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Spectral information from photon statistics in x-ray radiography and computed tomography
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Measuring spectral information requires distinguishing photons of different energies, typically achieved using
filters or advanced detectors sensitive to individual photons. We prove that when the arrival of photons follows
a Poisson distribution (i.e., is shot-noise dominated), the variance and mean of the total photon energy collected
over a fixed interval provide independent information about the photon energy spectrum. This immediately
leads to several striking corollaries. First, the variance data can be used in the same way as the mean data
in both x-ray radiography and tomography. Second, the ratio of the variance data and mean data provides
an indication of the average energy of the photon spectrum. Third, the variance data, when compared to the
mean data, reveal information analogous to using a higher-energy spectrum. These corollaries show that spectral
information can be recovered even from common x-ray detectors which only measure aggregate photon energy.
As a demonstration, we performed beam-hardening correction in computed tomography using variance data for
both simulations and experiments. We also achieved quantitative tomographic reconstruction in simulation and
recover accurate attenuation coefficient values in addition to material density and atomic number.

DOI: 10.1103/PhysRevA.106.013511

I. INTRODUCTION

The energy of electromagnetic radiation arrives as discrete
photons, and the random variations in detection follow shot
noise, modeled by the Poisson distribution. For example, a
detector may collect n photons in a certain time interval, and
repeating this measurement yields an average of n photons
with variance of n. The randomness in the arrival of the x-ray
photons applies only to the number of photons, which may
be due to (1) randomness in the generation of the photon
in the x-ray tube, (2) the possible attenuation of the photon
en route to the detector, or (3) the likelihood of the x-ray
photon being fully stopped inside the detector and registered
as a signal. All these processes are probabilistic events which
we can combine into one Poisson distribution. The peculiar
property of the Poisson distribution where the mean is equal
to the variance therefore affects only the photon number at the
detector. The mean and variance as measured by a detector do
not necessarily obey that equivalence, as the detector reading
(of the most common x-ray detectors) is related to the total
energy of all the collected photons, i.e.,

∑
i niEi�(Ei), where

ni photons have energy Ei detected with efficiency �(Ei ). This
efficiency �(E1) applies to photons which are already de-
tected; therefore, it is a fixed value for each energy depending
on the detector response, and not a part of the prior statis-
tical considerations. At first glance, it does not appear to be
possible to extract information about the energy distribution
of the photons when the detector only measures aggregate
values. Nonetheless, we note the variance of detector readings
provides information distinct from the mean reading, which
is

∑
i niEi�(Ei ). The photon number ni is a random variable

*Corresponding author: andrew.kingston@anu.edu.au

that has a Poisson distribution and is independently distributed
for each energy i. Ei�(Ei) is a constant multiple; therefore,
the mean detector reading, as a sum of independent scaled
Poisson variables, is itself a Poisson variable. We can use
the properties of the variance for adding scaled independent
distributions to obtain the variance of the detector reading as∑

i niE2
i �2(Ei ). The subtle difference between the mean and

the variance carries several intriguing implications that will be
explored in this paper.

In conventional x-ray computed tomography (XCT), one
x-ray radiograph is taken at each orientation with an exposure
time sufficiently long enough to detect a statistically meaning-
ful number of x rays. We can also collect many radiographs at
the same orientation and calculate mean and variance images.
The variance data from polychromatic x-rays provide addi-
tional information that can be used to correct beam-hardening
artifacts, even when the x-ray spectrum is not known. More
specifically, once normalized, the variance data resemble the
mean data illuminated with a harder x-ray spectrum: exactly
what is required for dual-energy reconstruction. This means
that if the x-ray spectrum is known, we can carry out a
quantitative, dual-energy-type reconstruction from measured
mean and variance data. The practical implications can be
considered in three successive stages.

First, the difference between the mean detector reading
and the variance detector reading only depends on the x-ray
energies, which suggests that a function of the energy can be
extracted if both the variance and the mean are known. This
is most obvious in the case of monochromatic x rays where
there is only one energy, E0, and the variance is simply the
mean scaled by E0�(E0). Indeed, we have recovered the indi-
vidual photon energy using a detector that does not distinguish
individual photons in Ref. [1]; in that paper we compared the
procedure to finding the size of a single raindrop from an array
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of cups collecting precipitation over a set period, which we
also carried out in practice. If the x rays are polychromatic,
the analysis is slightly more complicated, but the ratio still
yields something useful, as we will demonstrate in Sec. III.

Following this line of inquiry, we consider the possibility
that the variance detector reading can be used in the same way
as the mean detector reading. Consider a detector array used
to record an x-ray radiograph, but each reading is repeated
several times so the mean across all the samples is calculated
for each pixel. This mean radiograph is functionally equiv-
alent to each of the individual radiographs, but what about
a similarly constructed variance radiograph? The expression
we used above suggests that it is also a valid radiograph.
Recall the expression

∑
i niEi�(Ei ), which is the aggregate

energy measured when ni photons have energy Ei. Similarly,
we can interpret

∑
i niE2

i �2(Ei ) as the total energy of �ini

photons, where ni have energy E2
i �(Ei ). Again, this revelation

is surprising, but we have confirmed the hypothesis that the
variance radiograph is equivalent to a mean radiograph illu-
minated using a different energy spectrum in both experiment
and simulation (see Sec. IV).

Finally, we move from radiographs to a collection of ra-
diographs measured from different viewing directions (i.e.,
a sinogram) recorded for the purpose of XCT. Since each
variance radiograph is in theory equivalent to a radiograph
illuminated with a different average energy, this implies that
by recording both the variance and the mean, two different
sinograms can be obtained for the same experiment using
one x-ray spectrum. The mean and variance sinograms can
then function as two different scans in dual-energy computed
tomography (DECT) reconstruction. This demonstrates that
dual-energy XCT can be done without the use of spectrum-
resolving detectors or two different x-ray spectra deployed
either simultaneously or in sequence. We believe this repre-
sents an advance in the understanding of x-ray physics which
can also be applied in the lab. Quantitative tomographic re-
construction using these concepts is demonstrated in Sec. V
using measurements generated by simulation.

Numerous previous works have studied the statistical prop-
erties of x-ray photon detection (e.g., Refs. [2–5]). It is
even possible to utilize knowledge about x-ray statistics in
maximum-likelihood reconstruction methods [6,7]. However,
to date we have found no study that specifically attends to the
spectrally independent information in the variance of the de-
tector readings, which we exploit fully as a core theme of this
paper. For example, a comparison can be made with Ref. [6],
in which contemporary Bayesian methods are employed on
measurements with two separate x-ray spectra to achieve dual-
energy tomographic reconstruction; our approach achieves
similar ends using only one x-ray spectrum.

Of course, spectrally resolving detectors do exist, and have
been slowly revolutionizing x-ray detection. Nevertheless, it
is exciting to see that there is still unrealized potential in
existing conventional detectors. When choosing an x-ray de-
tector, it is common to put more emphasis on response time
and resolution over features such as spectral resolution, which
is commonly regarded as a luxury, particularly when taking
budgetary constraints in mind. We hope to show that some
very helpful spectral measurements can be made even if the
original manufacturers of the detector did not anticipate such

capabilities. And we want to provide enough detail to enable
others to implement the collection of variance and mean sino-
grams in experiment and simulation, to verify the relationship
between their ratios, and to use them in the suggested beam-
hardening correction techniques.

The remainder of the paper proceeds as follows: In Sec. II
we introduce the Alvarez-Macovski x-ray attenuation model,
which is a function of atomic number, density, as well as x-ray
energy. This gives us a method to account for beam-hardening
artifacts in iterative tomographic reconstruction algorithms. In
Sec. III we provide an analysis of the statistics of x-ray detec-
tion for both monochromatic and polychromatic x-ray beams.
Here we reveal that the mean and variance of detector readings
provide independent data and that meaningful radiography
and tomography can be done with the variance data alone.
In Sec. IV, we present various proof-of-concept results from
both experimental and simulated data. Then, in Sec. V we use
the additional information from the variance measurements to
correct beam-hardening artifacts and extract material proper-
ties such as density and atomic number in simulation when the
imaging spectrum is known. Finally, we conclude the paper
in Sec. VI and suggest some future research directions made
possible by this work.

II. BACKGROUND

We begin by briefly reviewing the basic physics of x-ray
production, interaction, and detection. These processes pro-
vide an essential foundation for understanding the operation
and pitfalls of XCT and also the source of the statistics prop-
erties of x-ray detection.

Before beginning the background section proper, we wish
to clarify the different meanings when we use the words “aver-
age” or “mean,” which frequently occur throughout the paper
and may be a source of confusion. We hope that the context in
which the words are used would be enough to distinguish the
meanings. The two main contexts are as follows:

(i) The mean or average energy of a collection of x-ray
photons, or the mean energy of the x-ray spectrum, is simply
the average energy carried by the x-ray photon or E/n, where
E is the total energy of the collection and n the number of
photons.

(ii) The mean or average reading of the x-ray detector
is the mean of the detector reading when there are repeated
measurements of the same event, i.e., R/m where R is the
detector reading and m the number of trials.

A. Difficulties in quantitative imaging from
x-ray beam hardening

X-ray attenuation represents how strongly an object re-
duces the intensity of incident x rays through absorption and
scattering. The attenuation is not measured directly. Instead,
the intensity of the x-ray beam is measured both with (I)
and without (I0) the attenuating object; the ratio of the two
is the x-ray transmission. X-ray transmission along a line L at
each x-ray energy E is modeled according to the well-known
simple attenuation law. This posits an exponential relationship
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FIG. 1. Two-dimensional slice of experimental data consisting of
8-mm-diam Al rod and 10-mm-diam CaCO3 core. Polychromatic x
rays, generated by a W reflection target from a 70-keV electron beam,
are filtered by 0.25 mm Al. Grayscale: [−0.05, 0.35].

being the attenuation and intensity, and it has the form

I (L; E ) = I0(L; E )D(E ) exp

(
−

∫
L
μ(x; E ) ds

)
, (1)

given an incident intensity I0(L; E ) at energy E and a detector
efficiency of D(E ). Typical laboratory-based x-ray sources
produce polychromatic x rays with energy range up to Ea

(the accelerating voltage of the x-ray tube multiplied by the
electron charge). The total transmitted intensity across all
energies is

I (L) =
∫ Ea

0
I0(L; ξ )D(ξ ) exp

(
−

∫
L
μ(x; ξ ) ds

)
dξ . (2)

We can calculate projected attenuation at energy E directly
for monochromatic x rays by ‘linearization” using Eq. (1):.∫

L
μ(x; E ) ds = − ln

(
I (L; E )

D(E )I0(L; E )

)
. (3)

Polychromatic intensity data cannot be linearized in the same
way because the right-hand side of Eq. (2) contains the in-
tegral of an exponential, and polychromatic x rays behave
in a substantially different way compared to monochromatic
x rays. However, in limited cases, such as a single material
object, the projected attenuation can be solved through a cali-
bration process. In general, we cannot extract this information
from polychromatic intensity measurements alone. The result
of this complexity in tomography is x-ray beam-hardening
artifacts: low-energy x rays are attenuated preferentially, caus-
ing the spectral distribution to change as the x-ray beam passes
through material. The emerging x-ray beam has a higher av-
erage energy (i.e., becomes “harder”; we refer the reader to
Sec. 6 of Ref. [8] for a more detailed overview). Figure 1
depicts typical artifacts produced by beam hardening in con-
ventional tomographic reconstruction. The object consists of a
marble rod (lower) and an aluminum rod (upper), and an ideal
reconstruction should depict uniform gray values inside each
of the material, and clear difference between the two rods. In-
stead, we observe a large distribution of gray values caused by
reconstruction artifacts. The two main groups of artifacts are
(1) an increase in apparent attenuation towards the boundaries

of the cylinders (cupping) and (2) the smearing of attenuation
values in the region between the cylinders (streaking).

In order to utilize Eq. (2), we need to have a model of the
energy dependence of x-ray attenuation μ(x; E ); this is given
in the next section.

B. The Alvarez-Macovski (AM) model for x-ray attenuation

The Alvarez-Macovski model is a simple and commonly
used x-ray attenuation model valid for typical x-ray energies
(around 10–300 keV, which covers the majority of x-ray use
cases) [9]. Alvarez and Macovski showed that x-ray attenu-
ation for a material can be reasonably approximated by two
basis functions, which are themselves functions of two mate-
rial properties: density, ρ, and atomic number, Z . It has the
form

μ(x; E ) = Z

A

(
α′

E3
ρ(x)Z3(x) + β ′ fKN(E )ρ(x)

)
,

where x is the [three-dimensional (3D) Cartesian] coordinate,
α′ and β ′ are constants, and fKN(E ) is the Klein-Nishina
function at energy E [10]. For the stable isotopes of most
materials, it is reasonable to assume that atomic weight, A,
is directly proportional to Z , i.e., Z (x)/A(x) ≈ 0.5. We have
also found that it is more accurate to set the coefficient of Z
in the photoelectric component to 3.2 instead of 3 [11]. By
absorbing the approximate ratio into the existing constants of
α and β, i.e., setting α = 0.5α′ and β = 0.5β, our attenuation
model takes the following form:

μ(x; E ) = α

E3
ρ(x)Z3.2(x) + β fKN(E )ρ(x). (4)

The first basis function models photoelectric absorption of x
rays, while the second basis function models Compton scatter-
ing of x rays. The model is very accurate for materials which
contain elements with atomic number less than 20. Since the
Alvarez-Macovski model does not take account of K edges,
materials with an absorption edge in their attenuation curve in
the relevant x-ray energy range may be imperfectly modeled
around the point of discontinuity (for a full model of the x-
ray attenuation, see, for example, Ref. [12]). Notwithstanding
these inaccuracies, we have found that it is also usable even
when interaction edges are present because the overall shape
of the curve is preserved and the spectrum weighted intensity
calculated by the model remained accurate [13]. For most
materials both Rayleigh scattering (which does not change the
x-ray energy) and pair production can be ignored in typical
x-ray energy ranges without greatly impacting the accuracy.
Finally, to avoid getting bogged down in the thorny problem of
x-ray scattering, we treat scattered x rays as completely lost.
In effect, for the duration of this paper we consider x rays as
geometric beams which are only attenuated and not deflected.

In XCT it is common to work with the projected attenua-
tion values, which is analogous to the linearized intensity as in
Eq. (3). Because the projection operation is a linear process,
the total attenuation, or projected attenuation, along a line L is
equal to the line integral of the material properties, ρ(x) and
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ρZ3.2(x), along the same line:∫
L
μ(x; E ) ds = α

E3

∫
L
ρZ3.2(x) ds + β fKN (E )

∫
L
ρ(x) ds.

(5)

For more technical details on line integrals and the projection
operation, see Chap. 3 of Ref. [14].

Since the Alvarez-Macovski model has two independent
components corresponding to the material properties ρ(x) and
ρZ3.2(x), quantitative reconstruction of x-ray attenuation at
arbitrary energies for unknown materials therefore requires
two independent measurements. This is usually done in the
form of x-ray transmission recorded with two different x-ray
spectra, i.e., DECT [15]. We will show that while using only
one x-ray spectrum, measuring the mean and variance of
the x-ray transmission can also satisfy this requirement, even
when using conventional scintillator detectors.

III. STATISTICAL PROPERTIES OF
ENERGY-INTEGRATED INTENSITY MEASUREMENTS

A. Motivation

In our opinion, many problems facing XCT, such as
beam hardening, are in essence problems of underdeter-
mined systems. The most commonly used reconstruction
algorithms can, in theory, produce artifact-free tomograms
from monochromatic measured data. However, when poly-
chromatic x rays are employed along with detectors which do
not resolve x-ray energy, insufficient information is captured
to account for the more complex change in x rays after they
pass through the object (this is true in general, although for
trivial cases such as single material objects the problems can
be more easily dealt with). Conventional wisdom states that
scintillators and charge coupled devices (CCDs), among other
energy-integrating detectors, do not capture spectral informa-
tion. We have recently shown that this is not the case, and by
utilizing the statistics of incoming x-ray photons, or photon
shot noise, the variance and the mean actually carry different
information about the x-ray spectrum [1].

B. X-ray intensity mean and variance

Consider a single measurement of x-ray intensity with no
attenuating object at a certain detector pixel over a fixed
interval. We anticipate intensity I0, which consists of N (E )
discrete x-ray photons at each x-ray energy E . The actual
measurement of the x-ray intensity involves several physical
processes each with their statistical quirks, along with the
necessity of measuring a “dark field” or background reading.
However, if we ensure the photon count is high enough then
the x-ray statistics should dominate the noise [16]. The energy
range of the x rays is between zero and the energy of the
electron beam in the x-ray tube, Ea. Finally, the x-ray detector
has a certain efficiency of energy throughput, �(E ), which is a
real number between zero and 1 for photons with energy E . If
this measurement is repeated, the mean, or average, measured
intensity over all the observations is

I0 =
∫ Ea

0
〈N (ξ )〉ξ�(ξ ) dξ . (6)

Note that the detector reading is proportional to the total
energy of the incoming x-ray photons, which is true for,
among others, scintillators and CCD detectors. The number of
detected photons, N (E ), like the number of incoming photons,
follows the Poisson distribution with mean 〈N (E )〉; here the
angle brackets have their usual meaning of expected value.
We assume that we have good knowledge about the spectrum,
which will remain unchanged for the same experiment or
simulation, and henceforth we treat 〈N (E )〉 as a constant. Like
in Ref. [1], we expect the standard deviation of N (E ) to be
〈N (E )〉 as per the properties of the Poisson distribution. The
variance, Ǐ0 = σ 2(I0), is

Ǐ0 =
∫ Ea

0
〈N (ξ )〉ξ 2�2(ξ ) dξ . (7)

The choice of notation for the variance here is deliberate,
and will be justified in due course. It was shown in Ref. [1] that
for the flat panel scintillator detectors in our laboratory �(E )
is roughly constant over the energies delivered by our x-ray
source. From here on we will assume that, over the energy
range of interest, the detector response as a function of energy,
�(E ), can be represented by the constant γ . In the simulations,
for simplicity and without loss of generality, γ is set to 1.

C. Determining expected x-ray energy through
intensity mean and variance

Dividing the variance of the incident radiation by its mean,
Ǐ0/I0, gives [1]

Ǐ0/I0 = γ

∫ Ea

0
ξS0(ξ ) dξ = γ Mean [S0], (8)

where S0 is the spectral distribution (or probability density
function) of the incident radiation S0, i.e.,

S0(E ) = 〈N (E )〉E∫ Ea

0 〈N (ξ )〉ξ dξ
.

S0(E ) measures the proportion of total energy in the x-ray
beam that is comprised of photons with energy E . Let Mean[·]
denote the expected value as a weighted sum, i.e., Mean[S0] =∫ Ea

0 ξS0(ξ ) dξ . The expression Mean[S0] is the mean energy
of the spectrum. This value increases when the beam is hard-
ened or the accelerating voltage of the x-ray tube is increased.

The expected energy of the spectrum is extremely valuable
data. We have essentially extracted spectral information from
an intensity integrating detector which should not have any
such capabilities. Simply by using x-ray statistics, this shows
that each individual detector pixel in effect “sees” a different
x-ray spectrum (which we can calculate). Since the effects of
beam-hardening artifacts are precisely due to this shift in x-ray
spectrum, we now have a promising avenue of doing beam-
hardening artifact correction. Before diving into the details,
let us first explore some of the properties of the transmission
variance.

D. Transmitted intensity mean and variance

Now consider a specimen with attenuation coefficient of
μ(x, E ) at coordinate x. The intensity measured from the
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same detector pixel in the same time interval with this speci-
men in front of the detector is given in Eq. (2). The mean I (L)
can then be found by substituting the incident illumination
with Eq. (6) to give

I (L) = γ

∫ Ea

0
〈N (ξ )〉ξ exp

(
−

∫
L
μ(x, ξ ) ds

)
dξ . (9)

Since it is the photons of the incident radiation that are
stochastically removed by the specimen, we have simply sub-
stituted 〈N (ξ )〉 in Eq. (6) with 〈N (ξ )〉 exp (− ∫

L μ(x, E ) ds).
The variance is modeled similarly:

Ǐ (L) = γ 2
∫ Ea

0
〈N (ξ )〉ξ 2 exp

(
−

∫
L
μ(x, ξ ) ds

)
dξ . (10)

Observe that the variance measurement has a very simi-
lar form to the mean measurement. Transmission is simply
the ratio of two intensities. Given transmission measurement
T (L) = I (L)/I0(L), the mean is

T (L) =
∫ Ea

0

〈N (ξ )〉ξ∫ Ea

0 〈N (ξ ′)〉ξ ′ dξ ′ exp

(
−

∫
L
μ(x, ξ ) ds

)
dξ

=
∫ Ea

0
S(ξ ) exp

(
−

∫
L
μ(x, ξ ) ds

)
dξ, (11)

where S is the spectral distribution of the radiation as
measured at the detector, i.e., S(E ) ≡ S0(E ). Similarly the
variance is

Ť (L) =
∫ Ea

0

〈N (ξ )〉ξ 2∫ Ea

0 〈N (ξ ′)〉ξ ′2 dξ ′ exp

(
−

∫
L
μ(x, ξ ) ds

)
dξ

=
∫ Ea

0
Š(ξ ) exp

(
−

∫
L
μ(x, ξ ) ds

)
dξ, (12)

where Š is again a spectral distribution at the detector which
can be written in terms of S:

Š(E ) = S(E )E∫ Ea

0 S(ξ )ξ dξ
. (13)

Note the similarity between Ť (L) and T (L). The two are
identical apart from having different spectral distribution
functions. Since there is obviously no objection in using
the mean measurement in tomography, why not also use the
variance measurement? We will pursue this possibility in the
following section.

IV. VARIANCE RADIOGRAPHY AND
TOMOGRAPHY IN PRACTICE

In the previous section, we presented several theoretical
properties of transmission variance in comparison with trans-
mission mean. Before moving on to the direct application
of transmission variance in XCT to correct for artifacts (see
Sec. V), we will first explain the methods employed to obtain
mean and variance data in both simulation and experiment.
Then, we will present examples which illustrate some of the
basic properties of the transmission variance.

FIG. 2. (a) The mean spectrum (S, solid line) and effective vari-
ance spectrum (Š, dashed line) used in the simulation. Both spectra
are normalized so their distribution functions sum to 1. (b) Line pro-
file of mean and variance transmission for the simulated aluminum
circle. (c) Mean transmission, T , and (f) variance transmission, Ť ,
projection images of the aluminium rod; grayscale is [0.72, 1.0] for
both. (d) Mean projected attenuation, P, and (g) variance projected
attenuation, P̌; grayscale is [−0.06, 0.33] for both. The tomographic
reconstruction of (e) linearized mean transmission, − ln(T ), and (h)
linearized variance transmission, − ln(Ť ); grayscale is [1.17, 3.97]
for both.

A. Methods

We begin with Monte Carlo simulations using two-
dimensional (2D) phantoms and a line detector: the sinograms
are a collection of these lines, and the reconstruction is a
2D image. The sample used in this section for simulations
consists of a single 1-mm-diam aluminum rod, imaged with
parallel beam x rays produced from a tungsten target. The
accelerating voltage of the x-ray source was set to 80 keV
and there were no additional filters [the spectrum is given in
Fig. 2(a)]. Projection images were simulated at 800 angles
with a 400-pixel line detector with a pixel pitch of 15 μm. For
each set of one-dimensional (1D) projections, 100 trials are
conducted, and the mean and variance data calculated from
the trials on the fly using mean absolute deviation (details
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outlined in Appendix B). In each trial, a random number of
photons is generated and attenuated using the NIST XCOM
attenuation data [12], and the emerging photons are recorded
for each detector pixel. The photon number follows the
Poisson distribution with mean of 10 000. Finally, the 400 ×
400 pixel reconstructed tomogram has dimensions 0.6 ×
0.6 mm2.

A marble and aluminum specimen has been used in ex-
periments throughout this paper. It consists of a 10-mm-diam
marble (CaCO3) core and an 8-mm-diam aluminum (Al) rod.
The specimen was placed 40 mm from a microfocus x-ray
source that used a tungsten reflection target, and the illumina-
tion of the x-ray source was continuous during the experiment.
The accelerating voltage of the x-ray source was set to 70 keV
with an electron current of 120 μA and a beam filter of
0.25 mm Al. A Pixium flat-panel detector was placed 786 mm
from the source and binned to 360 × 360 square pixels with
side length 1.18 mm [17]. A model of the resulting x-ray
spectrum as seen by the detector is presented in Fig. 3(a).
The detector was set to a frame rate of two frames per sec-
ond (0.5 s exposure time) with mean and variance images
determined from 240 frames. Note that the variance images
were calculated using mean absolute deviation which is robust
and on the fly. Four dark-field and eight clear-field mean and
variance images were collected, along with 360 transmitted
intensity mean and variance images collected in a circular
trajectory around the specimen captured at 1◦ intervals.

B. Radiography with intensity variance

The spectral distributions S and Š for the simulation
are given in Fig. 2(a), where Mean[S(E )] = 37.9 keV and
Mean[Š(E )] = 42.3 keV. The entire collection of transmis-
sion data from the simulations is presented as sinograms in
Figs. 2(c) and 2(f); the corresponding projected attenuation
data are shown in Figs. 2(d) and 2(g). We note that the mean
[Fig. 2(c)] and variance [Fig. 2(f)] sinograms are very similar,
in line with our prediction in Sec. III D. Also notable is the
variance sinogram, Ť , being much noisier than the mean sino-
gram, T . This is due to the uncertainty (or standard deviation)
in mean scaling approximately as

√
λ/m for expected value λ

and m measurements while the uncertainty in variances scales
approximately as

√
2λ2/m (see pp. 313–314 of Ref. [18]).

The simulation data also matched our quantitative predic-
tions. We can calculate beforehand the intensity of the x-ray
beam emerging from an object given the x-ray attenuation of
the object, the x-ray path length through the object, and the
x-ray spectrum. For the Monte Carlo simulation: attenuation
data comes from the NIST XCOM database; x-ray path length
comes from sample geometry of a circle; and the spectrum is
either S or Š, with the variance spectrum Š calculated using
Eq. (13). The theoretical line profile across the transmission
images can then be calculated and compared against the actual
line profile of the simulated samples; the result is given in
Fig. 2(b). Here we observe very good agreement between
the theoretical (lower, dotted line) and Monte Carlo (“×”)
values for the mean transmission; this merely confirms the
simulation has been carried out on the correct materials using
the correct spectrum. More importantly, there is a close match
between the values of the theoretical (upper, dashed line)

FIG. 3. (a) The mean spectrum (S, solid line) and effective vari-
ance spectrum (Š, dashed line) used in the experimental specimen.
Both spectra are normalized so their distribution functions sum to
1. (b) Central slice of the transmission mean, T , and (e) transmis-
sion variance, Ť , of the specimen described in Fig. 1; grayscale is
[0,1.1] for both. (c) Mean projected attenuation, P, and (f) variance
projected attenuation, P̌, images of the specimen described in Fig. 1;
grayscale is [0,4] for both. (d) Central horizontal slice through the to-
mographic reconstruction of linearized mean transmission, − ln(T ),
and (g) variance transmission, − ln(Ť ). Reconstruction performed
using filtered back-projection; grayscale is [−0.05, 0.35] for both.
The horizontal streaks visible at the left corners of (b), (e), (d), and
(g) are artifacts of unknown cause recorded by the detector. N.B.
The experiment utilizes a fan beam, so the transmission images look
slightly distorted towards the edges.

and Monte Carlo (“+”) values for the variance transmission.
The two theoretical line profiles, which are calculated from
Eqs. (11) and (12), differ only in the x-ray spectrum, so the
close agreement of the Monte Carlo results supports our claim
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in Sec. III D that the transmission variance is equivalent to a
(noisier) transmission mean but with a harder x-ray spectrum.

Experimental results have been included in Fig. 3 to val-
idate the concept under realistic conditions where there are
potentially other contributions to the intensity distribution
model, in particular scatter. The spectral distributions modeled
for the case-study experiment, S and Š, are given in Fig. 3(a),
where Mean[S(E )] = 38.5 keV and Mean[Š(E )] = 40 keV.
Example transmission images from the experiment are pre-
sented in Figs. 3(b) (Mean) and 3(e), with the corresponding
projected attenuation images shown in Figs. 3(c) (Mean) and
3(f). Again the mean and variance images are very similar to
the variance data being slightly more noisy and having lower
contrast; this is in line with the results of the Monte Carlo
simulation and also confirms our prediction in Sec. III D.

C. Tomography with intensity variance

If transmission variance can be considered similar to trans-
mission mean but with a harder spectrum, we should be able
to carry out tomographic reconstruction on both data sets.
By making the conventional monochromatic assumption, we
first linearize the mean polychromatic transmission data as
P(L) = − ln(T (L)), and also linearize the variance data as
P̌(L) = − ln(Ť (L)). A tomogram of the specimen can then be
constructed using filtered back-projection, Fourier inversion,
or some iterative algebraic scheme.

Tomographic reconstruction has been performed on both
the mean and variance data for the Monte Carlo simula-
tion [see Figs. 2(e) and 2(h)] and the case-study experiment
[see Figs. 3(d) and 3(g)]. Reconstruction for the simulated
data used 25 iterations of the ordered-subset maximum-
likelihood for transmission (OSMLTR) algorithm [19,20] and
reconstruction of the experimental data used filtered back-
projection (FBP). We observe the following: (i) meaningful
images are reconstructed from the variance data, demonstrat-
ing that variance can be considered in a similar fashion to
mean data; (ii) reconstructed attenuation values are slightly
lower for the variance data; and (iii) although beam-hardening
artifacts (described earlier) are present in both cases they are
less significant for the variance data. We interpret observations
(ii) and (iii) as evidence that variance measurements have a
slightly harder spectrum and a higher expected energy than
the mean measurements (i.e., Mean[Š(E )] > Mean[S(E )]).

The properties of variance data in intensity measurements
conform to our expectations. In other words, the variance data
provide additional information about the specimen which is
equivalent to illumination with a different x-ray spectrum.
In the next section we will explore some of the potential
applications of this additional information in the context of
XCT.

V. APPLICATIONS OF STATISTICAL VARIANCE IN
COMPUTED TOMOGRAPHY

We have shown that the variance transmission provides
another independent set of information about the object. Now
we will present several applications utilizing this knowledge
which make XCT more quantitative. The ratio of mean and
variance transmission data is the average energy of each x-

ray beam which passed through the object; it is therefore a
direct measure of x-ray beam hardening. Given knowledge of
the input spectrum, this enables the distribution of material
properties Z and ρ to be determined analogously to dual-
energy computed tomography. In what follows, we present
these concepts in steps of increasing complexity, proceeding
from monochromatic, through bichromatic, and ending with
polychromatic spectra.

A. Determining x-ray energy of monochromatic illumination

In the monochromatic case, all incoming x rays are at a
single energy E0; the spectral distribution is the Dirac delta
function: S0(E ) = δ(E − E0). The variance-mean ratio of the
intensities [Eq. (14)] immediately produces the energy of the
x rays:

Ǐ/I = γ E0.

1. Methods

The 2D Monte Carlo simulation in this section was carried
out by illuminating cylindrical rods of aluminum and marble
with radii 0.5 mm using 40-keV x-ray photons in a parallel
beam configuration. The attenuation data are taken from the
NIST-XCOM database [12]. A 1000-pixel-wide detector was
simulated with measurements recorded from 2000 viewing
angles. At each angle, each detector pixel was illuminated
with an average of 10 000 photons in total in each exposure,
and a total of 500 exposures were taken for each angle, and
the variance and mean calculated from those exposures on the
fly using the mean absolute deviation.

2. Results

The mean and variance intensity images are given in Fig. 4.
The variance transmission image [Fig. 4(a)] divided by the
mean transmission image [Fig. 4(b)] gives the ratio image
[Fig. 4(c)]. The ratio image does not have any features, and its
histogram [Fig. 4(d)] gives a normal distribution with mean
of 40, which is the energy of the x rays in keV (indicated by
the vertical line in the histogram). Note that the ratio image
seems noisy everywhere, but the mean and variance intensity
seem to have no noise in the regions where transmission is
complete (i.e., have values of 1). It is difficult to see in the
intensity images, but the regions where transmission is not
hindered by the object are still subject to random variation of
the photon numbers, and the ratio of the raw variance photon
count divided by the raw mean photon count contains lots of
noise in that region.

Since the variance transmission is simply a multiple of the
mean transmission, although we can extract the x-ray energy
directly, there is not much else we can do in this case be-
cause no independent information is provided by the variance.
Admittedly since only x rays at a single energy are used, no
beam-hardening artifacts would appear in the reconstruction,
and extraction of further quantitative information is unneces-
sary in this case.
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FIG. 4. (a) Mean intensity, grayscale [56473, 400890], and
(b) variance intensity, grayscale [1633641, 23069099]; projection
images of monochromatic simulation. Their ratio is given in (c),
grayscale [58.5, 26.7]. (d) Histogram of the ratio; the vertical line
indicates the energy of the x rays.

B. Beam-hardening correction using variance without
knowledge of the spectrum

1. Methods

Before proceeding to quantitative reconstruction, we show
that it is possible to visualize beam hardening directly using
the mean and variance data. This is an extension of the proce-
dure carried out in the previous section (Sec. V A), where only
monochromatic x rays are used. Here we use polychromatic x
rays to obtain more interesting results. The same case-study
experimental data from Sec. IV will be used here (details can
be found in Sec. IV A). The same simulated data from the
polychromatic illumination (variance transmission and mean
transmission from Sec. V C 2) is used as the Monte Carlo
simulated sample. A similar analysis was pursued in Sec. 4.1
of Ref. [1].

2. Directly measuring beam hardening (expected x-ray energy)
through transmitted intensity mean and variance

Analyzing the polychromatic x rays after transmission
through the object, we divide the variance by the mean of the
transmitted intensity, Ǐ/I , to obtain

Ǐ/I = γ

∫ Ea

0
ξS(ξ ) dξ = γ Mean [S(E )]. (14)

We have seen from Sec. V A that Mean[S(E )] is the expected
energy of the spectral intensity S(E ), or the spectrum of the x

FIG. 5. (a) The relative change in expected x-ray energy through
the simulation specimen; grayscale is [0.91, 1.57]. (b) The relative
change in expected x-ray energy through the center of the specimen
described in Fig. 1; grayscale is [0.91, 1.57]. The horizontal streak
artifacts mentioned in Fig. 3 are also visible in (a) here.

ray that has passed through the object, where

S(E ) = 〈N (E )〉 exp
( − ∫

L μ(x, E ) ds
)∫ Ea

0 〈N (ξ )〉ξ exp
( − ∫

L μ(x, ξ ) ds
)

dξ
.

The change in the expected energy compared to the incident x-
ray spectrum S0(E ) gives an indication of the degree of beam
hardening that has occurred. The relative change in energy
can be obtained without calibration of the detector, since it is
simply a ratio of the transmission, i.e.,

Ǐ/I

Ǐ0/I0
= Ť

T
= Mean [S(E )]

Mean [S0(E )]
. (15)

The relative change in expected x-ray energy after passing
through the experimental marble and aluminum specimen is
presented in Fig. 5(b), and similarly for the Monte Carlo
simulation data in Fig. 5(a) (note that the Monte Carlo data
contain all of the 1D slices since it is a 2D simulation, and
the experimental data consist of one slice of a collection of
2D radiographs). These images are direct depictions of beam
hardening, i.e., the increase in average x-ray energy after
passing through the specimen. There is no change in energy
on either side of the specimen where Ť /T = 1. Inside the
specimen, transmission through the sample causes Ť /T to
increase as some function of the projected attenuation.

Figure 5 shows that we can actually quantify the amount of
beam hardening that has occurred by measuring the variance
as well as the mean. The next two sections outline automated
methods to correct for beam hardening using this information
without knowledge of the spectrum. They were first presented
in Ref. [21] but here we expand on the methodology.

3. Photoelectric absorption model for x-ray attenuation

As demonstrated in Ref. [13], simplified forms of the AM
model that rely on only a single material property are often
useful. A common simplification that is appropriate for high-Z
material specimens and/or a soft x-ray spectrum is assuming
attenuation is dominated by photoelectric absorption, i.e., β =
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0. Projected attenuation then simplifies to the following:∫
L
μ(x; E ) ds = α

E3

∫
L
ρZ3.2(x) ds, (16)

and we observe that the projected attenuation at a specified
x-ray energy E0 can be determined from the projected attenu-
ation at any other energy E as∫

L
μ(x; E0) ds = E3

E3
0

∫
L
μ(x; E ) ds. (17)

We now use this simplification as part of a linearization cor-
rection using the variance data.

4. Correction assuming attenuation is from
photoelectric absorption only

Since beam hardening is directly measured by the variance-
mean ratio on a per detector pixel basis, we can use this
information to reduce the effect of beam-hardening artifacts.
Beam hardening is particularly conspicuous when the x-ray
spectrum includes energies where x-ray attenuation of the
specimen is dominated by photoelectric absorption (PA). At-
tenuation due to PA is inversely proportional to energy cubed
and therefore changes significantly across the spectrum (com-
pared to Compton scattering, which varies much less over
the same energies). We can therefore adopt the PA model by
itself [Eq. (16)] for x-ray attenuation in this case. Assuming
this model, Eq. (17) shows how the attenuation at desired
energy E0 can be computed from the attenuation at energy
E . Substituting Eq. (15) into this and assuming − ln(T (L)) ≈∫

L μ(x; E ) ds we obtain∫
L
μ(x; E0) ds ≈ −

(
Ť (L)

T (L)

)3

ln(T (L)). (18)

We carried out 2D FBP reconstruction on simulated data
and 3D Feldkamp-Davis-Kress (FDK) reconstruction on ex-
perimental data on aluminum and marble rods; the results are
given in Fig. 6. The results of applying the variance-to-mean
ratio correction directly to the mean attenuation measure-
ments of the simulation data are presented in Fig. 6(c) and the
results for the experimental marble and aluminum specimen
are presented in Fig. 6(f). Note that this requires no knowl-
edge of the x-ray spectrum. The correction has improved the
reconstruction in a qualitative manner: when compared to the
uncorrected results [Figs. 6(b) and Fig. 6(e), respectively],
the cupping and streaking artifacts have been significantly
reduced and the contrast between the materials has improved.
On the other hand, there is a slight increase in noise in the cor-
rected result for the Monte Carlo data, and the corresponding
result for the experiment is also quite noisy and contains ring
artifacts.

5. Correction by a self-calibrated linearization curve

If the direct application of the method outlined previously
(Sec. V B 4) is too noisy, we can still use the variance-to-mean
ratio as an objective function to calibrate a linearization curve.
A well-known method to correct for beam hardening is to
apply a linearization curve that remaps measured projected
attenuation values to the corresponding monochromatic pro-
jected attenuation values. This remapping function can be

FIG. 6. (a) Linearization curve for the simulation. Row 2: To-
mographic reconstruction of the Monte Carlo simulated data, recon-
structed from mean transmission, − ln(T ). (b) Uncorrected, (c) beam
hardening corrected according to Eq. (18), and (d) beam harden-
ing corrected using power-law linearization curve: 1.83[P(L)]1.23;
grayscale is [0.0, 9.6]. Row 3: Central horizontal slices through the
tomographic reconstruction of the experimental specimen, recon-
structed from mean transmission, − ln(T ). (e) Uncorrected, (f) beam
hardening corrected according to Eq. (18), and (g) beam hardening
corrected using power-law linearization curve: 1.39[P(L)]1.25. Re-
construction is performed using filtered back-projection; grayscale
is [−0.05, 0.35].

calibrated using a phantom such as a step wedge; projected
attenuation should increase linearly with projected thickness
of the phantom. The downside is that calibration phantoms
are typically composed of a single material and may not
be representative of the specimen being imaged. Fortunately,
the variance-to-mean ratio is able to provide exactly this
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information. Approximating Eq. (18) as

P
∗
(L) = (

Ť (L)/T (L)
)3

P(L),

where P
∗
(L) is the corrected, pseudomonochromatic pro-

jected attenuation, and P(L) is the linearized measurement,
i.e., polychromatic projected attenuation, we see that this pro-
vides the mapping objective, i.e., an estimate of the projected
attenuation at the expected energy of the input spectrum. Now
we need a function that maps P(L) to P

′
(L) and minimizes the

difference from the objective estimate ||P′
(L) − P

∗
(L)||, over

all lines L. For example, a power-law linearization function
defined as P

′
(L) = A[P(L)]n can be used, as it is often quite

effective with minimal parameters. The object itself can then
be used for parameter calibration as follows:

arg min
A,n

∥∥∥∥∥A[P]n −
(

Ť

T

)3

P

∥∥∥∥∥
2

.

This technique was applied to both the simulated and case-
study experimental marble and aluminum specimens. It was
found that A = 1.83 and n = 1.23 minimized the squared
residual for the simulation. A graph of the linearization curve
for the simulation is given in Fig. 6(a), with the measured
attenuation in the x axis, and the corrected attenuation for the
mean-variance ratio [(Ť)(L)/T(L))P(L)] is plotted as “+”,
and the best fit A[P]n is given by the solid line. For the case-
study experimental data, A = 1.39 and n = 1.25 minimized
the squared residual. The result of tomographic reconstruc-
tion of the linearized beam-hardened projected attenuation
data, A[P(L)]n, is presented in Fig. 6(d) for the simulation
and Fig. 6(g) for the experiment. By using the power-law
linearization, we observe the suppression of cupping and
streaking artifacts as well as improved contrast between ma-
terials without introducing noise or ring artifacts.

C. Obtaining material properties with
knowledge of the spectrum

1. Bichromatic illumination

We return to dual-energy reconstruction using variance in
this section. Given knowledge of the spectrum, we can extract
more value from the variance data. We will begin with the
case of bichromatic illumination where the the x-ray spectrum
consist of two energy bins, E0 and E1. We introduce this ex-
ample for pedagogical purposes, since it is not very realistic,
but we hope it bridges the gap between monochromatic x rays
and polychromatic x rays proper. First, we carry out the same
simulation as in Sec. V A on the aluminum and marble rod,
except we have changed the x-ray spectrum to a bichromatic
spectrum with equal intensity at 30 and 60 keV. The vari-
ance, mean transmission, and their ratio are given in Fig. 7.
Since the proportion of x rays in each energy bin is different
when comparing the variance and the mean transmission [cf.
Fig. 2(a)], the ratio of the transmission variance and mean
is no longer constant as it was in the monochromatic case
presented in Sec. V A, and we observe features corresponding
to the object [see Fig. 7(c)]. Note the contrast between this and
the uniform image seen in the monochromatic case [Fig. 4(c)].
The histogram [Fig. 7(d)] also has a more complicated shape.

FIG. 7. (a) Mean intensity, grayscale [316961, 400139], and
(b) variance intensity, grayscale [14435468, 18827561], projection
images of bichromatic simulation. Their ratio is given in (c),
grayscale [42.0, 49.3]. (d) Histogram of the ratio, from left to right;
the lines indicate the mean energy of the x rays that (1) did not pass
through the object, (2) passed through the center of the aluminum,
(3) passed through the center of the marble, and (4) passed through
the center of both the aluminum and marble.

Moving on to the reconstruction, using transmission mean
and variance from a single bichromatic illumination, we can
generate reconstruction volumes which correspond to the at-
tenuation of the object at each of the two energy bins, then
extract the density and atomic number of the object on a
per-pixel basis. Let transmitted intensity data at energy E0 and
E1 along a line from the source to the detector parametrized
by L be I0(L; E0) and I0(L; E1) without the object, and I (L; E0)
and I (L; E1) with the object. From these we can extract the
projected attenuation at each energy, A0(L) and A1(L), using
Eq. (3). This gives

Aj (L) =
∫

L
μ(x; Ej ) ds = − ln

(
I (L; Ej )

I0(L; Ej )

)
,

for j = 0 or j = 1. However, the transmission mean and vari-
ance, which we observe, both contain a mixture of A0(L) and
A1(L). Nevertheless, these single-energy projected attenuation
data can be extracted by solving a simple set of linear equa-
tions.

Assume that the spectral distribution is known for both the
mean (S) and the variance data (Š). The spectral distribution
for the mean has the form

S(E ) = λδ(E − E0) + (1 − λ)δ(E − E1),

for 0 < λ < 1, and δ(η) is the usual Dirac delta function. As
described in Sec. III D, the corresponding spectrum for the
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variance data, found according to Eq. (13), is

Š(E ) = λ̌δ(E − E0) + (1 − λ̌)δ(E − E1),

where λ̌ = λ/(λE0 + (1 − λ)E1). The mean and variance
transmission measurements given this bichromatic spectrum
are therefore

T (L) = I (L)/I0L

= λ exp−A0(L) +(1 − λ) exp−A1(L), (19)

Ť (L) = Ǐ (L)/Ǐ0L

= λ̌ exp−A0(L) +(1 − λ̌) exp−A1(L) . (20)

Solving the above equations for A0(L) and A1(L) gives the
single energy projected attenuation of the object:

A0(L) = − ln

(
(1 − λ̌)T (L) − (1 − λ)Ť (L)

(1 − λ̌)λ − (1 − λ)λ̌

)
, (21)

A1(L) = − ln

(
λ̌T (L) − λŤ (L)

λ̌(1 − λ) − λ(1 − λ̌)

)
. (22)

Once these projected attenuation data have been calculated,
the dual-energy reconstruction process can proceed in the
conventional way (a more detailed description is given in
Sec. C 1 of Appendix C). Alternatively, the Appendix also
shows that the projected material properties can be extracted
and reconstructed using conventional reconstruction methods.
A third way of proceeding is to perform conventional itera-
tive reconstruction directly on A0(L) and A1(L). Since both
A0(L) and A1(L) are at a single energy, there is no beam
hardening and the reconstructed images are free from beam-
hardening artifacts. Material properties can be extracted from
these tomograms using Eqs. (C2) and (C3). This is the method
employed here.

As before, we carry out Monte Carlo simulations in two
dimensions using a line detector. The sample used in this
section for simulations consists of a quartz (silicon dioxide),
a potassium metal, and white phosphorus rods, all with radius
0.5 cm, imaged with parallel beam x rays. We selected these
samples for the simulation because of their distinct atomic
number and densities, which makes the results more easily
comprehensible, notwithstanding the practicality of placing
potassium metal next to white phosphorus. The x rays are
equally split between two energy bins, 30 and 60 keV. A
total 2000 projection images are simulated with a 500-pixel
line detector with a pixel pitch of 28 μm. For each 1D pro-
jection measured, 20 000 trials are conducted, and the mean
and variance data are calculated from the trials using mean
absolute deviation. In each trial, a random number of photons
is generated and attenuated using the NIST-XCOM attenu-
ation data [12], and the emerging photons are recorded for
each detector pixel. The photon number follows the Pois-
son distribution with mean of 10 000. They are then used to
solve for the monochromatic projected attenuations accord-
ing to Eqs. (21) and (22), and the solved monochromatic
projected attenuations are finally reconstructed using 30 itera-
tions of ordered-subset simultaneous iterative reconstruction
technique (SIRT). Finally, the reconstruction result of the
monochromatic projected attenuations is used to solve for
the density and atomic number using the Alvarez-Macovski

FIG. 8. Conventional reconstruction of the bichromatic data. The
materials are, clockwise from top, phosphorus, quartz, and potas-
sium; grayscale is [0, 1.64] for both.

equation [Eq. (4)]. To reduce noise, which is exacerbated by
the linear equation solving, we applied a median filter with
a 7 × 7 kernel on the reconstruction result of the monochro-
matic projected attenuations before and after we solved
the density values. This explains the smooth appearance of
the density and atomic number images when compared to the
noisy attenuation reconstruction images.

For comparison, we reconstructed the variance and mean
directly using conventional methods and the results are given
in Fig. 8; here both the reconstruction of the mean and vari-
ance image are marred by beam hardening, and the effect
is stronger in the reconstruction of the mean image. The
attenuation values of the three materials blend together so it
is very difficult to distinguish the materials with confidence.
The results of the conventional reconstruction of the sepa-
rated monochromatic attenuation A0(L) and A1(L) are given
in Fig. 9. Although both reconstructions are marred by high
levels of noise, which originates in the noisy variance data
and is amplified after solving the linear equations to find A0(L)
and A1(L), beam hardening has been eliminated in both recon-
structions. The histograms [Figs. 9(b) and 9(d)] also show that
the reconstruction is quantitative: the peaks of the histograms
correspond to the theoretical attenuation of the materials at
both 30 and 60 keV (vertical lines). In the reconstruction
of the attenuation tomograms the values of potassium blend
with those of phosphorus at 30 keV [Fig. 9(b), left peak, and
Table I, column 3] and with that of quartz at 60 keV [Fig. 9(d),
right peak, and Table I, column 4], so it is still difficult to
distinguish the materials using only one reconstruction. On
the other hand, we can easily distinguish the three materials

TABLE I. Material properties for the bichromatic simulation.
Units are g cm−3 for density ρ and cm−1 for attenuation coefficient μ.
Density values are reference values. Atomic numbers are calculated
from the formula in Ref. [11]. Attenuation coefficients are from NIST
[12].

Name ρ Z μ (30 keV) μ (60 keV)

Potassium 0.86 19.00 2.92 0.49
Phosphorus 1.82 15.00 3.10 0.64
Quartz 2.65 11.65 2.31 0.67
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FIG. 9. (a) Conventional reconstruction of A0(L), the grayscale values are [0, 3.82]; (b) its histogram; (c) Conventional reconstruction of
A1(L), the grayscale values are [0, 0.78] (d) its histogram; (e) Density volume generated from the attenuation reconstructions, the grayscale
values are [0, 2.74]; (f) its histogram; (g) Atomic number volume generated from the attenuation reconstructions, the grayscale values are [0,
20.3]; (h) its histogram.

using either the solved density [Fig. 9(e)] or the solved atomic
number [Fig. 9(g)] images. We also observe good quantitative
agreement as the expected peaks of the histograms [Figs. 9(f)
and 9(h)] fall at the locations of the correct values indicated
by the vertical lines (see Table I). This demonstrates that our
method is indeed capable of extracting quantitative material
data, at least in the bichromatic case, by treating the variance
image on the same footing as the mean image.

2. Polychromatic illumination

For polychromatic x rays with more than two energy bins,
dual-energy reconstruction is more complicated. The simula-
tion variance and mean transmission images of the aluminum
and marble were collected with a polychromatic x-ray spec-
trum that has maximum energy of 80 keV. The variance and
mean transmission are shown in Fig. 10. And we note the
similarity in the ratio between the variance and the mean trans-
mission [Fig. 10(c)] between this case and the bichromatic
case. The histogram of the variance mean ratio is given in
Fig. 10(d); in comparison with the bichromatic case, we note
the presence of a lower peak which corresponds to the x ray
which did not pass through the object, since it has value equal
to the mean energy of the original x-ray beam (38.5 keV).

The conventional iterative procedure for dual-energy CT
is used for the tomographic reconstruction: x rays at two
different spectra are obtained via filtering or different x-ray
tube settings; the object is then illuminated with each of the
two x-ray spectra, which are known beforehand. In every
iteration of the reconstruction the attenuation images at two
different (monochromatic) energies are used to solve for the

two components of the Alvarez-Macovski model. They are
then projected and used to generate polychromatic intensity
data which are compared with the actual sinograms; the dif-
ference is then backpropagated. We use the variance data as
the higher-energy sinogram, and the mean data as the lower-
energy sinogram.

The simulation method used for the polychromatic case
is modeled closely on the previous simulations presented in
Secs. V A and V C 1. As before, Monte Carlo simulation in
two dimensions using a line detector is used. The sample
consists of aluminum, sulfur, periclase (magnesium oxide),
and rutile (titanium oxide) rods, all with radius 0.5 cm, im-
aged with parallel beam x rays. The x rays are generated
from a tungsten target with electrons accelerated to 80 keV,
and the energy bins have a width of 1 keV. A total of 2000
projection images are simulated with a 500-pixel line detector
with a pixel pitch of 28 μm. For each 1D projection measured,
500 trials are conducted, and the mean and variance data
are calculated from the trials using mean absolute deviation.
In each trial, a random number of photons is generated and
attenuated using the NIST-XCOM attenuation data [12], and
the emerging photons are recorded for each detector pixel. The
photon number follows the Poisson distribution with mean of
10 000. The mean and variance projection are given in Fig. 10,
along with their ratio and the histogram of the ratio.

Using the projections shown in Figs. 10(a) and 10(b), we
can carry out conventional, single-energy iterative reconstruc-
tion (15 iterations of ordered-subset simultaneous iterative
reconstruction technique (SIRT) [19]), and the results are
given in Fig. 11. The reconstruction of the variance image
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FIG. 10. (a) Mean intensity, grayscale [213346, 316401], and
(b) variance intensity, grayscale [8934554, 12824889], projection
images of polychromatic simulation. (c) Their ratio, with grayscale
[36.5, 46.1]. (d) Histogram of the ratio; the vertical lines indicate the
mean energy of the x ray (1) that did not pass through the object, (2)
after it has passed through the center of the aluminum, (3) after it has
passed through the center of marble, and (4) and after it has passed
through the center of both.

[Fig. 11(a)] has lower attenuation values than the reconstruc-
tion of the mean image [Fig. 11(b)], and the mean image
has significant beam hardening present, for reasons already
mentioned.

Dual-energy reconstruction is then carried out using the
variance and mean data. This (15 iterations of ordered-subset
SIRT) generates two attenuation reconstruction volumes,

FIG. 11. Conventional reconstruction of the polychromatic data.
The materials are, clockwise from top, sulfur, aluminum, rutile, and
periclase; grayscale is [0, 6.92] for both.

TABLE II. Material properties for the polychromatic simulation.
Units are g cm−3 for density ρ and cm−1 for attenuation coefficient μ.
Density values are reference values. Atomic numbers are calculated
from the formula in Ref. [11]. Attenuation coefficients are from NIST
[12].

Name ρ Z μ (38.5 keV) μ (45 keV)

Aluminum 2.70 13.00 1.67 1.21
Periclase 3.58 10.78 1.52 1.17
Sulfur 2.07 16.00 2.25 1.53
Rutile 4.52 18.70 7.16 4.77

which are given in Figs. 12(a) and 12(c). Compared to the
single-energy reconstruction, the two attenuation volumes
generated by dual-energy reconstruction are free from arti-
facts. Furthermore, the actual values of the materials in the
dual-energy reconstruction correspond to the attenuation co-
efficients of the materials at E0 and E1 (columns 3 and 4
of Table II). In this sense, the reconstruction is quantitative.
By solving the Alvarez-Macovski equation using these two
attenuation images, we obtain the density [Fig. 12(e)] and
atomic number [Fig. 12(g)] images. Again, noise is amplified
during this process, and noise suppression via median filters
(with a 7 × 7 kernel) is used twice before the final image is
obtained. There is good agreement between both the solved
densities of the materials and the correct values (given as
vertical lines in the accompanying histogram and the exact
values are given in column 1 of Table II). Similarly, there
is also good agreement between the solved effective atomic
numbers of the materials and the correct values (column 2 of
Table II). These results suggest that quantitative dual-energy
reconstruction is possible using variance and mean data.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated that, if shot noise from incoming
photon detection is the dominant cause of measurement noise
(modeled as a Poisson distribution), then it is possible to ex-
tract spectral information from photon detectors that measure
aggregate intensity. This enhances our understanding about
(i) the capabilities of these existing detectors and (ii) the
significance of the variance data. Specifically for the case of
polychromatic x-ray radiography and tomography, the vari-
ance of transmission data provides distinct information when
compared to the mean of the transmission data. The variance
data are a form of conventional transmission data, similar
to the mean data but imaged with a harder spectrum; they
can be used in a completely independent manner to perform
radiography and tomography.

Transmission variance combined with the more conven-
tional transmission mean yields knowledge of the x-ray
spectrum; the ratio of variance to mean is a direct mea-
surement of beam hardening. This knowledge can be used
to perform beam-hardening correction. We present two such
methods: (i) directly from these measurements, assuming at-
tenuation by photoelectric absorption only, and (ii) using these
measurements to automatically calibrate a linearization curve.

Given knowledge of the input x-ray spectrum, the trans-
mission mean and variance measurements can serve as the
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FIG. 12. (a) DECT reconstruction using the mean and variance transmissions, at 38.5 keV, grayscale is [0, 7.36]; (b) its histogram; (c)
DECT reconstruction using the mean and variance transmissions, at 45 keV, grayscale is [0, 4.92]; (d) its histogram; (e) Density volumes
generated from the dual-energy reconstruction volumes, grayscale is [0, 6.10]; (f) its histogram; (g) Atomic number volumes generated from
the dual-energy reconstruction volumes, grayscale is [0, 25.71]; (h) its histogram.

low- and high-energy measurements in DECT. We carried out
simulations for the case of bichromatic and polychromatic x-
ray spectra and obtained quantitative results without requiring
the use of a second x-ray spectrum or spectrum-resolving
detectors. We retrieved attenuation values at two energies and
then, using the Alvarez-Macovski x-ray attenuation model,
we derived density and atomic number of the materials in the
sample.

Despite these achievements, we recognize this variance
method comes with its share of limitations. First, the typical
procedure for taking measurements in XCT needs to be modi-
fied: extra acquisition time may be required to collect enough
readings to generate sufficient x-ray statistics. Accurate es-
timation of variance is also challenging in practice, so we
utilized mean absolute deviation which is a robust on-the-fly
method for variance calculation. Second, the variance data
are inherently noisier than the mean data, and the solutions
to generate density and atomic number data are sensitive to
noise; this necessitates the use of regularization during and
after the iterative tomographic reconstruction.

The first priority for any future work lies in achieving
the dual-energy quantitative reconstruction with experimen-
tal data. We do not yet know the full range of issues that
would need to be resolved before this can be achieved, but
it would certainly include the two challenges listed in the
previous paragraph. In particular, the length of acquisition to
obtain a reasonable tomogram needs to be investigated. This
is linked with the issue of denoising, which is itself a large
and complex issue. It may be pertinent to choose the best
denoising method among the available options and integrate
it inside the reconstruction. Furthermore, there are issues spe-
cific to the quality of experimental data. In our simulations

we have discarded scatter and assumed a single x-ray source,
whereas experiments conducted with laboratory-based x rays
are frequently marred by x-ray scatter. There are also issues
with the nonhomogeneity of the source, such as uneven flux,
presence of secondary sources, etc. Depending on the severity,
they may need to be dealt with in some way before accurate
quantitative analysis can be achieved. On a more positive
note, we hope our simulations and experiments have proven
the plausibility of this method, and future developments ad-
dressing these (by no means insurmountable) issues should
improve the practicality of the method.

Finally, we note that although our application of these new
concepts focused on x-ray tomography, we used general prin-
ciples that may be more broadly applicable across many fields.
It is not only relevant to the detection of electromagnetic
radiation, but also applies to any scenarios involving discrete
events with shot noise measured by an aggregate (or bucket)
detector. We hope that our endeavor encourages this new way
of thinking and brings forth applications in other areas as well.
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APPENDIX A: DETECTOR STATISTICS

The probability of x-ray photons’ registry in a pixel fol-
lows a Poisson distribution, the expectation value of which
in tomographic contexts is primarily determined by source
output, attenuations of intervening materials, and the stopping
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power of absorbing material in the detector; it is a function
of x-ray photon energy E (see Eq. 7 of Ref. [1]). For every
photon thus received, it will contribute some of the x-ray
photon’s energy towards an eventual intensity signal, via lossy
transduction mechanisms that are specific to the detector [3].
Provided that proportional relationships are carried through all
transductions, gains, and other aspects of the signal chain, the
final (pileup) intensity will then be proportional to the energy
of the impinging x-ray photons (see Eq. 1 of Ref. [1]). In
this work the signal chain’s lumped proportionality constant
is denoted �(E ), which observes its likely dependence on
the x-ray photon energy (for potentially very many reasons
within the chain). It is important to note that the Poisson
expectation number of photons and the �(e) function have no
relationship to each other. Next, intensity variance arises from
variation in the number of x-ray photons. Intensity deviations
due to that Poisson variability are, like the intensity itself,
proportional to �(E ), and otherwise proportional to the square
root of the Poisson expectation number (see Eq. 2 of Ref. [1]).
For monochromatic x-ray photons, observable intensity vari-
ance divided by observable mean intensity is then simply the
product of the x-ray photon energy and the �(E ) function
(see Eq. 3 of Ref. [1]). In polychromatic cases, the intensity
variance and mean remain informative in demonstrable ways
(see Eq. 4 ad Figs. 2 and 4 of Ref. [1]) that relate to the
dispersion of the spectrum (see Eq. 23 and Fig. 3 of Ref. [1]).
The key feature is that the variance of observable intensity
and the mean of observable intensity are together informative
about the x-ray photon energies and their spectra, regardless of
pileup of Poisson-distributed events in proportional detectors.
Since a relationship ties those things (see Eq. 4 of Ref. [1]),
efforts to model spectra have one less degree of freedom,
which in effect applies to each voxel of a tomogram. The
constraint is potentially very useful indeed given adequately
descriptive models, especially where redundant information
may in effect provide a ready supply of variance- and mean-
related information. This situation exists among the many
projections typically used in tomographic reconstructions. It
is also readily amenable to Monte Carlo verifications and
simulations.

In the present work the preceding aspects employ the
following notations: the intensity in a given pixel may be
written

∑
i niEi�(Ei ), where ni photons have energy Ei; the

mean reading is
∑

i niEi�(Ei ); and the total quadrature-added
intensity variance is

∑
i niE2

i �2(Ei ). The variance of detector
readings carries information distinct from the mean, and that
the distinction relates to the spectrum. We explored the impli-
cations in the body of this paper.

What the � function is (and is not) is more clearly de-
lineated in the beginning of Sec. I. We have not sought
a parametric description of � beyond observing that it is
expected to be a function of x-ray photon energy in some
detector-specific way. A reason for refraining is that we often
use different detectors, in which signal transduction follows
different courses, and in signal chains that end users are often
obliged to view as a “black box” through multiple tiers of
manufacturing industry, in their capacity as purchasing cus-
tomers. As such, attempts at parametrization of �(E ) would
only add obfuscating detail and speculations to this work,
where we shortcut to the key property of all energy-integrating

detectors, namely, that the original photon’s energy is ulti-
mately retained in some proportional sense, in the sum or
integral in a pileup situation. [Efforts to parametrize and opti-
mize �(E ) are a subject of studies in detector manufacturing
industries and relevant bodies of work (e.g., Ref. [3]); via
direct-detection detectors they reach their ultimate expression
in low temperature thermal detectors, the extended awareness
and use of which indeed served as a background for the
present work (e.g., Refs. [16,22])].

APPENDIX B: ROBUST DETERMINATION OF VARIANCE

The standard method of estimating variance is as follows:
given n measurements taken sequentially in time, first calcu-
late the sample mean as

x = 1

n

N∑
i=1

xi,

where i is the index of the measurement in the sequence. Then
the sample variance is

x̌ = 1

n

N∑
i=1

(x − xi )
2.

There are also methods to calculate the mean and variance
in a cumulative fashion while gathering the measurement,
and complete the calculation in one pass. However, both the
on-the-fly and post hoc methods are quadratic, which causes
them to be highly sensitive to extreme outliers. This can be
improved with a second pass over the data, recalculating the
mean and then variance by ignoring all measurements more
than a few (initial) standard deviations from the (initial) mean.

This sensitivity can also be reduced, with a single pass
of the measurements, by using the mean absolute devia-
tion (MAD). For Gaussian distributions, the MAD scaled by√

π/2 gives the standard deviation [23]; we therefore have

x̌ = π

2

(
1

n

N∑
i=1

|x − xi|
)2

.

However, we found that this measurement was still unstable,
particularly at edges of the specimen projection image, due
to specimen movement and flux (or mean) variation. The
instability can be reduced by calculating a running mean and
variance (with the complication of parameter value optimiza-
tion).

These slow variations can be overcome with a single pass
of the measurements by calculating the variance between
adjacent measurements. Here we are actually calculating the
variance of the difference of two Gaussian distributions. Using
the MAD technique described above, we arrive at

x̌ = π

4

(
1

n − 1

N∑
i=2

|xi − xi−1|
)2

.

Also observe that this method does not require an estimate of
the mean for computation and can therefore be computed on
the fly as with mean estimation.
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APPENDIX C: DUAL-ENERGY ITERATIVE
TOMOGRAPHIC RECONSTRUCTION

Several methods for iterative reconstruction of dual-energy
XCT data exist in the literature (e.g., Refs. [24,25]). Here we
provide details of the method used in Secs. V C 1 and V C 2
which is based on minor modifications to the single-energy
polychromatic iterative reconstruction method presented in
Ref. [13].

1. Iterative tomographic reconstruction

The measurement process of XCT can be expressed by the
linear equation

Ax = b.

Here x is an N-pixel representation of the attenuation of the
object to be reconstructed, b is the M linearized (via negative
logarithm) measurements that are modeled as line integrals
through x, and A is an M × N system matrix that represents
the projection process, i.e., M line integrals though the N-
pixel object.

Iterative reconstruction (IR) methods use various optimiza-
tion techniques to solve for x given b and A [8]. One of the
simplest forms of IR is the Landweber method [26]. Given
a current estimate of the attenuation of the object, xk , the
updated estimate xk+1 is found as

xk+1 = xk + λAT (b − Axk ). (C1)

Here λ is a regularization parameter, typically on the order of
1/ηω where η is the image dimension in voxels, e.g., η = √

N
for a square image, and ω is the average number of rays
through voxel, e.g., typically ω = M/η. Landweber iteration
is a form of gradient descent and minimizes the L2 norm of
the residual, r = b − Ax. Algorithm 1 gives an n-iteration
pseudocode example starting with a zero estimate.

Algorithm 1 Landweber iteration.

2. Extracting material properties from dual-energy data

Let us first consider the simplest case of dual-energy XCT
with two experiments performed with monochromatic illumi-
nation at x-ray energies E0 and E1. Given the two linearized
(via negative logarithm) measurements, b0 and b1, we can
extract the material properties of density, ρ, and effective
atomic number, Z , through Eq. (4).

We perform Landweber iteration to recover the attenuation
of the object at each energy, x0 and x1. Then at each voxel
position of the object representation, i for 0 � i < N , we can

compute ρiZ3.2
i and ρi by rearranging the two forms of Eq. (4)

at energies E0 and E1 as follows:

ρiZ
3
i = β fKN(E1)x0,i − β fKN(E0)x1,i

α

E3
0
β fKN(E1) − α

E3
1
β fKN(E0)

, (C2)

ρi =
α

E3
0
x1,i − α

E3
1
x0,i

α

E3
0
β fKN(E1) − α

E3
1
β fKN(E0)

. (C3)

3. Polychromatic projection given material properties

Given knowledge of a spectral distribution, S(E ) (and the
corresponding AM constants α and β), the material property
distributions ρ and ρZ3 calculated above allow us to simulate
the polychromatic projection. Let us first project the material
properties: φ = AρZ3 and θ = Aρ. The projected attenuation
of the object at energy E can be determined via Eq. (5) as
follows:

b̃(E ) = α

E3
φ + β fKN(E )θ. (C4)

As was explained in Sec. II A, the linearized polychromatic
measurements, b̃, cannot be formed as the sum of b̃(E ) over
the spectrum, but rather the negative logarithm of the sum of
transmission over the spectrum, i.e.,

b̃ = − ln(T)

= − ln

(∑
E

S(E ) exp[−b̃(E )]

)
. (C5)

Algorithm 2 Dual-Energy Landweber iteration.
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4. Dual-energy polychromatic iterative
tomographic reconstruction

The above components provide the foundation for ex-
tracting material properties from polychromatic dual-energy
projection measurements in iterative reconstruction. Given
spectral distributions, S0(E ) and S1(E ), and the associated
polychromatic linearized measurements (via negative loga-
rithm of transmission), b0 and b1, we want to determine
x0 = x(E0) and x1 = x(E1) where E0 = Mean[S0(E )] and
E1 = Mean[S1(E )] are the mean energies of S0(E ) and S1(E ),
respectively. Starting with a current estimate, xk

0 and xk
1, we

first determine ρZ3 through Eq. (C2) and ρ through Eq. (C3).
These volumes are projected to give φ and θ. These provide
the basis for determining the estimate of projected attenuation
of the object at energy E , b̃(E ), as described in Eq. (C4). The
spectrally weighted sum of transmission, i.e., exp[−b̃(E )], at

each energy, E , gives the total transmission for each spectrum,
T0 and T1. The linearized projection estimates are then calcu-
lated as b̃ j = − ln(T j ), for j in {0,1} according to Eq. (C5).
The residuals, r0 and r1, as well as new estimates xk+1

0 and
xk+1

1 are then computed according to the Landweber method
described in Algorithm 1. An example n-iteration pseudocode
of this entire process is outlined in Algorithm 2.

There are of course many other methods to perform single-
energy IR, and most can be generalized to dual-energy IR.
The objective of this Appendix is to provide a convenient
and concise explanation of the dual-energy IR used in this
paper. Finally, we wish to note that the set of linear equa-
tions can be solved in projection space for

∫
L ρ(x) ds and∫

L ρ(x)Z3.2(x) ds. It is then possible to carry out tomographic
reconstruction on both ρ(x) and ρZ3.2(x) directly using con-
ventional tomographic reconstruction techniques.
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