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Quasinormal modes of spheroidal resonators in the null-field framework
and application to hybrid anapoles
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A model for calculating the quasinormal modes (QNMs) of homogeneous and core-shell spheroidal resonators
is formulated in the null-field framework. Relying on a multipole expansion of the electromagnetic fields, the
Mittag-Leffler theorem is employed to extract the QNMs from the poles of a response matrix. Physical quantities
such as the extinction and scattering efficiency and the total internal energy of a mode are expressed directly
in terms of the multipole expansion coefficients. We apply the model to study hybrid anapoles, which are
radiationless states characterized by an enhancement of the total internal energy. Interference between excited
QNMs and the background comprising of all other QNMs leads to a suppression of the extinction efficiency.
Further, we show this suppression is due to Fano-like interference between resonant and background multipoles.
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I. INTRODUCTION

Quasinormal modes (QNMs) of dielectric resonators are
the solutions to Maxwell’s wave equation in the absence of a
source. These modes couple with the external medium, so that
they satisfy the outgoing wave condition. Consequently, the
QNMs are the eigenstates of a nonconservative system, and
so they possess complex eigenfrequencies, with the imaginary
part related to the rate of dissipation of the mode in question
[1]. These two considerations lead to the well-known issue
that the electromagnetic fields are not square integrable in the
usual sense because they become exponentially divergent at
large distances away from the resonator [2,3]. To address this,
normalization schemes have been proposed such as the use of
perfectly matched layers to bound the domain of integration
[4], a modified norm that bounds the problematic integral
[5], or the use of the pole-response approach [6]. In this
approach, the issue of normalizing diverging fields is avoided
entirely by relying on the fact that QNMs are the poles of the
scattering matrix [7]. Finally, an approach recently introduced
circumvents the issue by regularizing the scattered field with
a Green’s approach [8].

In this report, we propose to use the null-field method
[9]—sometimes referred to as the extended boundary condi-
tion method [10] or Waterman’s T-matrix method [11]—to
model spheroidal resonators in terms of its QNMs. This is
combined with the so-called singularity expansion method
(SEM) [12,13], whereby surface integral equations are used
to avoid the issue of the diverging fields when reconstruct-
ing the scattered fields from the free space Green’s function.
This approach can be categorized as a pole-response method
since the modes are determined from the singularities of a
scattering operator. A key difference here with [13] is that the
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SEM is applied to the response matrix instead of the surface
currents. The response matrix relates the multipole expansion
coefficients of an incident field to those of the internal field. In
that sense, the proposed formalism builds upon the works of
Colom and co-workers [14–16] that focused on the spectral
expansion of Mie theory (spherical particles) and as such,
this work constitutes an attempt to generalize the method to
nonspherical homogeneous and core-shell geometries.

The model is applied to hybrid anapoles (HAs) in ho-
mogeneous and core-shell dielectric resonators. HAs are
radiationless states characterized by an enhancement of the
near and internal fields. For a homogeneous spherical parti-
cle, Mie theory allows for the straightforward determination
of the anapole condition as cancellation in the far field will
occur when the numerator of a scattering coefficient goes to
zero. In the case of the electric dipole Mie scattering coef-
ficient, this can be physically understood as resulting from
the destructive interference in the far field from electric and
toroidal dipole moments [17]. In the context of this Cartesian
multipole decomposition, it was suggested that breaking the
spherical symmetry of the particle or introducing a dielectric
inhomogeneity allows for higher electric and toroidal moment
to cancel out. It then follows that the HA condition is fulfilled
when more than one moment is suppressed at a given wave-
length [18–20].

An alternate perspective for investigating these states is the
modal (or QNM) decomposition of the near and far fields.
For a homogeneous spherical particle, it was recently shown
that a Fano resonance formed by the interference between the
resonant QNM and other QNMs along with a nonresonant
contribution produces an anapole [21]. Using a QNM decom-
position of the response matrix, it is first demonstrated with
the model proposed here that HAs in spheroidal resonators are
formed by two resonant QNMs of differing parity interfering
with a background comprising all other QNMs. Then, with
the multipole expansion of the QNM readily available, we
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further demonstrate that this occurs when the suppression in
the Fano-like interference between the resonant and back-
ground multipole moments coincide at a wavelength. Finally,
since the far-field suppression at a given wavelength depends
on the excitation of QNM resonances in the vicinity, the inter-
nal fields are found to be typically larger than the nonresonant
background.

In Sec. II the surface integral approach used to model the
QNMs is discussed. Then in Sec. III we employ the null-
field method to transform the surface integral problem into
a matrix problem. Finally, the response matrix obtained by
the null-field method is expanded into its QNMs using the
Mittag-Leffler theorem in Sec. IV. Validations of the model
are presented in Sec. V, and lastly, the application to HAs is
given in Sec. VI.

II. QNMs AND HUYGENS’ PRINCIPLE

Huygens’ principle for electromagnetic fields states that
fields outside of a surface S enclosing an arbitrarily shaped
particle can be represented by sets of radiating spherical wave
sources distributed over the exterior of the surface. Inside of
S, these sources interfere to produce the null field. Then, the
Franz formula [22] which embodies the Huygens’ principle
allows for the scattered field Esca outside of an arbitrarily
shaped particle to be expressed as

∇ ×
∫

S
esca(rS )g(k0R) dS − Z0

ik0
∇ × ∇

×
∫

S
hsca(rS )g(k0R) dS =

{
Esca(r), if r lies outside S,

0, if r lies inside S,

where g(k0R) is the free space Green’s function with R =
|r − rS|, rS is the position vector on the surface S, Z0 is the
impedance and k0 is the wave number outside of the resonator.
The tangential components of the electric and magnetic sur-
face fields are esca = [n × Esca]S and hsca = [n × Hsca]S . In
the context of Huygens’ principle, these tangential surface
fields determine the strength of the spherical wave source on
S which radiates according to the free space Green’s function.

To construct a theory of QNMs in homogeneous and
core-shell particles, the internal field in each layer are also
expressed in terms of surface currents. Then the superposition
principle is used to add these two equations. To be more suc-
cinct in our presentation, we define the following operators:

(Mi jf )(r) = ∇ ×
∫

Si

f (rS )g(k jR) dS,

(Pi jf )(r) = Zj

ik j
∇ × ∇ ×

∫
Si

f (rS )g(k jR) dS,

where f represents the tangential electric field e or the tangen-
tial magnetic field h on the surface (the scattered or internal
fields in either case). The QNMs of the homogeneous res-
onator are represented as

(M10e − M11e)(r) − (P10h − P11h)(r)

=
{

Esca(r), if r lies outside S,

Eint(r), if r lies inside S.

(1)

where 1 and 0 represents the interior and exterior, respectively.
Imposing the continuity of the tangential component of the
electromagnetic field on the surface of the resonator means
that e and h can be written in terms of either the scattered or
internal field. For the case of a core-shell particle, a similar set
of expressions are given in Appendix A. Essentially, Eq. (1)
can be used as a starting point to analyze QNMs. This is
because, as per the definition of QNMs, (1) the Silver-Muller
radiation condition is fulfilled by virtue of Green’s function in
free-space, and (2) the equation contains no source field.

III. THE NULL-FIELD METHOD

To proceed, the tangential electromagnetic fields need to
be approximated in terms of a complete system of functions.
We employ the null-field method in which the electromagnetic
field are expanded in discrete source functions that satisfy
the wave equation ∇ × ∇ × F(r) = k2F(r), where k is the
wave number. One such set of discrete source functions,
which will be used here, are the spherical vector wave func-
tions (SVWFs) of polarization type TE, Mlm(kr), and TM,
Nlm(kr) = ∇ × Mlm(kr)/k, where l is the mode number and
m is the azimuthal mode number. Here it is convenient to
incorporate the incident field in the analysis and express the
tangential field in terms of the interior field:

(M10eint − M11eint )(r) − (P10hint − P11hint )(r)

=
{

Esca(r), if r lies outside S,

Eint(r) − Einc(r), if r lies inside S.
(2)

Upon substitution of the field expansions into Eq. (2),
the continuous surface integral equations are transformed
into discretized matrix equations with (M10eint )(r) −
(P10hint )(r) → −Q|ψ int〉, Einc → |ψ inc〉. So, in this quantum-
like notation, we have

Q|ψ int〉 = |ψ inc〉 and |ψ sca〉 = −P|ψ int〉, (3)

where |ψ int〉, |ψ inc〉, and |ψ sca〉 are the expansion coefficients
of the internal, incident, and scattered fields in the basis of
SVWFs. It follows that in the absence of the incident field, the
expansion coefficients of the internal field of the nth QNM are
the nontrivial solution to Q(kn)|ψ int

n 〉 = 0 where kn is the nth
resonant wave number (not to be confused with k j , the wave
number in the jth medium) and |ψ int

n 〉 is the right eigenvector.
The right eigenvector |ψ int

n 〉 dictates the field distribution of
the associated QNM inside the resonator. Since Q is non-
Hermitian, there will also be the dual state 〈φint

n | which is
the left eigenvector. The left eigenvector will determine how
well the incident field couples into the QNM. In Appendix B
we apply the null-field method to the core-shell resonator,
and in Appendix C we discuss a solution to this nonlinear
eigenproblem using an iterative procedure.

IV. THE SINGULARITY EXPANSION METHOD

Next the Mittag-Leffler theorem is used to expand the
response matrix R = Q−1 in terms of its poles, an approach
commonly referred to as the singularity expansion method
(SEM). Here the Mittag-Leffler theorem is applied to expand
a matrix R(k) analytic except at simple poles kn with residue
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matrices Rn as

R(k) =
p−1∑
s=0

R(s)(k)

s!
ks +

∑
n

Rn

k − kn

(
k

kn

)p

, (4)

where the parameter p is determined by the asymptotic behav-
ior satisfying limk→∞ |k−pR(k)| = 0. In Appendix D we show
that p = 1 fulfills the requirement so that the expansion takes
the form

R(k) = R(0) +
∑

n

Rn

(
1

kn
+ 1

k − kn

)
. (5)

We recall that the residue matrix, Rn, is given by the nth QNM
projection matrix formed by the corresponding left and right
eigenvectors

Rn = rn

∣∣ψ int
n

〉〈
φint

n

∣∣, (6)

and where the pole residue rn is given by

rn = 1〈
φint

n

∣∣ dQ
dk

∣∣ψ int
n

〉 ∣∣∣∣
k=kn

. (7)

We note that the denominator of the residue is nonzero
for simple poles. However, in a non-Hermitian system, the
eigenfrequencies and eigenvectors of two or more poles may
coalesce and form a higher-order pole, called exceptional
points of order N [23]. At these points, the first derivative
vanishes, and so the Mittag-Leffler theorem would not be ap-
plicable in its given form. Barring this possibility, we perform
some substitutions and find that the expansion coefficients of
the internal field |ψ int(k)〉 can be represented in terms of the
QNMs as

|ψ int(k)〉 =
∑

n

( rn

k − kn

)
|ψ int

n 〉〈φint
n |ψ inc(k)〉, (8)

in which we have established the completeness of the QNMs

R(0) +
∑

n

Rn

kn
= 0, (9)

which is shown in Appendix E. The scattered field expansion
coefficients are obtained directly from the internal field expan-
sions coefficients using

|ψ sca(k)〉 = −P(k)
∑

n

( rn

k − kn

)
|ψ int

n 〉〈φint
n |ψ inc(k)〉, (10)

where P(k) is the matrix that relates the internal state to the
scattered state. It is noteworthy that, as in the case of the
modal expansion of the surface currents [13], the electrostatic
QNMs are not needed for calculating the internal energy or
calculating far fields quantities such as the extinction and
scattering efficiencies [24] and can be safely ignored here.
Indeed, this differs from the more conventional approach of
expanding the electromagnetic fields in QNMs directly. The
choice of representing the expansion coefficients in QNMs
is partly motivated by the fact that quantities of physical
interest such as the total internal energy contained in the
resonator, IV , the extinction efficiency, Qext, and the scatter-
ing efficiency, Qsca, can be computed directly from the field

coefficients:

IV = 〈ψ int(k)|I (k)|ψ int(k)〉, (11)

Qext = −Re〈ψ inc(k)|ψ sca(k)〉/πx2
eq, (12)

Qsca = 〈ψ sca(k)|ψ sca(k)〉/πx2
eq, (13)

where I (k) is a matrix whose elements are volume integrals
over the scalar product of two SVWFs [e.g., I11

ll ′mm′ (k) =
1/V

∫
V Mlm(

√
εkr) · M†

l ′m′ (
√

εkr)dV and V is the volume of
the resonator] and xeq denotes the volume equivalent size
parameter. The calculations of these volume integrals are dis-
cussed in Appendix F. We note that in the case where the
particle is spherical, the present framework becomes identical
to the modal expansion of the Mie coefficients in a sphere
[15]. However, a difference here is that the scattered state is
obtained via the dispersive matrix P(k) with no additional
background to be included. On the other hand in [15], the
scattered state is obtained directly from the QNMs but at the
cost of a complex background which is needed to accurately
reproduce the scattering profiles [21].

V. VALIDATION

We begin by validating the model for the case of a oblate-
prolate dielectric spheroid with a permittivity ε = 16 and
aspect ratio ranging from h = 0.5 to h = 2. In this case and
in all subsequent ones, the incident beam |ψ inc〉 is assumed
to be an on-axis right-circular plane wave. Our focus is on
axisymmetric particles, so the azimuthal mode number m
remains a good number and the QNMs decouple according
to their respective m. Consequently, the only QNMs that need
to be considered in our calculations are the subset that couple
with the incident field, here m = 1. Further, it is important
to note that the mirror symmetry of the particles studied here
reduces the QNMs of a subset m into two subsets which are
independent of each other which we will call the parity.

In Figs. 1(a) and 1(b), the shift in the resonant size param-
eter of the dominant QNMs from that of the sphere are shown
as a function of the aspect ratio of the spheroid. The QNMs are
first determined for the analytical case of the sphere using Mie
theory. In the nonspherical case, we preserve the convention
of labeling the QNMs according to their polarization type (TE,
TM) and mode assignment (l, m, ν) where l and m have the
same definitions as earlier, and ν is the mode order (i.e., TEν

lm
and TMν

lm). Then, once the QNMs of the sphere are known,
the aspect ratio is varied in small increments and the homoge-
neous matrix equation is solved for the updated resonant wave
number and eigenvectors. In Fig. 1(c) we compare the ex-
tinction efficiency of the QNM expansion versus the T-matrix
method. We note that to achieve the good agreement between
the two, we included some additional modes that lie outside
the spectral range shown. The contribution of the individual
QNMs to the overall extinction efficiency is also shown. It is
noteworthy that the extinction profiles of the individual QNMs
exhibit non-Lorentzian line shapes due to the dispersive effect
of the matrix P(k) acting on the QNM internal state |ψ int

n 〉.
In Fig. 2(a) we show the trajectory of the QNMs of a homo-

geneous polystyrene sphere in the complex plane as it deforms
into a spheroid with an aspect ratio of h = 1.2. Polystyrene
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FIG. 1. The singularity expansion method (SEM) for oblate-
prolate spheroids (ε = 16) with varying aspect ratio and a length
scale similar to the wavelength. (a) The real part and (b) the imagi-
nary part of the four QNMs that fall in the spectral range of interest
as a function of the aspect ratio. (c) The extinction efficiency as a
function of equivalent size parameter for a full T-matrix calculation,
the SEM reconstruction, and the individual contribution from each
QNM.

particles were chosen in this example as they are often used as
a standard in light-scattering-based aerosol instruments [25]
and are also ubiquitous in colloid and nanoscience. In this
calculation, approximately 100 QNMs had to be included to
properly replicate the extinction efficiency up to the equiv-
alent size parameter of xeq ∼ 10 in Fig. 2(b). Concerning the
trajectory of the QNMs in the complex plane, it is often argued
that the dielectric sphere represent an ideal case for supporting
QNMs, which would imply that any shape perturbation ought

FIG. 2. The resonant size parameter of the QNMs of (a) a
polystyrene sphere (εps = 2.517) and (c) a water-coated (εwat =
1.773, core-shell ratio 0.75) polystyrene sphere as both systems are
deformed into prolate concentric spheroids with h = 1.2. In (b) and
(d), the extinction efficiency using the QNM expansion is compared
to the T-matrix calculation for both the spherical and spheroidal
particles.

FIG. 3. The extinction efficiency (a, c, e) and total internal
energy (b, d, f) of hybrid anapoles (HAs) in homogeneous and core-
shell prolate spheroids. The extinction efficiency using the T-matrix
method is compared against the SEM. Also shown are the extinction
efficiency of the dominant QNMs and the so-called background,
which is formed by the contribution of all other QNMs to the ex-
tinction efficiency. The total internal energy and the contributions
from the dominant QNM are shown as well as the internal electric
field distribution of the dominant QNMs and the anapole. The ho-
mogeneous spheroid in (a) and (b) has an aspect ratio h = 1.575 and
permittivity ε = 30. The core-shell spheroid in (c) and (d) has an
aspect ratio h = 1.405, core-shell ratio 0.5, and the permittivity of
the core and shell are respectively εcore = 16 and εshell = 30. In (e)
and (f) the silicon cylinder is modeled using a superspheroid with
np = 64, h = 1.456 and permittivity ε = 14.977.

to degrade the quality factor of the cavity relative to that of a
sphere. As demonstrated in [26] and numerically investigated
in [27], this is indeed the case provided the imaginary part
of the complex size parameter is small. Here we see this
systematically for the TE modes of the lowest mode order.
For low-quality factor modes, we observe that deforming the
sphere actually improves the quality factor, which concurs
with the findings in [27]. Specifically, the TM modes of higher
mode orders see their quality factor systematically improved
as the sphere is deformed.

VI. APPLICATION TO HYBRID ANAPOLES

We now apply our model to reveal the modal content
of HAs in homogeneous and core-shell spheroidal particles.
Since optical anapoles are radiationless states, they can be
located by looking for a vanishing extinction efficiency in
calculated spectra. For instance, in Fig. 3 we investigated
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FIG. 4. The partial scattering efficiency, qsca, of the first four multipole moments as a function of the equivalent size parameter in the
vicinity of the hybrid anapoles in (a) the homogeneous spheroid, (b) core-shell spheroid, and (c) cylinder. The permittivities and parameters
used to define the objects are identical to those listed in the caption of Fig. 3.

three cases where we observed a suppression of the extinction
efficiency accompanied by an enhancement of the total inter-
nal energy at a given equivalent size parameter.

A noteworthy feature in Fig. 3 is that the extinction effi-
ciency contribution from either the dominant modes or the
background modes can drop below zero. The QNMs do not
obey the usual Hermitian inner product but rather an unconju-
gated inner product. In the present case, however, the QNMs
extracted from the response matrix, denoted as Rn, do not
exhibit any orthogonality. This nonorthogonality of the QNMs
can lead to negative extinction efficiency contributions, which
arises due to interference effects between the nonorthogonal
modes.

In Fig. 3(a) we observe that the anapole in the spheroid
is formed by two QNMs, TE1

2,1 and TM1
2,1, which exhibit

Fano-like profiles in their extinction efficiencies in the vicinity
of xeq ∼ 0.9. To reproduce the original spectra, it is necessary
to include the background formed by modes lying outside of
the shown spectral range. In Fig. 3(b), due to the close prox-
imity to the dominant QNMs, the total internal energy at the
anapole position is enhanced in equal parts by the overlap of
the two QNMs. Although the anapole lies at a local minimum
between the two peaks, the total internal energy of the HA is
still enhanced with respect to off-resonance conditions. The
electric field distributions of the two QNMs as well as at the
anapole are also shown in Fig. 3(b). Following the convention
established by [20], the first resonance TE1

2,1 is identified as
a Mie-like resonance supported in an infinite cylinder while
the second resonance TM1

2,1 is akin to a Fabry-Perot mode
formed by standing waves propagating from top to bottom in
the spheroid.

The interpretations above can be carried over to anapoles
in different structures such as the core-shell spheroid shown
in Figs. 3(c) and 3(d). From the field distributions shown in
3(d), the TM1

1,1 mode plays the role of the Mie-like mode
while TE1

3,1 that of the Fabry-Perot mode. In Fig. 3(c) both
of these modes have negative extinction at the anapole xeq ∼
0.978, which is compensated for by the background extinction
formed by surrounding modes. In Fig. 3(d), while the anapole
lies near the maximum of TE1

3,1 mode, the effect of the broad
TM1

1,1 mode cannot be neglected in the total internal energy.
In Figs. 3(e) and 3(f), we examine the case of a silicon cylinder
as in [20] but with rounded edges. Again, the same pattern is
observed in terms of the profile of the extinction efficiencies,
wherein the TE1

2,1 and TM1
2,1 assume Fano-like profiles in the

vicinity of the anapole xeq ∼ 1.312. From the electric field

energy distribution plots, we deduce the former mode is akin
to the Fabry-Perot mode while the later is akin to the Mie-
like mode. When examining the total energy at the anapole,
both of these modes need to be considered in addition to the
background.

A pattern that emerges from the above analysis is that at
least two QNMs are involved in forming the anapole, one
Mie-like and the other Fabry-Perot-like. In the present model,
this can also be understood in terms of the so-called parity
mentioned in Sec. V. To elaborate, the mirror-symmetry of
the spheroid and the cylinder means the even TE modes do not
couple with the odd TE modes and likewise for the TM modes.
However, we note that even TE do couple with odd TM, and
similarly for the odd TE and even TM. The point is that the
two QNMs involved in forming the anapoles in Fig. 3 are
independent from each other. In addition, this fact is important
when considering the multipole content of each QNM. While
the electric dipole and the magnetic quadrupole can mix, both
are independent from the magnetic dipole and the electric
quadrupole. This relation can be generalized to all electric
and magnetic multipoles, in that even-numbered electric mul-
tipoles couple with odd-numbered magnetic multipoles, and
likewise, odd-numbered electric multipoles couple with even-
numbered multipoles. These two groups do not couple with
each other. It is evident that, due to the mirror-symmetry of
the resonators considered here, at least two QNMs of oppo-
site parity are required in order for the first four multipole
moments to vanish simultaneously.

The fact that the first four multipoles, namely, the electric
and magnetic dipole moments and the electric and magnetic
quadrupole moments, vanish in the vicinity of the HAs in
Fig. 3 is confirmed in Fig. 4 for the three dielectric structures.
In both the T-matrix calculation and the QNM reconstruc-
tion, the partial scattering efficiency, qsca, contributed by each
multipole is suppressed near the HA. In Fig. 5 we show that
for the case of the homogeneous spheroid, the suppression
of each partial scattering efficiency can be understood as a
Fano-like resonance where the QNM nearest the HA provides
the resonant multipole contribution while all other QNMs
of the same parity provide the background multipole contri-
bution. The minimum in the partial scattering efficiency of
each multipole, denoted as gray vertical lines in the panels
of Fig. 5 occurs when the resonant multipole partial scattering
efficiency is approximately equal to the background multipole
partial scattering efficiency. Then in Fig. 5 we demonstrate
that this coincides with a phase difference �φ ∼ π where
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FIG. 5. The partial scattering efficiencies qsca of each multipole
and phase differences �φ = φres − φbkgd between the resonant and
background contributions of each multipole for the HA in the homo-
geneous spheroid. The vertical gray lines denote the minimum in the
partial scattering efficiency. The horizontal gray lines denote a phase
difference of π . The permittivities and parameters used to define the
homogeneous spheroid are identical to those listed in the caption of
Fig. 3.

�φ = φres − φbkgd between the resonant multipole and back-
ground multipole. The antiphase condition is indicated in the
figure with a gray horizontal line at �φ = π in all the panels.
This results in destructive interference and a nearly vanishing
partial scattering efficiency. When the equivalent size parame-
ter at which this occurs is roughly the same for each of the four
multipoles, a hybrid anapole can be said to be formed. This
investigation was also carried out for the first four multipoles

FIG. 6. The partial scattering efficiencies qsca of each multipole
and phase differences �φ between the resonant and background
contributions of each multipole for the HA in the core-shell spheroid.
The vertical gray lines denote the minimum in the partial scattering
efficiencies. The horizontal gray lines denote a phase difference of
π . The permittivities and parameters used to define the core-shell
spheroid are identical to those listed in the caption of Fig. 3.

FIG. 7. The partial scattering efficiencies qsca of each multipole
and phase differences �φ between the resonant and background
contributions of each multipole for the HA in a cylinder. The vertical
gray lines denote the minimum in the partial scattering efficiencies.
The horizontal gray lines denote a phase difference of π . The per-
mittivities and parameters used to define the cylinder are identical to
those listed in the caption of Fig. 3.

in the other dielectric structures and the analogous results are
presented in Figs. 6 and 7.

VII. CONCLUSIONS

A QNM theory based on the null-field method was pre-
sented for homogeneous and core-shell spheroidal particles. A
distinctive feature of the current framework is that the modal
expansion is carried out on the field coefficients instead of
the electromagnetic vector fields and so it is a first attempt to
extend the modal expansion of the Mie coefficients [15,28]
to nonspherical geometries. The model was applied to the
study of a few different systems, but our main focus was
on the modal and multipole content of HAs. In general, the
anapoles examined here arise when more than one multipole
moment vanish simultaneously near two independent QNMs
of differing parity. We explained this by noting that each
multipole moments vanishes due to Fano-like interference
between the resonance of a nearby QNM and the background
comprising other QNMs of the same parity. We conclude by
emphasizing that the choice of discrete sources used in the
null-field method is not limited to the spherical vector wave
functions. Different discrete sources functions listed in [22]
may be more appropriate for extreme geometries. However,
if one restricts application to spheroids, a robust numerical
implementation of the null-field method can be used [29] for
extremely elongated or flattened spheroids.
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APPENDIX A: QUASINORMAL MODES (QNMs) AND
HUYGENS’ PRINCIPLE FOR CORE-SHELL RESONATORS

For a core-shell structure, the integral equations need to
be modified in order to account for the inclusion of a second
surface, namely, the core-shell interface. For clarity, we will
identify the tangential electric and magnetic fields on the
shell-medium interface as es and hs and those on the core-
shell interface as ec and hc. Then the first modification that is
needed is to include an equation that gives the field inside the
core

(P22hc)(r) − (M22ec)(r) =
{

0, if r lies outside S2,

Ecore(r), if r lies inside S2,

(A1)

and in the case of the fields inside the shell, the addition of
current fields associated with the core

(M21ec − M11es)(r) − (P21hc − P11hs)(r)

=
{

0, if r lies outside S1 or inside S2,

Eshell(r), if r lies between S1 and S2.

(A2)

So, by superposition, the QNMs of a core shell are

(M10es − M11es + M21ec − M22ec)(r)

− (P10hs − P11hs + P21hc − P22hc)(r)

=
⎧⎨
⎩

Esca(r), if r lies outside S1,

Eshell(r), if r lies between S1 and S2,

Ecore(r), if r lies inside S2.

(A3)

Therefore, the QNMs of a core-shell resonator can be rep-
resented using Huygen’s principle by the addition of wave
sources ec and hc associated to the core-shell interface. We
note that boundary conditions for the tangential electric and
magnetic fields on the surface and core-shell interface are
needed in order to solve the integral equations.

APPENDIX B: THE NULL-FIELD METHOD

In the null-field method, a choice of discrete source
functions are the localized spherical vector wave functions
(SVWFs) of polarization type TE and TM. Respectively, these
are represented in spherical coordinates (r, θ, φ) as [30]

M( j)
lm (kr) = z( j)

l (kr)[iπlm(θ )êθ − τlm(θ )êφ]eimφ, (B1)

N( j)
lm (kr) =

{
l (l + 1)

z( j)
l (kr)

kr
Plm(θ )êr

+
[
krz( j)

l (kr)
]′

kr
[τlm(θ )êθ + iπlm(θ )êφ]

}
eimφ,

(B2)

where the angular functions are given by

πlm(θ ) = m

sin θ
Plm(θ ) and τlm(θ ) = d

dθ
Plm(θ ), (B3)

and Plm(θ ) is the normalized associated Legendre polynomial.
The radial function z( j)

l (kr) with j = 1 denotes the regular
spherical Bessel function z(1)

l = jl , and with j = 3 the outgo-
ing spherical Bessel function z(3)

l = h(1)
l . With this choice, the

internal and scattered fields for the homogeneous resonator
are expanded in the embedded and circumscribing sphere,
respectively,

Eint(r) =
∞∑

l=1

l∑
m=−l

clmM(1)
lm (k1r) + dlmN(1)

lm (k1r), (B4)

Esca(r) =
∞∑

l=1

l∑
m=−l

almM(3)
lm (k0r) + blmN(3)

lm (k0r), (B5)

where the internal field coefficient and scattered field coeffi-
cients are unknown quantities to be determined. Additionally,
the representation of the Green’s dyadic in SVWFs is needed
[31]

G
↔

(kR) = ik
∞∑

l=1

l∑
m=−l

M(3)∗
lm (kr′)M(1)

lm (kr)

+ N(3)∗
lm (kr′)N(1)

lm (kr), |r| < |r′|, (B6)

G
↔

(kR) = ik
∞∑

l=1

l∑
m=−l

M(1)∗
lm (kr′)M(3)

lm (kr)

+ N(1)∗
lm (kr′)N(3)

lm (kr), |r| > |r′|,
(B7)

where r and r′ are two arbitrary vectors in a free medium.
We note complex conjugation applies only to the angular
part of the SVWF and not the radial part. At this point, it is
useful to also introduce the source field, which is assumed to
be located exterior to the resonator and can be expanded in
regular SVWFs as

Einc(r) =
∞∑

l=1

l∑
m=−l

gTE
lmM(1)

lm (k0r) + gTM
lm N(1)

lm (k0r), (B8)

where gTE
lm and gTM

lm are the beam-shape coefficients for TE and
TM polarizations, respectively. Then, in order to account for
the incident field, the following Franz formula is used:

(M10einc)(r) − (P10hinc)(r)

=
{

0, if r lies outside S2,

−Einc(r), if r lies inside S2.
(B9)

The standard procedure is to solve the following equation for
the tangential surface fields:

(M10eint )(r) − (P10hint )(r)

=
{

Esca(r), if r lies outside S1,

−Einc(r), if r lies inside S1,
(B10)

where we emphasize that we are solving for the internal fields
first by using e = eint. With the SVWF expansions, the opera-
tor is replaced by a system of equations with (M10eint )(r) −
(P10hint )(r) → −[Q31

1 ]|ψ int〉, Einc → |ψ inc〉 and so, in this
quantum-like notation, we have[

Q31
1

]|ψ int〉 = |ψ inc〉 and |ψ sca〉 = −[
Q11

1

]|ψ int〉, (B11)

where, for convenience, we assemble the expansion coef-
ficients of the internal, incident and scattered fields in the
bra-ket vectors |ψ int〉, |ψ inc〉, and |ψ sca〉, respectively, and
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introduced the matrix [Q jk
i ] for the ith layer as

[
Q jk

i

] =
[ [

K jk
i

] + ηi
[
J jk

i

] [
L jk

i

] + ηi
[
I jk
i

]
[
I jk
i

] + ηi
[
L jk

i

] [
J jk

i

] + ηi
[
K jk

i

]
]
, (B12)

where ηi = Zi−1/Zi, Zi is the impedance, and where the el-
ements of the block matrices in Eq. (B12) are given by the
following surface integrals:[
I jk
i

]
ll ′mm′ = ik2

i−1

∫
Si

ni · [
M( j)∗

lm (ki−1rS ) × M(k)
l ′m′ (kirS )

]
dS,

[
J jk

i

]
ll ′mm′ = ik2

i−1

∫
Si

ni · [
M( j)∗

lm (ki−1rS ) × N(k)
l ′m′ (kirS )

]
dS,

[
K jk

i

]
ll ′mm′ = ik2

i−1

∫
Si

ni · [
N( j)∗

lm (ki−1rS ) × M(k)
l ′m′ (kirS )

]
dS,

[
L jk

i

]
ll ′mm′ = ik2

i−1

∫
Si

ni · [
N( j)∗

lm (ki−1rS ) × N(k)
l ′m′ (kirS )

]
dS.

Note that, when i appears in an expression, it is the imaginary
number when it is neither a superscript nor a subscript. There-
fore, in the absence of a source |ψ inc〉 = 0, the QNMs are the
nontrivial solution to the homogeneous matrix equations with
Q = [Q31

1 ] and P = [Q11
1 ]

Q(kn)
∣∣ψ int

n

〉 = 0 and
∣∣ψ sca

n

〉 = −P(kn)
∣∣ψ int

n

〉
. (B13)

The steps outlined for the homogeneous resonator are iden-
tical in the case of the core-shell resonator. However, the
internal fields are separated into fields in the core and shell
as follows:

Ecore(r) =
∞∑

l=1

l∑
m=−l

c(2)
lm M(1)

lm (k2r) + d (2)
lm N(1)

lm (k2r), (B14)

Eshell(r) =
∞∑

l=1

l∑
m=−l

c(1)
lm M(1)

lm (k1r) + d (1)
lm N(1)

lm (k1r)

+ e(1)
lm M(3)

lm (k1r) + f (1)
lm N(3)

lm (k1r). (B15)

For the core-shell resonator, the Q matrix is given by

Qcs = [
Q31

1

][
Q31

2

] − [
Q33

1

][
Q11

2

]
, (B16)

and it relates the core field coefficients, denoted by |ψ int〉 to
the incident field coefficients, |ψ inc〉. Here the P matrix is

Pcs = [
Q11

1

][
Q31

2

] − [
Q13

1

][
Q11

2

]
, (B17)

and it relates the core field coefficients to the scattered field
coefficients |ψ sca〉. In summary, we have

Qcs|ψ int〉 = |ψ inc〉, and |ψ sca〉 = −Pcs|ψ int〉. (B18)

It is then clear that the QNMs are given by

Qcs(kn)
∣∣ψ int

n

〉 = 0 and
∣∣ψ sca

n

〉 = −Pcs(kn)
∣∣ψ int

n

〉
. (B19)

Finally, it is also desirable to know the field expansion inside
the shell, as it can be used, for instance, to calculate the total
internal energy. Both the regular |ψ shell,rg〉 and outgoing com-
ponent |ψ shell,out〉 are related to the core coefficients through

|ψ shell,rg〉 = [
Q31

2

]|ψ int〉, and |ψ shell,out〉 = −[
Q11

2

]|ψ int〉.
(B20)

APPENDIX C: NUMERICAL ROOT FINDING METHOD

The nontrivial solution to the homogeneous matrix equa-
tions yields both the eigenfrequency kn and its eigenvector
|ψ int

n 〉. In addition, the eigenvector |φint
n 〉 of the adjoint of

the Q matrix is needed since the Q matrix is non-Hermitian,
〈φint

n |Q(kn) = 0. The algorithm used to determine the left
eigenvector |φint

n 〉, right eigenvector |ψ int
n 〉, and the eigenfre-

quency kn is the following iterative procedure [32]:

Q
∣∣ψ int

n

〉
j+1 = dQ

dk

∣∣ψ int
n

〉
j, (C1)

Q†
∣∣φint

n

〉
j+1 =

(
dQ

dk

)†∣∣φint
n

〉
j, (C2)

kn, j+1 = kn, j −
〈
φint

n

∣∣Q∣∣ψ int
n

〉
j+1〈

φint
n

∣∣ dQ
dk

∣∣ψ int
n

〉
j+1

. (C3)

At each iteration, the biorthogonal eigenvectors are renor-
malized to 〈φint

n |ψ int
n 〉 = 1 to avoid numerical overflow or

underflow. The starting point of the iteration is the sphere, for
which algorithms to determine the eigenfrequencies are well
established. Here we use contour integration methods [33]
along with the familiar Newton iteration [34,35]. To obtain
the eigenfrequencies and eigenvectors of an arbitrarily shaped
resonator, the sphere is deformed into the desired shape by
small steps to ensure convergence of the iteration.

APPENDIX D: THE SINGULARITY EXPANSION METHOD

It has been shown that the zeros of the Q matrix correspond
to the QNMs of the resonator, and its associated eigenfre-
quencies and eigenvectors may be determined by iterative
procedures in Appendix C. Once these quantities are known,
a modal decomposition of the internal and scattered field ex-
pansion coefficients in the presence of a source exterior to the
resonator is accomplished by using the singularity expansion
method.

Let R(k) = Q−1(k) be an analytic matrix in k with simple
poles kn (and otherwise invertible at all k) and a corresponding
residue matrices Rn. Then the Mittag-Leffler theorem states
that for an integer p and a uniform bound M such that
max |k−pR| < M on Cm as m → ∞ (Cm is a circle on the
complex plane centered on k = 0 with radius Rm → ∞ as
m → ∞), R(k) has the following representation:

R(k) =
p−1∑
s=0

R(s)(k)

s!
ks +

∑
n

Rn

k − kn

(
k

kn

)p

. (D1)

In order to construct a pole expansion of the R matrix, the
integer p at which Eq. (D1) is truncated needs to be deter-
mined. This is accomplished by examining the asymptotic
limit limk→∞ Q(k). In the framework of the null-field method,
it turns out that p = 1 yields the correct asymptotic limit
for both the core-shell and homogeneous Q matrix. In the
case of a homogeneous resonator or particle, the functional
dependence of a typical entry of the Q matrix with respect to
k is a product of a spherical Bessel and a spherical Hankel
function

Qll ′ ∼ nz2 jl ′ (nz)hl (z), (D2)
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where n is the refractive index of the homogeneous particle.
For a fixed l < L and l ′ < L where L � z, we may exploit
the asymptotic formula of the spherical Bessel and Hankel
functions as z → ∞ and z � L. This yields

nz jl ′ (nz) ∼ einz + e−inz and zhl (z) ∼ eiz, (D3)

so that the asymptotic form of the product is expressed with
complex exponentials as

Qll ′ ∼ aei(n+1)z + be−i(n−1)z, (D4)

where a and b are constants that are of no importance. For
a real-valued positive definite permittivity, it turns out that
this asymptotic limit admits only oscillatory terms on the real
axis Re(z). In general, on the complex plane, the asymptotic
limit will be dominated by the exponential growth. Then, the
inverse R = Q−1 will have exponential decay in the complex
plane and will remain oscillatory on the real axis. There-
fore, the Mittag-Leffler theorem with p = 1 will suffice to
reproduce this behavior because max |k−1R| < M on Cm as
Rm → ∞ and thus

R(k) = R(0) +
∑

n

Rn

[
1

k − kn
+ 1

kn

]
. (D5)

Now, we need to determine the residue matrix. With a bit of
work, the residue matrix is expressed in terms of the projec-
tion matrix of Q. Assume a Laurent series of the R = Q−1

matrix about k = kn as

Q−1 = Rn

k − kn
+ A0 + (k − kn)A1 + · · · , (D6)

where A0, A1, . . . represent matrices of no importance in the
final expression and we assume a simple pole at k = kn for
consistency. If we then differentiate with respect to k we get

d

dk
Q−1 = −Q−1 dQ

dk
Q−1 = −Rn

(k − kn)2
+ A1 + · · · . (D7)

This can be reorganized to yield

(k − kn)Q−1 dQ

dk
(k − kn)Q−1 = Rn − A1(k − kn)2 − · · · ,

(D8)

and we may proceed to evaluate the limit as k → kn. We will
need the spectral representation of Q−1 which is

Q−1 =
∑

j

1

λ j
|ψ j〉〈φ j |, (D9)

where λn is the nth eigenvalue of

Q|ψn〉 = λn|ψn〉 = 0 as k → kn, (D10)

〈φn|Q = λn〈φn| = 0 as k → kn. (D11)

The limit will yield the residue matrix in terms of the projec-
tion matrix

Rn = lim
k→kn

∑
j

k − kn

λ j
|ψ j〉〈φ j | = δn jrn|ψn〉〈φn|, (D12)

where rn denotes the pole residue at k = kn and δn j is the
Kronecker delta function. However, it also follows from the

differentiation that the residue matrix can be expressed as

Rn = r2
n

∣∣ψ int
n

〉〈
φint

n

∣∣dQ

dk

∣∣ψ int
n

〉〈
φint

n

∣∣, (D13)

which means that the pole residue rn is given by

rn = 1〈
φint

n

∣∣ dQ
dk

∣∣ψ int
n

〉 , (D14)

and so the residue matrix is

Rn =
∣∣ψ int

n

〉〈
φint

n

∣∣〈
φint

n

∣∣ dQ
dk

∣∣ψ int
n

〉 . (D15)

Then we find that the pole expansion of the R matrix is

R(k) = R(0) +
∑

n

rn

(
1

k − kn
+ 1

kn

)∣∣ψ int
n

〉〈
φint

n

∣∣. (D16)

Therefore, the expansion of the internal field |ψ int(k)〉 is given
by operating the singularity expansion of R(k) onto |ψ inc(k)〉,
which yields

|ψ int(k)〉 = R(0)|ψ inc(k)〉

+
∑

n

rn

(
1

k − kn
+ 1

kn

)∣∣ψ int
n

〉〈
φint

n

∣∣ψ inc(k)
〉
.

(D17)

Unless indicated, the vectors and matrices are evaluated
at k = kn. This concludes the problem of determining the
fields in terms of the zeros of the Q matrix (or the poles of
the R matrix). The scattered field is obtained by |ψ sca(k)〉 =
−P(k)|ψ int(k)〉.

In the case of the core-shell resonator, some simplifications
will be useful. First, we begin with

Qcs = Q33
1 Q11

2 − Q31
1 Q31

2 = i
[
Q32

1 Q11
2 − Q31

1 Q32
2

]
, (D18)

In the asymptotic limits with l < L where L � z, we will have

z jl (z) ∼ cos(z), zyl (z) ∼ sin(z), and zhl (z) ∼ eiz.

(D19)
Therefore,

Qcs,ll ′ ∼ eiz1 cos(n2z2)

× [a sin(n1z1) cos(n1z2) − b sin(n1z2) cos(n1z1)],

(D20)

which will have exponential growth on the complex plane
and remain oscillatory on the real-axis. Now, for the purpose
of calculating the total internal energy contribution from the
shell, we need to check whether p = 1 is sufficient. Recall
from Eq. (B20) that the outgoing component of the shell field
was given by the matrix [Q11

2 ]−1Qcs so that the asymptotic
limit goes as[

Q11
2

]−1

ll ′ Qcs,ll ′ ∼ aeiz1 sin(n1z1)

− beiz1 sin(n1z2) cos(n1z1)/ cos(n1z2).

(D21)

For z = iy, we have[
Q11

2

]−1

ll ′ Qcs,ll ′ ∼ e(n1−1)y1 , (D22)
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and, for z = −iy, we have[
Q11

2

]−1

ll ′ Qcs,ll ′ ∼ e(n1+1)y1 . (D23)

These equations indicate that p = 1 for the outgoing shell
wave is satisfactory. For the regular wave given by [Q31

2 ]−1Qcs,
we have[

Q31
2

]−1

ll ′ Qcs,ll ′ ∼ ei(1−n1α)z1 [a sin(n1z1) cos(n1z2)

− b cos(n1z1) sin(n1z2)]. (D24)

For z = iy, we have[
Q31

2

]−1

ll ′ Qcs,ll ′ ∼ e−(1−n1α)y1 e(n1+n1α)y1 = e(n1−1+2n1α)y1 ,

(D25)
and, for z = −iy, we have[

Q31
2

]−1

ll ′ Qcs,ll ′ ∼ e(1−n1α)y1 e(n1+n1α)y1 = e(n1+1)y1 . (D26)

Therefore, the regular part can also be expanded with p = 1.

APPENDIX E: CAUSALITY AND COMPLETENESS

On the upper half of the complex plane, (k) > 0, the re-
sponse function R(k) of either the homogeneous or core-shell
resonator contains no poles due to the causality principle. In
the special case of the sphere where R(k) is diagonal, this has
been shown to be the valid numerically [15], and we seek
to extend this to nonspherical resonators where R(k) is not
diagonal. The response matrix on the upper half plane can be
written using the Cauchy integral theorem:

R(k̄) = 1

2π i

∮
C

dk′ R(k′)
k′ − k̄

, (E1)

where the contour C is taken to enclose no singularities of
the R matrix and k̄ is any point lying inside the contour C.
We take the contour C to be a semicircle enclosing the whole
upper half plane that extends to infinity. It follows that the
semicircular path CR does not contribute to the integration
because R vanishes sufficiently fast on the complex plane (i.e.,
see the asymptotic limits of Q). We are left with only the
integration over the real axis

R(k̄) = 1

2π i

∫ ∞

−∞
dk′ R(k′)

k′ − k̄
. (E2)

Since we want to evaluate R on the real axis, we let k̄ = k + iδ
and evaluate the limit as δ → 0. For real k, the integral be-
comes

R(k) = 1

π i
P

∫ ∞

−∞
dk′ R(k′)

k′ − k
, (E3)

where P stands for the principal value integral

P
∫ ∞

−∞
dk′ R(k′)

k′ − k

= lim
ε→0

[∫ k−ε

−∞
dk′ R(k′)

k′ − k
+

∫ ∞

k+ε

dk′ R(k′)
k′ − k

]
. (E4)

Now, we recall the singularity expansion of R in Eq. (D5) went
as

R(k) = R0 +
∑

n

Rn

k − kn
. (E5)

We insert this expansion into Eq. (E3) to obtain

R(k) = R0

π i

(
P

∫ ∞

−∞
dk′ 1

k′ − k

)

+
∑

n

Rn

π i

(
P

∫ ∞

−∞
dk′ 1

(k′ − k)(k′ − kn)

)
. (E6)

The first integral on the r.h.s. of Eq. (E6) is identically zero,

P
∫ ∞

−∞
dk′ 1

k′ − k
= 0, (E7)

and the second integral on the r.h.s. gives

P
∫ ∞

−∞
dk′ 1

(k′ − k)(k′ − kn)
= π i

k − kn
. (E8)

So, on the real-axis, R(k) can be written using only the
singularity-dependent part of the expansion

R(k) =
∑

n

Rn

k − kn
. (E9)

This implies the completeness of the QNMs:

R(0) +
∑

n

Rn

kn
= 0. (E10)

APPENDIX F: TOTAL INTERNAL ENERGY

When calculating the internal field energy for lossless ma-
terials in the null-field framework, we encounter integrals of
the form

I11
ll ′mm′ = 1

V

∫
V

dV Mlm(kr) · M†
l ′m′ (k′r), (F1)

where V is the volume of the homogeneous or core-shell
resonator. Here the volume integrals of product of SVWFs are
transformed into surface integrals enclosing the volume. To
proceed in the evaluation Eq. (F1), we recall the identity

∇ · (a × b) = b · (∇ × a) − a · (∇ × b), (F2)

as well as the divergence theorem∫
V

∇ · FdV =
∮

S
n · FdS, (F3)

and finally that the SVWFs of polarization type TE and TM
are related to each other through

∇ × M = kN and ∇ × N = kM. (F4)

If we now consider the volume integral∫
V

∇ · [Mlm(kr) × Nl ′m′ (k′r)]dV

=
∫

V
[Nl ′m′ (k′r) · ∇ × Mlm(kr)

− Mlm(kr) · ∇ × Nl ′m′ (k′r)] dV,
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we can use the properties of SVWFs to obtain the following
two results:∫

V
∇ · [Mlm(kr) × Nl ′m′ (k′r)] dV

=
∫

V
kNl ′m′ (k′r) · Nlm(kr) − k′Mlm(kr) · Ml ′m′ (k′r) dV,

(F5)∫
V

∇ · [Nlm(kr) × Ml ′m′ (k′r)] dV

=
∫

V
kMl ′m′ (k′r) · Mlm(kr) − k′Nlm(kr) · Nl ′m′ (k′r) dV.

(F6)

The volume integrals
∫

V Nlm(kr) · Nl ′m′ (k′r)dV can be elimi-
nated by adding the product of k′ and Eq. (F5) to the product
of k and Eq. (F6). That result can be reorganized as

(k2 − k′2)
∫

V
Mlm(kr) · M†

l ′m′ (k′r) dV

= k
∫

V
∇ · [Nlm(kr) × M†

l ′m′ (k′r)] dV

+ k′
∫

V
∇ · [Mlm(kr) × N†

l ′m′ (k′r)] dV,

where we note the dagger is the Hermitian conjugate, which,
for lossless materials and real frequencies, only conjugates the
angular part of the SVWF. Dividing both sides by V (k2 − k′2)
and taking the limit, we get

I11
ll ′mm′ (k)

= 1

V
lim
k′→k

k

k2 − k′2

∫
V

∇ · [Nlm(kr) × M†
l ′m′ (k′r)]d V

+ 1

V
lim
k′→k

k′

k2 − k′2

∫
V

∇ · [Mlm(kr) × N†
l ′m′ (k′r)] dV.

Applying the divergence theorem, the volume integrals can be
transformed into surface integrals:

I11
ll ′mm′ (k)

= 1

V
lim
k′→k

k

k2 − k′2

∮
S

n · [Nlm(kr) × M†
l ′m′ (k′r)] dS

+ 1

V
lim
k′→k

k′

k2 − k′2

∮
S

n · [Mlm(kr) × N†
l ′m′ (k′r)] dS.

(F7)

Similar results can be found for the integrals that involve
SVWFs of a different polarization type. It turns out the

limit at k′ = k can be evaluated explicitly by expanding
out the terms in the integrand accordingly. When the need
arises, L’Hôpital’s rule was invoked to calculate the limit.
The Hermitian matrix I (k) comprises four block matrices that
encompass the polarization interactions

I =
[

I11 I12

I21 I22

]
, (F8)

where the first block matrix was given above. The fourth block
matrix is

I22
ll ′mm′ (k)

= 1

V
lim
k′→k

k′

k2 − k′2

∮
S

n · [Nlm(kr) × M†
l ′m′ (k′r)] dS

+ 1

V
lim
k′→k

k

k2 − k′2

∮
S

n · [Mlm(kr) × N†
l ′m′ (k′r)] dS,

(F9)

and with I12 = [I21]†, the second block matrix is

I12
ll ′mm′ (k)

= 1

V
lim
k′→k

k′

k2 − k′2

∮
S

n · [Mlm(kr) × M†
l ′m′ (k′r)] dS

+ 1

V
lim
k′→k

k

k2 − k′2

∮
S

n · [Nlm(kr) × N†
l ′m′ (k′r)] dS.

(F10)

To calculate the total internal energy of a core-shell resonator,
the volume integral is separated into the core and shell con-
tributions, with the shell contribution comprised a surface
integral evaluated on the core-shell interface, and the other on
the resonator surface. In the case of a homogeneous spherical
resonator with a size parameter x, we recover the following
known expressions [15,21]:

I11
l = 3

8π (nx)3

{
nx[ψ ′

l (nx)]2

−ψ ′
l (nx)ψl (nx) + nx

[
1 − l (l + 1)

(nx)2

]
[ψl (nx)]2

}
,

(F11)

I22
l = 3

8π (nx)3

{
nx[ψ ′

l (nx)]2

+ψ ′
l (nx)ψl (nx) + nx

[
1 − l (l + 1)

(nx)2

]
[ψl (nx)]2

}
.

(F12)
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