generation of coherent and stable KFCs [15].
The common practice to generate stable KFCs has been the
utilization of single DKS states [5]. Such DKS states are
generated by sweeping the pump frequency over a range of
wavelengths which in turn changes the detuning between the
pump and the cavity resonant wavelength [15]. This leads
to traversal of the pump frequency through chaotic regions
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and the stable DKS is determined probabilistically. The sta-
ble DKS states tend to align on the red detuned side of the
resonator’s pump resonance mode [16], where thermo-optical
(TO) effects cause a major hindrance to access stable soliton
states [17]. Thermal detuning modifies the refractive index of
the resonator material and hence influences the optical power
circulating within the resonator [18]. Thus, thermo-optical
effects may play a major role in controlling the stability of
the DKS and hence the microcomb. Macroscale whispering
gallery mode (WGM) resonators like MgF2 crystalline de-
vices [5] and silica (SiO2) microresonators [19] exhibit a
slow thermal time constant [20] which facilitates generation
of favorable stable DKS states through a gradual adjustment
of the pump laser frequency to the appropriate detuning level.
Self-thermal-locking has been reported in WGM resonators
for small fluctuations in the pump energy whereby a stable
DKS state can be obtained [17]. Still, in the absence of a
stabilizing circuitry [21,22], it becomes difficult to sustain the
DKS state in such resonators as well.

Several approaches have been proposed to link the pump
frequency to the resonator line. A self-injection-locking pro-
cedure has been reported in [23] where a passive feedback
mechanism realizes the concept of thermal stability of the
resonance condition in WGM resonators. In on chip integrated
microresonator platforms the thermal time constant is much
faster [24], due to which it becomes really cumbersome to
access stable DKS states through a gradual sweep of the
pump laser frequency as the quality of the frequency comb
crucially depends on the linewidth and the amplitude noise of
the pump. Usage of tunable lasers is not a good alternative
in such a situation as devices tend to be inherently noisy and
have a broad linewidth (typically of the order of 100 kHz) [25]
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than fixed wavelength lasers. Several resonance tuning tech-
niques have been proposed to control the detuning between
the pump and the resonance mode to obtain a sustained and
stable DKS state by using a fixed wavelength pump laser.
Integrated heaters capable of allowing fast thermal tuning of
the resonance wavelength at a time scale much shorter than the
thermal relaxation time of the resonator have been reported in
both the normal [26] and anomalous [27] dispersion regimes
to generate stable DKS states and coherent broadband fre-
quency combs. The fast response time of the heaters plays an
important role to achieve consistent and reliable generation of
the frequency comb state.

A stabilization scheme of the DKS state has been reported
in [28] that involves an additional auxiliary microring res-
onator in an external fiber loop cavity possessing optical gain.
A single resonance of the microcavity synchronizes with the
resonance of the fiber loop and is amplified. This amplified
resonance is then passively fed back to the resonator that acts
as a pump in order to generate stable DKS states. Also, it
becomes important to ensure that the generated stable DKS
state remains unperturbed to effects caused by the drift of the
resonance wavelength due to thermal effects [25]. In order to
maintain the soliton state against thermal drift, a method of si-
multaneous dynamic control of the pump laser frequency and
power has been proposed [19,29]. This mechanism of “servo”
control of the pump monitors the soliton output power, pro-
viding soliton sustenance over long durations. Furthermore,
usage of single sideband modulators [30], phase modulation
of the pump [31], and usage of an additional auxiliary laser
for temperature compensation [32] have been proposed as
techniques to obtain stable DKS states. The aforementioned
techniques involve very complex optical circuitry. Methods
to obviate such techniques involve usage of resonators with
low optical absorption [33], or by operation at cryogenic
temperatures [34].

The present paper provides an innovative and simple
solution to attain stable DKSs and hence KFCs in a sili-
con nitride (Si3N4) racetrack microring resonator (RMRR).
Through numerical simulations of the well-known Lugiato-
Lefever equation (LLE) that governs the dynamics of DKSs
in a resonator system, the effect of temperature on the gen-
erated DKS and hence the frequency comb has been studied
in depth. The necessary parameters for the LLE to generate
stable DKSs have been extracted through finite difference
time domain (FDTD) and finite element method (FEM) sim-
ulations. FEM simulations yield the maximum temperature
excursion within the resonator due to the circulating DKS.
The maximum temperature value has also been confirmed
through analytical evaluation of the rate equation that dictates
the temperature change within the mode volume of the res-
onator [35]. An interesting behavior in the frequency comb
bandwidth is observed as the temperature reduces slightly.
The spectral density of thermorefractive noise has been es-
timated for the proposed resonator at room temperature, at a
chosen temperature that is slightly lower than the room tem-
perature and at a cryogenic temperature of 100 K. It is evident
from such calculations that the proposed solution can be a
potential alternative to generation of KFCs at cryogenic tem-
peratures. Homogeneous steady-state (HSS) analysis predicts
the stable soliton state, which conforms with the numerical

predictions. The extensive study presented in this paper and
the conclusions drawn aid in generating stable and sustained
DKS states in microresonators at slightly low temperatures
with respect to room temperature.

II. MODAL CHARACTERISTICS OF THE PROPOSED
RMRR

Figure 1(a) shows the schematic top view of the proposed
RMRR whereas the inset depicts the cross-sectional view. The
bus and the ring waveguides are made of Si3N4. The waveg-
uide width and height are 2.8 and 0.7 μm, respectively. The
outer ring radius (R) is 50 μm and each of the straight arms of
the ring has a length Lc = 120 μm. The geometry is simulated
using the commercially available Lumerical FDTD solver. A
gap of 400 nm between the bus and the ring facilitates the
operation in a slightly overcoupled regime [36]. The FEM

is used to obtain dispersion and nonlinear properties of the
waveguide. Figure 1(b) shows the normalized electric-field
distribution of the fundamental TE mode at a wavelength
of 1.560 14 μm. Figure 2(a) depicts the dispersion, D, and
the group velocity dispersion (GVD), β2, parameters. The
waveguide exhibits three zero dispersion points at 1, 1.74,
and 2.67 μm. At a pump wavelength of 1.560 μm, the group
velocity dispersion is −174.9 ps2/km. Such low second-
order GVD, β2, enhances the KFC bandwidth by producing
short DKSs along with spectral coherence [37]. The other
requisite parameters such as effective mode area (Aeff ) and
the nonlinear parameter (γ ) [37] have been depicted in
Fig. 2(b). The waveguide exhibits effective Kerr nonlinearity,
γ = 0.65 W−1 m−1, at the pump wavelength of 1560 nm.
Another important parameter that characterizes the extinction
and the resonance characteristic of RMRR is the coupling

FIG. 1. (a) Schematic of the proposed RMRR, R = 50 μm,
and straight arm length, Lc = 120 μm. Inset: Resonator cross sec-
tion of the waveguide. (b) Normalized electric-field distribution of
the fundamental TE mode. (c) Electric field within the resonator at
resonance wavelength λR = 1.56 μm.
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FIG. 2. Modal characteristics of the Si3N4 waveguide. (a) Dis-
persion (D) and second-order GVD (β2) (red circles correspond
to the zero dispersion points; the dotted line denotes the pump
wavelength). (b) Spectral variation of the effective mode area (Aeff)
and nonlinear parameter (γ ). (c) Group index. (d) Variation of the
normalized coupling coefficient (κnormalized) as a function of gap
separation.

coefficient, κ , between bus and ring waveguides which has
been evaluated numerically by solving an overlap inte-
gral [38]:

κpq = ωε0
∫ ∞
−∞

∫ ∞
−∞

(
N2 − N2

q

)
E∗

p Eqdxdy∫ ∞
−∞

∫ ∞
−∞ uz.(E∗

p × Hp + Ep × H∗
p )dxdy

. (1)

In Eq. (1) the bus and ring waveguides are demarcated
by indices p and q, corresponding to which the electric and
magnetic fields of the modes in the individual waveguides

are designated as Ep/Eq and Hp/Hq. The refractive indices
of the individual waveguides are demarcated as Np and Nq

and the refractive index of the entire coupled waveguide is
denoted as N . Here uz is the unit vector in the z direction,
by considering the electromagnetic wave propagation in the z
direction. The variation of the normalized coupling coefficient
(κnormalized) with the gap size is exhibited in Fig. 2(d). The
coupling coefficient is normalized with respect to the cavity
length. The coupling coefficient decreases with an increase in
the gap size due to poor evanescent field coupling into the
ring waveguide. The spectral variation of the group index (ng)
is displayed in Fig. 2(c).

III. ROOM-TEMPERATURE KFC SIMULATIONS

Numerical simulations of the Kerr frequency comb have
been carried out by the well-known externally driven and
damped nonlinear Schrödinger equation which describes the
mean-field dynamics of the cavity. This equation is popularly
known as the LLE [39–41], given below:

tR
∂E

∂t
=

[
−

(α + κ

2

)
− iδ0 + iL

∑
m�2

βm

m!

(
i

∂

∂τ

)m

+ iγ L|E |2
]

E + √
κEin (2)

where tR represents the round trip time, and E (t, τ ) and Ein

are the intracavity field and input fields, respectively. t is the
slow time which denotes the time for field confinement within
the resonator in accordance with the photon lifetime. τ is
the fast time which symbolizes the behavior of the temporal
envelope of the signal that moves at the group velocity. The
slow and fast times are linked to the index m, which indicates
the number of round trips traversed by the field in the cavity,
by the relation E (t = mtR, τ ) = E (m)(0, τ ). δ0 is the cavity
phase detuning defined as δ0 = tR(ωn − ω0) where ω0 and ωn

are the pump’s angular frequency and the frequency of the nth
resonant mode. α, κ , γ , and βm represent the power loss per
round trip, the power coupling coefficient, the nonlinear coef-
ficient, and the mth-order dispersion coefficient. L represents
the circumference of the cavity. The normalized parameters
are

α′ = α + κ

2
, t ′ = α

t

tR
, τ ′ = τ

√
2α′

|β2|L ,

E ′ = Ein

√
γ L

α′ , S = Ein

√
γ Lκ

α′3 , D = δ0

α′ .

Equation (2) can be recast in normalized form as

∂E ′

∂t ′ =
[
−1 + iD + i

∂2

∂τ ′2 − i|E ′|2
]

E ′ + S. (3)

FDTD numerical simulations of RMRR yield round trip loss α

(normalized with respect to the cavity length), of 3.4 × 10−3,
when a unity power is launched at the input port of the
resonator.

The coupling coefficient for 400-nm gap separation be-
tween the bus and ring waveguides is 4.45 × 10−3. The cavity
round trip time (tR) is defined as tR = 2neff L

c , where neff is the
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TABLE I. Simulation parameters for KFC generation.

Parameter Values

Pump wavelength (λ0) 1560 nm
Resonant wavelength (λR) 1560.14 nm
Round trip time (tR) 4.455 ps
Cavity detuning (δ0) 0.065 rad
Round trip loss (α) 0.0034
Coupling coefficient (κnormalized) 0.0044538
Second-order GVD (β2) −174.9 ps2/km
Third-order dispersion (β3) −0.318 ps3/km
Nonlinear parameter (γ ) 0.65 W−1m−1

Input power (Pin) 265 mW

effective refractive index of the mode. For a cavity length
L = 554.16 μm, the round trip time (tR) is 4.45 ps. The sim-
ulated field profile at the resonance condition of the proposed
resonator is shown in Fig. 1(c). The simulations are carried
out in Lumerical FDTD by exciting the input port of the bus
waveguide with a TE polarized light. In simulations, the
dispersive nature of materials is taken into account, through
the Sellmeier equation for silicon nitride (Si3N4) and silica
(SiO2) [42]. Perfectly matched layer boundary conditions are
used in the simulation region. The computational time is set
to 10 ns to ensure proper convergence of simulation results.
Figure 3(a) depicts the transmission spectrum at the through
port of the resonator. The asymmetric extinction ratio in trans-
mission dips is due to material dispersion. From Fig. 3(a),
it is evident that if the pump wavelength is 1.560 μm, then
resonance occurs at a wavelength of 1.560 14 μm rendering
a cavity phase detuning, δ0 = 0.065. It is seen through HSS
analysis [40] that for this detuning value, an input power
Pin = |Ein|2 = 0.265 W can successfully generate stable sin-
gle DKS states. Further details on HSS analysis are given later
in Sec. VII. The simulation parameters are summarized in
Table I. Equation (2) is solved numerically where the temporal
window is chosen in such a way that it coincides with the
round trip time tR, generating uniform frequency grids spaced
by free spectral range (FSR). To solve Eq. (2), the functional
form of the steady-state solution of the same has been used as
an initial field, which can be approximated by the following
analytical expression [36]:

Einitial(τ ) = Ein +
√

2δ0

γ L
eiφ0 sech

(√
2δ0

|β2|L τ

)
(4)

where

φ0 = cos−1

(
α

Ein

√
8δ0

πγ Lκ

)
. (5)

The temporal cavity soliton and the corresponding fre-
quency comb are shown Figs. 3(b) and 3(c), respectively.
When we incorporate third-order dispersion (β3 = ∂β2

∂τ
) along

with β2, the comb bandwidth spans over an octave [Fig. 3(c)].
Although the typical Cherenkov-like resonant dispersive
wave emission [37] at the longer wavelength could not
be observed for the computed parameters for this design,
still the asymmetric envelope of the comb and the octave

FIG. 3. (a) Transmission spectrum of the RMRR. (b) Temporal
cavity soliton at an input pump power of 265 mW. (c) Frequency
comb in the presence of both β2 and β3. (d) Mesh plot illustrating the
steady-state field confinement.

spanning bandwidth are reasonably in agreement with pre-
viously published results [36,43]. Figure 3(d) represents
the field evolution, confirming sustained cavity soliton
propagation.

IV. THEORETICAL ANALYSIS OF THE KFC AT LOW
TEMPERATURE

The LLE portrayed in Eq. (2) does not take into ac-
count the TO effect. To address thermal effects, we adopt the

013517-4



COLD-RESONANCE-MEDIATED SELF-STABILIZATION OF … PHYSICAL REVIEW A 106, 013517 (2022)

TABLE II. Thermal rates obtained from COMSOL.

Parameter Values

Effective thermal relaxation rate (�m) 0.853333×102 Hz
Effective optical absorption rate (γm) 8.89 K/J

procedure illustrated in [35], and the traditional form of LLE
in Eq. (2) has been modified. The solution of Eq. (2) provides
the circulating field E (t, τ ). Note that the associated param-
eters are valid for the room-temperature operation. Thus, the
field E (t, τ ) calculated in the first iteration is the circulating
field of the temporal solitonic state at room temperature. The
thermo-optical effect occurs when the local temperature of the
mode volume changes. We make use of the following rate
equation [44] to model thermal effects:

d�Tm

dt
= −�m�Tm + γm(|E (t, τ )|2)avg. (6)

In Eq. (6), the variable t represents the slow time and
�Tm corresponds to the maximum temperature change with
respect to room temperature due to the circulating DKS.
(|E (t, τ )|2)avg is the average intensity of the circulating DKS
at room temperature which is obtained from Eq. (2). �m and
γm are the effective thermal relaxation and optical absorption
rates of the fundamental mode in the resonator [45], which we
calculate from COMSOL MULTIPHYSICS which is an FEM solver.
All necessary values are given in Table II.

By solving Eq. (6), we get �Tm = 30 K, which is the
maximum possible positive temperature change after which
the stable solitonic state can no longer be accessed [45]. Any
further increase in temperature does not cause the solitonic
state to remain stable. In order to study the frequency comb
dynamics in the cold resonance regime, the same value of
temperature gradient is considered but with an opposite sign,
i.e., �T = −30 K. Under such situation, the blueshift in res-
onance wavelength is given by

�λ = λ0

(
dn0

dT

�T

n0

)
. (7)

Here, dn0
dT is the thermo-optical coefficient of Si3N4 at a

temperature T . Typical values of thermo-optical coefficient
data have been taken from experimental values given in [46].
The shift in resonance wavelength, calculated through FDTD

simulations at low temperatures, provides the detuning. In
order to theoretically validate the calculated resonance wave-
length shift, the temperature-dependent refractive index is
considered in simulations as

nSi3N4/SiO2 = n(�T = 0K ) + �Si3N4/SiO2�T . (8)

�Si3N4/SiO2 denotes the thermo-optical coefficient of silicon
nitride–silica. Figure 4(a) shows the transmission spectrum at
room temperature and at temperatures lower than the room
temperature, viz., �T = −30, −40, and −50 K. The detuning
values deduced for the room temperature and lower tempera-
tures for a pump wavelength of 1560 nm are given in Table III.

We observe that temperature change (�T ) also induces a
variation in effective mode area (Aeff ) and nonlinear parameter
(γ ), as shown in Fig. 4(b). It is seen that the nonlinearity

FIG. 4. (a) Transmission spectrum (the pump wavelength has
been encircled), (b) effective mode area and nonlinearity, (c) fre-
quency comb, and (d) nonlinear conversion efficiency at various
temperature values. The temperature is presented as changes in the
temperature with respect to room temperature.

enhances at lower temperatures, with a maximum value at a
temperature gradient of −30 K. The detuning values, given
in Table III, and the nonlinear parameter values at the re-
spective temperatures have been plugged into the LLE, to
obtain the Kerr frequency comb at low temperatures. How-
ever, no significant change has been observed in dispersion
and coupling coefficient at low temperatures, indicating that
the thermo-optical effect is only dominant at such tempera-
tures with negligible thermal expansion effect. The KFCs at
the room and chosen low temperatures is shown in Fig. 4(c).
Interestingly, the comb bandwidth enhances as the tempera-
ture decreases and the maximum comb bandwidth occurs at
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TABLE III. Detuning values at different temperature gradients.

Pump Resonance Detuning Temperature
wavelength wavelength |δ0| = |tR(ω0 − ωR )| gradient
λ0 (μm) λR (μm) Type (rad) �T (K)

1.56 1.56012 Hot 0.0659 0
1.5586 Cold 0.7696 −30
1.5579 Cold 1.155 −40
1.5572 Cold 1.541 −50

�T = −30 K. We believe this enhancement in comb band-
width is due to increased γ , leading to enhanced four wave
mixing that results in generation of new frequency compo-
nents (see the Appendix for details).

To corroborate these findings, we calculate the nonlinear
conversion efficiency (CE) [47,48] which is a measure of
the degree to which the power contained in the CW pump
can distribute among different frequency lines spanned over
the entire bandwidth range of the frequency comb. A large
value of nonlinear conversion efficiency is desirable as it
yields a uniform distribution of the pump power over different
frequency components of a frequency comb. According to
recent studies [48], the nonlinear conversion efficiency can
be evaluated by considering a steady-state continuous-wave
solution of Eq. (2) (i.e., ∂

∂t = ∂
∂τ

= 0). The steady-state so-

lution of Eq. (2) is given by ESS(δ0) =
√

κEin

(α+iδ0 ) , where the
symbols have their usual meanings. The steady-state output
at the through port of the ring resonator can be written as
Eout (δ0) = Ein − √

κESS(δo). Accordingly, the nonlinear con-
version efficiency (η) (near critical coupling κ = α) is given
by the following relation [48]:

η = π

√
cα|β2|(1 ∓ √

r)3

γ Einng(1 ± √
r)

√
FSR (9)

where r = [ Eout (δ0→0)
Eout (δ0→∞) ]

2 = [1 − ( κ
α

)2] is the on-resonance
normalized output power, and ng is the group index of the
propagating mode. The other symbols have their usual mean-
ing as elucidated earlier. The nonlinear conversion efficiency
at various temperature gradients is plotted in Fig. 4(d). It
is seen that the conversion efficiency is maximum at the
room temperature (i.e. �T = 0 K). It follows from an ob-
vious consequence that at room temperature the frequency
comb bandwidth as well as nonlinear parameter are mini-
mum, compared to other temperature values. Nevertheless,
the CE value at all temperatures is greater than 5.3% which
is reasonably good in comparison to the published values [48]
yielding a considerably flat frequency comb. It is evident that
the CE can be affected by coupling coefficient [Eq. (9)] which
is controlled by the gap separation. In contrast to this, the
nonlinear conversion efficiency can be tailored by varying the
temperature for a fixed gap separation.

V. FEM ANALYSIS OF DKS INDUCED TEMPERATURE
CHANGE

The magnitude of temperature rise within the resonator
due to the circulating DKS has been understood through FEM

simulations. From a very rudimentary concept of heat transfer
in solids, it can be stated that

Q(x, y, z) = nimagI (x, y, z) (10)

where Q(x, y, z) is the energy absorbed by any material at
a point when the intensity at that point is I (x, y, z). nimag is
the imaginary part of the refractive index of the material. For
Si3N4, nimag is 3 × 10−5 [42] at 1.56 μm. It has been reported
in [25] that a circulating optical field in a resonator with
peak intensities greater than 1 GW/cm2 can lead to significant
increase in temperature. The DKS reported in Fig. 3(b) has
a peak intensity of 7.14 GW/cm2 which is large enough to
increase the temperature locally. The circulating DKS has
been modeled as a moving heat source that traverses the
microring in a round trip time of 4.45 ps. For simulation,
the circular portion of the ring has been considered only,
because thermal effects tend to shift the resonance wavelength
of the resonator and the inclusion of the straight arms in
the racetrack configuration does not create a major shift in
the resonance wavelength. The incident heat flux from the
circulating cavity soliton is modeled as a spatially distributed
heat source, which has a mathematical form specifying the
Gaussian distribution of the DKS state. The heat source ro-
tates along the perimeter of the resonator with a time period
equal to the round trip time of the circulating cavity soli-
ton. In order to simulate the heat source, a moving mesh
is employed. The overall energy absorbed or the heat load
due to the circulating DKS is then obtained in accordance
to Eq. (10). The temperature values have been stored at ev-
ery computational step. Figure 5(a) shows the temperature

FIG. 5. (a) Top view of the RMRR indicating growth of the
temperature gradient when a Gaussian pulse with a peak power of
100 mW is fed into the RMRR with radius R = 50 μm. (b) Temper-
ature rise as a function of round trip time for �T = 0, −30, −40,
and −50 K.
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distribution across the ring waveguide. The geometrical center
of the resonator has been chosen as the reference point for the
heat source, hence an intersection between the geometry of
the moving heat source and the ring has resulted in the visual
representation of the structure shown in the aforementioned
figure.

In numerical simulations, the heat source is made to tra-
verse one round trip along the circumference of the ring from
the reference position A, as shown in Fig. 5(a), giving rise to
maximum temperature excursion, �Tm ≈ 30 K, with respect
to room temperature (T = 293 K). Numerical simulations
for various initial temperature values 263 K (�T = −30 K),
253 K (�T = −40 K), and 243 K (�T = −50 K) yield a
maximum temperature change, �Tm ≈ 25, 13, and 8 K, re-
spectively, for one round trip, as depicted in Fig. 5(b). We find
that the temperature excursion stays less than 30 K for temper-
atures of 263, 253, and 243 K, which indicates that the stable
single DKS state and hence the frequency comb can be easily
sustained at such temperatures. Numerical simulation results
show an excellent agreement with the theoretical values for
the temperature excursion as reported in the previous section.

VI. THERMOREFRACTIVE NOISE CALCULATIONS

It is well known that the resonance frequencies of the
different modes of the MRR strongly depend on the material
refractive index. The thermo-optical effect causes a change in
the refractive index due to thermal fluctuations which result in
frequency noise. The average fluctuation in temperature of the
MRR is given by [49]

〈
(δT )2

MRR

〉 = kBT 2

CPVmρ
(11)

where CP is the specific-heat capacity, Vm is the mode volume,
and ρ is the density of the resonator’s material. Thermal fluc-
tuations also influence the radius of the resonator, but in our
context such effects have been ignored because of negligible
thermal expansion coefficient. The change in the resonance
frequency of the resonator due to thermal fluctuations mani-
fests as the spectral density of optical fluctuations [34]:

S f = ( f0n−1�Si3N4 )2STMRR (ω) (12)

where f0 = c
λ0

= 192.30 THz is the frequency of the pumped
mode, �Si3N4 is the thermo-optical coefficient of silicon
nitride, and STMRR (ω) is the spectral density of thermal fluctu-
ations. STMRR (ω) has been calculated by the approximation of
the thermal decomposition method for a thin resonator [49]:

STMRR (ω) = kBT 2R2

12κT Vm

[
1 +

(
R2ρCpω

9
√

3κT

) 3
2

+ 1

6

(
R2ρCpω

8ν
1
3 κT

)2
]−1

. (13)

Here, T is the absolute temperature in Kelvin, R is the
radius of the MRR, κT is the thermal conductivity of the
material, ω is the Fourier frequency, and ν is the azimuthal
mode order of the pumped fundamental mode. The parameters
used for evaluation of S f from Eq. (12) are given in Table IV.

TABLE IV. Parameters used for thermorefractive noise calculation.

Parameter Values

Pump frequency ( f0) 192.30 THz
Thermal conductivity (κ) 30 W m−1 K−1 [34]
Mode volume (Vm ) 1.5602 × 10−16 m−3 (T = 293 K)

1.0209 × 10−16 m−3 (T = 263 K)
1.0109 × 10−16 m−3 (T = 253 K)
1.0032 × 10−16 m−3 (T = 243 K)
1 × 10−16 m−3 (T = 100 K)

MRR radius (R) 50 μm
Density (ρ) 3.29 × 103 kg m−3 [34]
Specific heat capacity (Cp) 800 J kg−1 K−1 [34]
Mode number (ν) 627

The mode volume (Vm) has been calculated through FEM

simulations. Based on the above-mentioned parameters, the
spectral density of optical fluctuations is calculated for the
room temperature (T = 293 K, �T = 0 K), and for T =
263 K (�T = −30 K), T = 253 K (�T = −40 K), T =
243 K (�T = −50 K), and T = 100 K (�T = −193 K). The

normalized spectral density
√

S f

f0
is plotted for �T = 0, −50,

and −193 K, respectively, in Fig. 6.

As
√

S f

f0
is directly proportional to (�Si3N4 )2T 2, an obvious

reduction in the spectral density of optical fluctuations is
observed at lower temperatures. This is on par with studies
reported at cryogenic temperatures [34]. It can be observed
that the spectral density sharply reduces at a frequency of
220 GHz, which is close to the FSR of the MRR. This sharp

decrease in
√

S f

f0
has been reported [34,49]. It has been seen in

the present paper that the spectral density reduces to a small
value at the FSR of the cavity (the FSR is encircled in green
in Fig. 6). This minimal value of the spectral density is almost
equal for the chosen temperature of 243 K (�T = −50 K)
and at a cryogenic temperature of 100 K (�T = −193 K). It
is known that the frequency comb lines are primarily spaced at
an interval that is numerically equal to the FSR of the cavity.
Thus, the spectral density of optical fluctuations is equally low
for the primary comb lines at the chosen low temperature of
243 K (�T = −50 K) as well as at a cryogenic temperature
of 100 K. Hence, it can be reasonably concluded that the

FIG. 6. Calculation of the normalized spectral density of opti-

cal fluctuation
√

S f

f0
for room temperature (�T = 0 K) and lower

temperatures (�T = −50 and −193 K). The encircled frequency
denotes the FSR of the cavity.
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chosen temperature regime can aid in sustaining stable DKS
states along with KFCs with minimal fluctuations, without
necessitating complex cryogenic setups.

VII. COMB SELF-STABILIZATION: HSS ANALYSIS

The normalized LLE solved with the steady-state ( ∂E ′
∂t ′ =

0) and homogeneous ( ∂E ′
∂τ ′ = 0) criteria results in the following

cubic equation [40]:

X = Y 3 − 2Y 2 + (D2 + 1)Y (14)

where X = |S|2, Y = |E ′|2, and the rest of the symbols have
their usual meanings as elucidated earlier. Clearly, three sets
of intracavity field solutions can be obtained from Eq. (14), (i)
unconditionally homogeneous stable steady-state solutions,
(ii) unconditionally homogeneous unstable solutions, and (iii)
conditionally homogeneous stable (oscillatory) solutions. The
third type of solution is associated with the phenomenon of
modulation instability [37] where a weak periodic perturba-
tion develops on top of the steady-state background both in the
anomalous and normal dispersion regimes [37,40] for micror-
ing resonators. Equation (14) is a second-order polynomial
equation in the normalized detuning D and is trivially solved
corresponding to three classes of field solutions as

D = Y ±
√

X

Y
− 1. (15)

The solutions of Eq. (15) for the stable, unstable, and oscilla-
tory intracavity field have been depicted in Figs. 7(a) and 7(b)
for temperature gradients �T = 0 and −30 K. The stable,
unstable, and oscillatory solutions are marked by the black
points, red asterisks, and green (light gray) circles, respec-

FIG. 7. Kerr tilt curve for (a) �T = 0 K and (b) �T = −30 K,
illustrating various stable (black points), unstable (red asterisks), and
oscillatory [green (light gray) circles] solution regions. (c) Kerr tilt
for various temperature gradients. The black arrow indicates leftward
tilt due to low temperature.

FIG. 8. Kerr tilt curves indicating change in the region of unsta-
ble solutions with temperature gradient (�T ). The shaded region in
all four images shows unstable solutions.

tively. The region of stable field solutions tends to increase
while the unstable solutions decrease with the reduction in
temperature as seen from Figs. 7(a) and 7(b). The tilt curve
depicted in Figs. 7(a) and 7(b) has been plotted for �T = 30,
0, −30, −40, and −50 K in Fig. 7(c). It can be clearly seen
that a positive temperature excursion from the room temper-
ature (�T = 30 K) leads to a rightward tilt and drives the
system more towards the red detuned and hence the unstable
regime [40]. However, a decrease in the temperature gradient
leads to a leftward tilt and enhances the stability of the system
by driving the resonance towards the blue detuned side. For
better understanding of the impact of change in temperature
on the stable and unstable regions, we demarcate the region
of unstable solutions due to Kerr nonlinearity in Fig. 8. The
shaded regions on the tilt curves clearly establish the evolution
of unstable and stable solutions with temperature. Based on
HSS analysis, we can conclude that the negative temperature
excursion with respect to room temperature leads to higher
stability.

VIII. CONCLUSION

In conclusion, we have carried out the study of the sin-
gle DKS state at temperatures slightly lower than the room
temperature in a Si3N4 racetrack microring resonator. FEM

simulations predict the rise in temperature in a single round
trip which is utilized to predict the temperature values at
which the maximum excursion in temperature remains less
than 30 K. Operating the RMRR below room temperature also
results in the enhancement of the comb bandwidth. Detailed
FEM, FDTD simulations, and theoretical calculations through
the HSS analysis establish that it is easy to sustain the stable
frequency comb at such temperatures. Further, the thermore-
fractive noise is low for the chosen temperature range. The
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proposed route to generate KFCs is an easy and simple ap-
proach compared to operation at cryogenic temperatures.
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APPENDIX: EFFECT ON KFC 3-dB BANDWIDTH

The empirical formula which gives a good estimate of the
3-dB frequency comb bandwidth is given by the following
relation [50]:

� f3dBtheoretical = 0.315

1.763

√
2γ PinQλP

πc|β2|tR

= 0.315

1.763

√
2γ PinF
π |β2|

= 0.315

1.763

√
2γ Pin

α|β2| (A1)

where Q, λP, and tR are the quality factor of the cavity, pump
wavelength, and round trip time, respectively, while the other
symbols have their usual meanings. It is well known that
the finesse of the resonator is F = π

α
= QλP

tRc . Thus, it can
be reasonably stated that the comb bandwidth predominantly
depends on the nonlinear coefficient (γ ), input power (Pin),
round trip loss (α), and second-order group velocity disper-
sion (β2), as depicted in Eq. (A1) [50]. Figure 9(a) depicts
the change in coupling coefficient (κ) with the gap between
the bus and ring waveguides of the MRR at �T = 0, −30,
−40, and −50 K. There is no significant change in the κ

value at the chosen temperature regime, indicating that the
thermo-optical effect is only dominant at the reported tem-
peratures with negligible thermal expansion effect. Thus, it is
seen that the round trip loss (α) and the second-order group

FIG. 9. (a) Variation of the coupling coefficient (κ) as a func-
tion of gap separation for various temperature gradient �T values.
(b) Temporal DKS state for various �T values. (c) 3-dB KFC band-
width �λ3dB as a function of �T .

velocity dispersion (β2) remain fairly constant at the chosen
�T values, as there is no significant change in the dimensions
of the MRR due to minimal thermal expansion effect. An
input power Pin = 265 mW, evaluated through HSS analysis,
is used in the simulations and theoretical calculations. Thus,
the parameter which predominantly affects 3-dB comb band-
width (� f3dB or �λ3dB) is the nonlinear coefficient (γ ). The
temporal DKS state at �T = 0, −30, −40, and −50 K has
been depicted in Fig. 9(b). Clearly a decrease in the temporal
width of the DKS also aids in enhancing the comb bandwidth
at low temperatures. The change in the 3-dB KFC bandwidth
(�λ3dB) with �T is shown in Fig. 9(c).
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