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Angular trapping of a linear-cavity mirror with an optical torsional spring
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Optomechanical systems have attracted intensive attention in various physical experiments. With an optome-
chanical system, the displacement of or the force acting on a mechanical oscillator can be precisely measured by
utilizing optical interferometry. As a mechanical oscillator, a suspended mirror is often used in over a milligram
scale optomechanical systems. However, the tiny suspended mirror in a linear cavity can be unstable in its
yaw rotational degree of freedom due to optical radiation pressure. This instability curbs the optical power
that the cavity can accumulate in it and imposes a limitation on the sensitivity. Here, we show that the optical
radiation pressure can be used to trap the rotational motion of the suspended mirror without additional active
feedback control when the g factors of the cavity are negative and one mirror is much heavier than the other one.
Furthermore, we demonstrate experimentally the validity of the trapping. We measured the rotational stiffness
of a suspended tiny mirror with various intracavity power. The result indicates that the radiation pressure of the
laser beam inside the cavity actually works as a positive restoring torque. Moreover, we discuss the feasibility of
observing quantum radiation pressure fluctuation with our experimental setup as an application of our trapping
configuration.
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I. INTRODUCTION

Optomechanical systems are widely used in experiments
of precise measurements [1]. In particular, optomechanical
systems consisting of massive oscillators are suitable for test-
ing macroscopic quantum mechanics [2], investing Newtonian
interaction of quantum objects [3,4], measuring gravitational
force of milligram masses [5], and gravitational wave detec-
tion [6]. An optomechanical system consists of mechanical
oscillators coupled with optical fields. The displacement of or
the force acting on the oscillator can be measured precisely
by using optical interferometry. Massive oscillators not only
make the optomechanical systems resistant to noise sources
[6], but also allow for the exploration of the unique physics
[2–5]. Ultimately, macroscopic quantum optomechanical sys-
tems are expected to elucidate the quantum nature of gravity
[7–9].

Suspended pendulums are often used as mechanical os-
cillators in optomechanical systems over a milligram scale
[10–19], while membranes and cantilevers are used in many
experiments of smaller mass scales [20–22]. Suspended pen-
dulums are advantageous in that they can be isolated from the
environment. In other words, pendulums are resistant to seis-
mic noise and thermal noise. Furthermore, a pendulum can be
regarded as a free mass in the broad frequency range over the
resonant frequency. In general, pendulums have a wide range
of sensitivity for this reason. Recently, detecting schemes for
ultralight dark matter using optomechanical oscillators were
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proposed [23–25], and the wide searchable range was crucial
for the dark matter search because the mass of dark matter was
scarcely known. However, the issue of suspended pendulums
as mechanical oscillators is their instability in the rotational
degree of freedom, the so-called Sidles-Sigg instability [26].
In a linear cavity, the yaw rotational motion of a suspended
mirror that is indicated in Fig. 1 changes the position of the
beam spot of the laser beam. Due to the change in the position
of the beam spot, the radiation pressure in the cavity can
behave as an antirestoring force and destabilize the cavity.

In the case that the mechanical restoring torque is dominant
in the rotational degree of freedom, the Sidles-Sigg instability
does not matter because the radiation pressure torque would
be too weak to make a pendulum unstable. Thus, several
experiments used multiple wires to suspend a mirror to stiffen
the pendulum in the rotational degree of freedom [16,17,27].
However, the increase of wires induces a stronger coupling
to a thermal bath. As a result, the thermal noise due to the
suspension gets larger.

One other way to deal with Sidles-Sigg instability is in-
troducing feedback control in the rotational motion [28]. If
an oscillator has actuators applying torque on it, the unsta-
ble rotational motion can be suppressed. Therefore, modern
gravitational wave detectors use active feedback controls for
the angular motion [29]. However, active feedback control
systems were not always available, especially for macroscopic
quantum experiments and quantum measurements. This was
because milligram or gram scale oscillators were often too
small to attach actuators to [14]. In such cases, a more compli-
cated feedback system was required to actuate a tiny oscillator
remotely [30,31].
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FIG. 1. Schematic illustration of a suspended linear cavity. The
rotational degrees of freedom we focus on are defined along the
vertical axis. The input mirror is much heavier than the end mirror
for our configuration.

As a different approach, some experiments used triangular
cavities to avoid the Sidles-Sigg instability [11–13]. When the
number of mirrors consisting in the cavity is odd, the radiation
pressure behaves as a positive restoring torque. Thus, the
Sidles-Sigg instability can be avoided. However, additional
mirrors are noise sources [13]. For the best sensitivity, a cavity
with only two mirrors(a linear cavity) is favorable. Therefore,
a stable configuration of a linear cavity is desired.

In this paper, we propose and experimentally validate a
stable trapping configuration for a suspended mirror in a linear
cavity. We utilize radiation pressure inside the cavity as the
restoring torque. Thus, our system can trap a rotational motion
of the suspended mirror without additional active feedback
controls. Therefore, our trapping scheme is applicable to tiny
systems that cannot have actuators attached to them, and it
is free from the feedback-control noises. In our system, we
operate the cavity in the negative-g regime and the input
mirror is much heavier than the end test mass. The com-
bined characteristics of the negative-g regime and unbalanced
masses produce a stable rotational trapping. Furthermore, we
validate the configuration experimentally with an 8-mg mirror.
In addition, we discuss the feasibility to observe the quantum
radiation pressure fluctuation of a milligram scale optome-
chanical system for testing macroscopic quantum mechanics
by using our trapping configuration.

II. THEORETICAL DESCRIPTION

We analyze the rotational motion of suspended mirrors in a
linear cavity. The following calculation shows the suspended
mirrors are trapped with the positive radiation pressure torque
under the condition that the cavity is in the negative-g regime
and one mirror is much heavier than the other one. As shown
in Fig. 1, we define the angles of two mirrors as αi and the
torques exerted to them as Ti (i = 1, 2). The equation of
motion of the rotational modes of the two mirrors is given
by

(Kopt + Kmech − Iω2)

(
α1

α2

)
=

(
T1

T2

)
, (1)

where

Kmech =
(

K1 0
0 K2

)
, I =

(
I1 0
0 I2

)
(2)

are the matrices of the mechanical restoring torques and the
moment of inertia of each mirror. The optical torsional stiff-
ness matrix is represented as [26]

Kopt = 2P

c(R1 + R2 − L)

(
R1(L − R2) R1R2

R1R2 R2(L − R1)

)
, (3)

where P, c, R1, and L are the intracavity power, the speed of
light, the radii of curvature, and the cavity length, respectively.
The optical torque is generated by the change of the beam spot
on the mirror due to the movement of the cavity axis as the
mirror rotates. Equation (1) can be rewritten as(

K1 − βg2 − I1ω
2 β

β K2 − βg1 − I2ω
2

)(
α1

α2

)
=

(
T1

T2

)
, (4)

by defining β = 2PL/[c(1 − g1g2)], gi = 1 − L/Ri. gi is de-
termined by the geometry of the cavity and generally called
the g factor.

Hereafter, we consider a case where the mirror 2 is much
heavier than the mirror 1, and the mechanical restoring torque
of the mirror 1 is much smaller than that of the mirror 2. This
assumption is practical for actual experiments. This optome-
chanical system can be a sensitive force sensor by using the
lighter mirror as a test mass. At the same time, we can control
the cavity length to maintain the resonance by attaching actu-
ators on the larger (heavier) mirror; I1 � I2 and K1 � K2. In
this case, the diagonalization of Eq. (4) indicates the resonant
frequency of the differential mode is

ωdiff �
√

K1 − βg2

I1
. (5)

The diagonalization of Eq. (4) derives two decoupled modes.
Here, the eigenmode where the two mirrors rotate in the same
direction is named the differential mode. On the other hand,
the eigenmode in which the mirrors rotate in the opposite
directions is named the common mode.

When the lighter mirror is flat (g1 = 1), g2 should be posi-
tive to satisfy the optical cavity condition of 0 < g1g2 < 1. In
this case, the resonant frequency rapidly goes to zero with the
increase of the intracavity laser power, which causes an angu-
lar instability. On the other hand, we can avoid the instability
and even can stiffen the differential mode in the negative-g
regime. Equation (4) also indicates the resonant frequency of
the common mode decreases as

ωcom �
√

K2 + β(1 − g2)/g

I2
. (6)

Here, we assume the two curvatures of the mirrors are
identical (R1 = R2 = R, g1 = g2 = g) for simplicity. The me-
chanical resonant frequency of the common mode can be high
enough by using a heavy enough mirror for the mirror 2.
Therefore, the decrease of the resonant frequency due to the
radiation pressure torque can be ignored. In other words, the
radiation pressure torque will not make the common mode
unstable when one mirror is much heavier than the other. The
tolerable intracavity power can be increased by increasing
only the mass of one mirror. Thus, this configuration allows
trapping of a small mirror.

Figure 2 shows the dependence of the resonant fre-
quency on the intracavity power. As for this plot, we use
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FIG. 2. Dependence of the resonant frequencies of differential
and common modes. The negative resonant frequency implies that
the mode is unstable. For comparison, both the negative-g regime
(g1 = g2 = −0.1) and the positive-g regime (g1 = g2 = +0.1) cases
are plotted; other parameters are described in the main text. In the
range between 0.72 W and 34 kW of the intracavity power, only the
negative-g cavity is stable.

similar parameters of our experimental setup as follows: mir-
ror masses of m1 = 10 mg and m2 = 10 g, mirror radii of
r1 = 1.5 mm and r2 = 10 mm (momentum of intertia of I1 =
5.6 × 10−12 kg m2 and I2 = 2.5 × 10−7 kg m2), mechanical
resonant frequency of ω1/(2π ) = 0.5 Hz and ω2/(2π ) =
5 Hz, and the cavity length of L = 1.1R = 11 cm (g = −0.1).
For comparison, we also plot the resonant frequencies of the
differential and common modes for the case that the g fac-
tors of the cavity mirrors are positive (g1 = g2 = +0.1). The
cavity in the negative-g regime is tolerant over the intracavity
power of 10 kW, while the cavity in the positive-g regime is
unstable just over 0.72 W.

III. EXPERIMENTAL DEMONSTRATION

We experimentally demonstrate that our trapping configu-
ration works properly. As mentioned in the previous section,
our configuration utilizes the radiation pressure of the laser
light inside a linear cavity. Thus, the restoring torque due to
the radiation pressure also increases as the intracavity power
increases. We design our experiment to observe this increase
of the restoring torque.

The experimental setup is shown in Fig. 3. The instability
due to the radiation pressure of the laser light inside the cavity
will be an issue when the radiation pressure torque is dom-
inant. To realize the predominance of the radiation pressure,
we build a linear cavity with a tiny mirror of 8 mg (0.5-mm
thick with a diameter 3 mm) as the test mass. This tiny mirror
is suspended with a thin carbon fiber (6 μm in diameter and
2-cm long) to lower the mechanical restoring torque. The Q
value of a single pendulum with this carbon fiber is measured
to be Q ∼ 8 × 104 at the mechanical resonant frequency,
3 Hz. The test mass is suspended as a double pendulum via
the intermediate mass for isolation from the seismic motion.
The input mirror is much heavier. Its mass is 60 g. Two
coil-magnet actuators are attached to the input mirror to apply
a force and a torque. The radii of the curvature of the mirrors
are 10 cm and the cavity length is 11.0 ± 0.3 cm. Thus, the
cavity is in the negative-g regime of g = −0.1. The finesse of
the cavity is measured to be (3.0 ± 0.3) × 103. The cavity is
built on a platform board; the platform is also suspended as a
double pendulum in a vacuum chamber. The pressure is kept
about 1 Pa to suppress acoustic disturbances.

The cavity length is feedback controlled to resonate contin-
uously. We use a side locking to keep the cavity at a detuned
point near half of the resonant peak. The displacement of the
mirror from the control point is sensed by the reflected-light
power that is monitored by the photodetector. The error signal
is obtained by comparing the output signal from the pho-
todetector with a constant voltage. The error signal is filtered
and sent to the coil-magnet actuator attached to the input

FIG. 3. (a) Schematic drawing of the experimental setup. The test mass is an 8-mg mirror, which is suspended as a double pendulum.
The test mass and the input mirror consist of the main cavity on the platform in vacuum chamber. The laser source is an Nd:YAG laser,
and the wavelength is 1064 nm. The cavity length is feedback controlled for the continuous resonance. The laser intensity fluctuation is also
suppressed by the feedback control with an acoustooptic modulator. The beam spot on the test mass is monitored with a quadrant photodetector
for the transfer function measurement. (b) Photographs of the main cavity on the platform. The platform is suspended with springs as a double
pendulum to isolate the main cavity from seismic vibration. The test mass is focused on the lower left side. The input mirror and the coil
magnet actuator on it is focused on the lower right side.
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FIG. 4. The measured transfer functions of the five measure-
ments of different intracavity powers. The points are the measured
data and the lines represent the fittings. The peaks and the phase flips
indicate the resonant points. By the fitting, we estimate the resonant
frequencies.

mirror. The transmitted light from the cavity is monitored by a
quadrant photodetector, as described in Fig. 3. The half of the
injected laser beam is also monitored for the laser intensity
control. By sending the feedback signal to the acoustooptic
modulator (AOM), we suppress the laser intensity fluctuation.

To show the radiation pressure works as a positive restoring
torque, we evaluate the resonant frequency that is described in
Eq. (5). The resonant frequency is determined by the transfer
function of the rotational motion of the mirrors. We apply
torque to the input mirror by injecting differential sine-wave
signals into the coil-magnet actuators on the input mirror 3.
Then, the test mass is also swung via the radiation pressure
inside the cavity. The rotation of the test mass results in the
changes of the beam spot on the test mass because the cavity
axis changes. We observe the transmitted light from the cavity
by a quadrant photodetector to detect the change in the beam
spot. A convex lens is placed halfway between the test mass
and the quadrant photodetector to measure only the change in
the beam spot without being affected by the change in the cav-
ity axis. The distance between the lens and the test mass (the
quadrant photodetector) is twice as long as the focal length
of the lens. The transfer function from the injected signal to
quadrant photodetector signal includes the transfer function
of the suspended mirrors [31]. Thus, the transfer function
has the characteristic form of the resonant peak. We fit the
transfer function to estimate the resonant frequency. Note that
the cavity length is feedback controlled to keep the resonance
of the cavity during this transfer function measurement.

IV. RESULT

The measured transfer functions from the excitation to the
quadrant photodetector signal are plotted in Fig. 4. We mea-
sure them with five different intracavity powers. The peaks
and the phase flips due to the resonance of the test mass are
observed in each measurement. The intracavity power in each

FIG. 5. The resonant frequencies of the differential mode in
the rotational degree of freedom. The shaded region represents the
theoretically predicted values with the width corresponding to the
uncertainties in mirror reflectivities and the cavity length.

measurement is estimated by the transmitted light power. We
fit the gain of the transfer functions to determine the reso-
nant frequency. The fitted parameters are resonant frequency,
damping ratio of the resonance, and the overall gain factor.
The fitted curves are also plotted in Fig. 4. The uncertainty
in the intracavity power is dominated by the fluctuation in
the power of the transmitted light. The fluctuation in the
transmitted light power is at the frequency of the excitation
signal. Thus, the fluctuation would be due to the misalignment
when the mirror is swung. We show the dependence of the
resonant frequency on the intracavity power in Fig. 5. The
uncertainty of the resonant frequency is estimated from the
fit of the transfer function measurement. We also show the
predicted region from the theoretical calculation using Eq. (5)
with the parameters of the optics. The width of the region cor-
responds to the uncertainty of the design reflectivities of the
mirrors and the uncertainty of the cavity length. The measured
dependency is consistent with the theoretical prediction.

We note that the longitudinal optical spring effect does not
affect our results since the beam spot on the test mass mirror
is precisely adjusted to the center. When the beam spot is
off the center of the mirror, the longitudinal optical spring
also acts as a restoring torque. However, the deviation of the
beam spot from the center of the test mass must be smaller
than 2 μm with our experimental parameters. Otherwise, the
constant radiation pressure rotates the test mass mirror and
breaks the cavity locking. When the deviation is smaller than
2 μm, the restoring torque from the longitudinal optical spring
is smaller than several 10−11 Nm/rad. This is smaller than the
original restoring torque of the pendulum’s suspension wire.
Furthermore, the trapping potential by the longitudinal optical
spring is suppressed by the feedback controlling of the cavity
length, and thus, its effect is further minimized. Therefore,
we conclude that the effect of the coupling of the longitudinal
optical spring is negligible.
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V. DISCUSSION

One of the essential applications of our trapping scheme
is the observation of the quantum radiation pressure fluctua-
tion for testing macroscopic quantum mechanics; the quantum
radiation pressure fluctuation is a radiation pressure fluctu-
ation due to the quantum fluctuation of the photon number
of light. As mentioned in the Introduction, one attracting
target of milligram-scale optomechanical systems is testing
macroscopic quantum mechanics. A proposed experimental
test of macroscopic quantum mechanics requires to prepare
a conditional state [2]. To set an optomechanical system in a
conditional state, the quantum radiation pressure fluctuation
needs to dominate force noises [32]. For the observation of
quantum radiation pressure fluctuation, the combination of
a light mirror and a high power laser beam is preferable.
The high power laser beam enhances the quantum radiation
pressure fluctuation itself, and a light mirror enhances the
displacement of the mirror that is sensed by the interference.
Therefore, our trapping system is suitable because it over-
comes the Sidles-Sigg instability, which limited the optimal
sensitivities in the previous milligram and gram scale experi-
ments [11–14,16,17,27].

We estimate the sensitivity of our experimental setup to
discuss the feasibility of observing the quantum radiation
pressure fluctuation. The calculation reveals that the quantum
radiation pressure fluctuation will be dominant with the in-
tracavity power of over 14 W (see the Appendix for more
details). Since our trapping scheme overcomes the limita-
tion of the Sidles-Sigg instability, the cavity can accumulate
30 kW or more power inside, according to our measurement
result. Therefore, we conclude that our system can realize
the observation of the quantum radiation pressure fluctuation,
though technical classical noises should be well suppressed.

VI. CONCLUSION

We propose a configuration to trap the rotational motions
of the suspended mirrors in a linear cavity. By operating a
linear cavity in the negative-g regime and using unbalanced-
mass mirrors, the two rotational modes of the cavity mirrors
are stable with the radiation pressure inside the cavity. Fur-
thermore, we demonstrate an experimental validation of the
trapping by building a linear cavity with an 8-mg mirror. We
observe the rotational restoring torque on the mirror increases
as the intracavity power increases. The behavior is consistent
with theoretical prediction. Therefore, we confirm that the
8-mg mirror obtains the positive restoring torque originating
from the radiation pressure of the inside laser beam.

We also discuss the possibility of observing quantum radi-
ation pressure fluctuation by using our trapping scheme. The
calculation shows that the quantum radiation pressure fluctu-
ation can be observed with the realistic parameters that are
identical or similar to our realized experiment. Considering
the successful result of the trapping together, we confirm that
the cavity can accumulate enough large laser power to en-
hance the quantum radiation pressure fluctuation to observe it.
Thus, this work is a crucial step towards testing macroscopic
quantum mechanics, while the configuration is also applicable
to a broad range of optomechanical systems.
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APPENDIX: CALCULATION OF THE SENSITIVITY
FOR OUR LINEAR CAVITY

We estimate the sensitivity of our linear cavity to discuss
the feasibility of the observation of the quantum radiation
pressure fluctuation. We calculate the sensitivity with param-
eters shown in Table I. As shown in Fig. 6, the design
sensitivity reaches quantum radiation pressure fluctuation
with the input laser power of 10 mW. To estimate the mirror

TABLE I. Parameters for the calculation of the design sensitivity
towards observation of the quantum radiation pressure fluctuation.
The parameters are based on our realized experimental setup.

Test mass
Mass 8 mg
Diameter 3 mm
Radius of curvature 100 mm
Reflectivity 99.99%
Q value 105

Beam radius 0.21 mm
Young’s modulus Substrate 73 GPa

SiO2 73 GPa
TiO2:Ta2O5 140 GPa

Poisson ratio Substrate 0.17
SiO2 0.17
TiO2:Ta2O5 0.28

Loss angle Substrate 1 × 10−5

SiO2 1 × 10−4

TiO2:Ta2O5 4 × 10−4

Refractive index Substrate 1.45
SiO2 1.45
TiO2:Ta2O5 2.07

Input mirror
Mass 60 g
Radius of curvature 100 mm
Reflectivity 99.9%

Cavity
Cavity length 110 mm
Finesse 5000
Intracavity power 14 W

Laser
Wavelength 1064 nm
Input power 10 mW
Frequency noise 10 Hz/ f Hz/

√
Hz

Temperature 300 K
Air pressure 10−4 Pa
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FIG. 6. Design sensitivity for observing quantum radiation pres-
sure fluctuation. To calculate the sensitivity, we assume the identical
or similar parameters of our experiment. The signal-to-noise ra-
tio of quantum radiation pressure fluctuation to the sum of the
other classical noises is over 1 in the range between 130 Hz
and 600 Hz.

thermal noises, we assume that the finesse of the cavity is
5000, which is realized with a coating reflectivity of 99.99%
on the 8-mg mirror and a coating reflectivity of 99.9% on the
input mirror. These reflectivities are the specification values
of the mirrors of our experiment. The mirror substrate is made
of fused silica, and the coatings of the mirrors are multilayers
of SiO2 and TiO2:Ta2O5. The substrate and coating thermal
noises are calculated based on the calculation in [33–35].
It is known that the spectrum of seismic noise is typically
10−7/ f 2 m/

√
Hz above 0.1 Hz [36]. Because the platform

of our experiment is suspended as a double pendulum with
springs, we assume suppression of the seismic noise by the
factor of 1/ f 4 to calculate the design sensitivity. The air
pressure should be below 10−4 Pa so that the thermal noise
of the residual gas [37] is small enough.

For the sensitivity estimation, we imply the active stabiliza-
tion of the laser. The laser frequency noise of an Nd:YAG laser
is typically around 10–100 Hz/

√
Hz in the region of interest

[38,39]. By a frequency locking to a stable external cavity,
the required frequency noise level is achievable [38,39]. The
laser intensity noise can be reduced with a feedback control
to the level of quantum noise for the required laser power of
10 mW [40].
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