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Corner states in second-order two-dimensional topological photonic crystals
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Recently, topological corner states have been extensively investigated in second-order topological photonic
crystals (STPCs). However, most square lattice STPCs are proposed based on the two-dimensional (2D)
Su-Schrieffer–Heeger (SSH) model. In this work, we propose a photonic crystal (PC) that goes beyond the
2D SSH model. The unit cell (UC) of the PC is only composed of a dielectric cylinder in an air back-
ground (or an air hole in a dielectric slab). The topological trivial or nontrivial photonic band gap of the
cylinder-in-air or hole-in-slab UC can be confirmed from the value of 2D polarization. Remarkably, photonic
band gaps form directly without any intermediate transition. 2D bulk states, one-dimensional edge states, and
zero-dimensional corner states are generated hierarchically in the box-type combination structures composed
of trivial and nontrivial PCs. By comparing the perfect and defective structures, the corner states show strong
robustness against the defects. The proposed configurations provide a simpler platform for exploring topolog-
ical corner states in photonic systems, which have great potential for application in integrated nanophotonic
devices.
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I. INTRODUCTION

Photonic crystals (PCs), as an excellent platform for ma-
nipulating light transmission, are periodic optical materials
that impact the motion of photons in a similar way as ionic
lattices in solids affecting electrons motion [1]. The dielectric
cylinders of PCs can be manufactured with different materials
to form some desired configurations in terms of shapes and
layouts. Therefore, many topological phases, including quan-
tum Hall phase [2,3], quantum spin Hall phase [4–7], and the
quantum valley Hall phase [8–10], can be realized in the opti-
cal frequency based on the platform of PCs. Topological edge
states have been demonstrated in PCs fabricated by gyromag-
netic materials or all-dielectric materials, which can propagate
along the topological interface unidirectionally with the im-
munity of backscattering [11–16]. Beyond the bulk-boundary
correspondence principle, higher-order topological insulators
(HOTIs) have been proposed in two-dimensional (2D) quan-
tized quadrupole insulators [17]. Generally, an mth-order
topological insulator (TI) in n dimensions has topological
edge states at the (n-m)-dimensional boundaries [17–21].
For example, a second-order TI in two-dimensional (2D)
systems has both one-dimensional edge states and zero-
dimensional corner states [21–25]. Second-order 2D TIs
have been proposed both theoretically and experimentally in
various systems, such as mechanical resonators, waveguide
arrays, microwave circuits, phononic crystals, and photonic
crystals [19–44]. Second-order topological photonic crys-
tals (STPCs) have been extensively studied in square lattice
[21–25], kagome lattice [31], and hexagonal lattice [19,27].

*Corresponding author: absgyf69@163.com

Hitherto, STPCs with square lattice are mainly proposed
on the basis of the 2D Su-Schrieffer-Heeger (SSH) model
[21–25], unit cells (UCs) of square lattice are mainly com-
posed of four identical cylinders in an air background or four
identical air holes in a slab [21–25,33], and the topological
transition is realized based on shrunken and expanded opera-
tions on UCs. Here, as an exploration, we aim to investigate
STPCs beyond the 2D SSH model.

In this paper, we propose a square lattice PC with re-
versed materials; the UCs of these PCs are only composed
of a dielectric cylinder in an air background and an air
hole in a dielectric slab, respectively, which can be seen
as an extension of the photonic 2D SSH model. Never-
theless, the cylinder-in-air PC exhibits trivial topology; the
hole-in-slab PC has nontrivial topology. Trivial and nontrivial
photonic band gaps (PBGs) can be formed directly in two
PCs without any intermediate transition. 2D bulk states, one-
dimensional edge states, and zero-dimensional corner states
are generated hierarchically in a box-type combination struc-
ture composed of trivial and nontrivial PCs. The corner states
with robustness exist in the gap between bulk states and edge
states.

II. NONTRIVIAL TOPOLOGICAL PHASES IN 2D
SSH MODEL

The 2D SSH model can be illustrated by a square lattice
tight-binding structure as shown in Fig. 1(a) [45], where a
UC is composed of four atoms, intracellular hopping w is
indicated by the black bond, and intercellular hopping v is
denoted as the red bond. The Hamiltonian H(k) is given by
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FIG. 1. (a) Schematic of the 2D SSH model. The square lattice UC is composed of four atoms. The intracellular hopping and the
intercellular hopping are represented by w and v, respectively. (b) Corresponding first BZ of the square lattice in (a). (c) Band structures
of 2D SSH model with w = 1.0, v = 3.0(w = 3.0, v = 1.0). The parities at symmetric points Γ and X are marked by “±,” respectively.
(d) Topological phase diagram for the 2D SSH model in terms of 2D polarization. When |w| < |v|, nontrivial phases appear with 2D
polarization of (1/2,1/2).

the following expression [45]:⎛
⎜⎝

0 w + v exp(ikx ) w + v exp(−iky) 0
w + v exp(−ikx ) 0 0 w + v exp(−iky)
w + v exp(iky) 0 0 w + v exp(ikx )

0 w + v exp(iky) w + v exp(−ikx ) 0

⎞
⎟⎠ = εψ, (1)

in which ψ = (φ1, φ2, φ3, φ4) represents the bases of the sites
of four atoms in the UC, and kx and ky are the wave numbers
along the x direction and y direction in the first Brillouin zone
(BZ), as depicted in Fig. 1(b). Further, band structures can
be obtained by solving the Hamiltonian H(k) in the momen-
tum space [44]. Band structures for (w, v) = (1.0, 3.0) and
(w, v) = (3.0, 1.0) are displayed in Fig. 1(c). For systems
with spatial inversion symmetry, we can calculate the ma-
trix elements of the parity operator in the 2D SSH model,
〈ψi|P|ψi〉 = ±1, where P is the parity operator. Parities at
high symmetric points � and X are denoted by the sign of
“±” [46]. Parities of the first band at the X point transform
its sign between the models with (w, v) = (1.0, 3.0) and
(w, v) = (3.0, 1.0), which demonstrates a topological phase
transition between the two models [45]. The 2D polarization
can be used to describe the topology for the 2D SSH model,
which can be expressed as [45]

�P = 1

2π
∫ dkxdkyTr[ �Am(kx, ky )], (2)

where �Am(kx, ky) = i〈ψm(�k)|∂k|ψm(�k)〉; here |ψm(�k)〉 repre-
sents the periodic Bloch function of the mth band, and �k
denotes the wave vector. Inversion symmetry reveals that the
value of �P is determined by the parities at � and X (Y) points
[45]:

Pi = 1

2

(∑
n

qn
i modulo 2

)
, i = x, y, (−1)qn

i = η(Xi )

η(Γ )
,

(3)

where η represents the parity of the band at the high sym-
metric point and the summation

∑
n qn

i is for all the occupied
bands. Here, on account of C4 symmetry, Px is equal to Py,
namely, Px = Py. For the model with (w, v) = (1.0, 3.0), P =
(Px, Py) = (1/2, 1/2) can be obtained. This model is in a
nontrivial topology. Analogously, when (w, v) = (3.0, 1.0),

P = (Px, Py) = (0, 0) can be obtained. This indicates that
the model has a trivial topology. Based on the value of 2D
polarization, we found that the critical point of topological
phase transition is |w| = |v|. Further, the topological phase
diagram of the 2D SSH model is plotted in Fig. 1(d); the
model exhibits a topological nontrivial phase for |w| < |v|,
and the topological trivial phase for |w| > |v|.

III. EXTENDED PHOTONIC 2D SSH MODEL BASED ON
PCs WITH REVERSED MATERIALS

PCs, regarded as artificial atoms, can be used to modulate
electromagnetic waves and possess photonic band structures.
Medium columns with finite height along the z direction are
periodically distributed in the x and y directions for three
dimensional (3D) PCs, and the field distribution is uniform
along the z direction of 3D PCs. To simplify the model, we set
the medium columns with infinite height along the z direction.
Therefore, a 3D model has degenerated into a 2D model [27].
Here, 2D square lattice PCs beyond the 2D SSH model are
shown in Figs. 2(a) and 2(d). Figure 2(a) depicts a cylinder-in-
air UC composed of a dielectric cylinder in an air background,
and Fig. 2(d) shows a hole-in-slab UC comprised of an air hole
in a dielectric slab. As shown in Figs. 2(a) and 2(d), two UCs
can be divided into four parts respectively, obeying C4v point
group symmetry.

The lattice constant a is set to 519 nm as the base param-
eter. The blue region indicates the dielectric material silicon
with εr = 12, while the other region is the air background
with ε0 = 1. R1 and R2 denote the radii of the dielectric
cylinder and the air hole respectively. Herein, we only con-
sider the transverse-magnetic (TM) mode of proposed PCs,
and transverse-electric mode can be investigated analogously.
The numerical simulations are performed by using COMSOL

MULTIPHYSICS (a commercial finite-element software). The
Floquet periodic boundary condition enables analysis of a
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FIG. 2. (a) UC of cylinder-in-air PC; the blue and white regions represent dielectric cylinders with εr = 12 and air background with
ε0 = 1, respectively. The lattice constant and the radius of the cylinder are denoted as a and R1. (b) Band structures of the cylinder-in-air PC
with R1 = 0.3a. The insets are Ez field distributions of the eigenstates and parties at X point. (c) Frequencies of the first two bands at X point
with respect to R1/a. The parity of the blue curve is even, the parity of the red curve is odd, and there is a trivial band gap between the two
bands. (d) UC of hole-in-slab PC; air holes (ε0 = 1) are embedded in the dielectric slab (εr = 12). The radius of the air hole is represented as
R2. (e) Band structures of the hole-in-slab PC with R2 = 0.48a. (f) Frequencies of the first two bands at X point with respect to R2/a, and there
is a nontrivial band gap between the two bands.

structure with periodicity, which can increase the calculation
efficiency [47]. Therefore, we set the Floquet periodic bound-
ary condition as the boundary condition of the UC along the
x direction and y direction, which can simulate the periodic
arrangement of the UC. Figures 2(b) and 2(e) depict the band
structures of two PCs with R1 = 0.3a and R2 = 0.48a, respec-
tively. There is a band gap between the first and second bands,
and the topology of the proposed PC system can be charac-
terized by the 2D polarization P. For a bosonic PC system,
the summation

∑
n

qn
i in Eq. (3) runs all the bands below the

band gap [48]. Due to the C4v point group symmetry of UCs,
Px = Py can be obtained. It is noteworthy that there is only one
band below the first band gap. Thus, the 2D polarization for
the first band gap can be simplified to

Px = Py = 1

2
(q1 modulo 2), (−1)(q1 ) = η1(X )

η1(Γ )
, (4)

where η1 represents the parity of the high symmetric points for
the first band, which could be determined by the parities of the
Ez field distributions of the eigenstates at the high symmetric
points [36,43,44,49]. Here, Ez field distributions of eigenstates
at high symmetric point X are illustrated in the insets of
Figs. 2(b) and 2(e). For a cylinder-in-air PC with R1 = 0.3a,
the frequency of an s-like mode is lower than that of a p-like
mode. However, a cylinder-in-air PC with R2 = 0.48a exhibits
a band inversion, i.e., a p-like mode resides in its first band.
The parity of the eigenmode profile is determined by the
inversion operation relative to the center of the UC. Therefore,
the s-like mode has an even parity marked by “+,” whereas the
p-like mode has an odd parity marked by “−.” At the high-

symmetry X and Γ points, the parities are presented in the
insets of Figs. 2(b) and 2(e) respectively, and there is a parity
inversion at the X point between two UCs. Thus, this model
has the same parity inversion as the 2D SSH model. Then,
by substituting the results of parity distributions into Eq. (4),
the 2D polarization with P = (0, 0) can be determined for the
band gap in Fig. 2(b), and P = (1/2, 1/2) for that in Fig. 2(e).
Therefore, for UC1 with R1 = 0.3a, a topologically nontrivial
band gap from 137.99 to 180.14 THz can be obtained, while
UC2 with R2 = 0.48a possesses a topologically trivial band
gap ranging from 144.02 to 179.47 THz.

For the 2D SSH in previous studies, trivial and nontrivial
UCs possess analogous band structures and there is a critical
point between trivial and nontrivial topological phases [21].
However, our proposed extended photonic 2D SSH model
does not have a critical point of topological phase transition.
Figures 2(c) and 2(f) denote the frequencies of the first two
bands at the X point for a cylinder-in-air UC and a hole-in-slab
UC, respectively. The parity of the s-like mode is even, and
that of the p-like mode is odd. In detail, band degeneracy on
the M-X line of the first BZ can be observed in gapless band
structure with R1 = 0. Band degeneracy vanishes, and a trivial
photonic PBG is opened with 0 < R1/a � 0.5. Likewise, for
hole-in-slab PC, band degeneracy appears at R2 = 0, and the
nontrivial PBG never closes with 0 < R2/a � 0.5. Explic-
itly, P = (0, 0) for a cylinder-in-air UC (0 < R1/a � 0.5) and
P = (1/2, 1/2) for a hole-in-slab UC (0 < R2/a � 0.5) can
be obtained, which means that cylinder-in-air and hole-in-slab
UCs possess trivial and nontrivial band gaps respectively. For
cylinder-in-air and hole-in-slab PCs, their PBGs do not have
the process of intermediate transition.
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FIG. 3. (a) A supercell composed of topologically trivial PC
(cylinder-in-air PC with R1 = 0.3a) and nontrivial PC (hole-in-slab
PC with R2 = 0.48a). (b) Dispersion relation of the configuration;
the gray curves denote the band of bulk states and the red curve
represents the edge states. (c) Simulated electric field distribution of
the edge state at 154.48 THz (kx = 0.2 × 2π/a). Right panel: the
normalized electric field identify along the y direction. (d) Electric
field intensity distribution at 143.50 THz along the interface of two
regions with different topologies.

IV. TOPOLOGICAL EDGE STATES

To demonstrate edge states existing at the interface be-
tween two different topological regions, we only consider the
supercell composed of topologically trivial PCs (cylinder-in-
air PC with R1 = 0.3a) and nontrivial PCs (hole-in-slab PC
with R2 = 0.48a) as shown in Fig. 3(a). For boundaries of
combined structure in Fig. 3(a), the upper and lower bound-
aries are set as perfect electrical conductors to simplify our
configuration, and the left and right boundaries are set to
statisfy Floquet periodic boundary conditions. Then, we cal-
culate the frequencies of the wave by solving the eigenvalue

problem based on a periodical scan of the wave vector kx.

The simulated band structure of this configuration is shown
in Fig. 3(b), where an edge state (marked by the red curve)
emerges at the band gap of bulk states (marked by the gray
curve). The simulated electric field distribution of this config-
uration at 154.48 THz is shown in Fig. 3(c), where the electric
field distribution is normalized into the range of [0, 1] [41].
The electric field is concentrated at the interface between two
different PCs, and decreases sharply along the y direction.
Furthermore, the measured electric field distribution of edge
state at 143.50 THz is shown in Fig. 3(d), which reveals that
the electric field is confined at the interface between different
topological regions [22,23].

V. TOPOLOGICAL CORNER STATES

To investigate the zero-dimensional corner states, we con-
struct two box-type combination structures as shown in Fig. 4.
As shown in Fig. 4(a), nontrivial UCs are encompassed
by trivial UCs. And the structure in Fig. 4(b) is obtained
by exchanging the position of trivial and nontrivial PC in
Fig. 4(a). The band structures of trivial PCs (cylinder-in-
air PC with R1 = 0.3a) and nontrivial PCs (hole-in-slab
PC with R2 = 0.48a) are shown in Figs. 2(b) and 2(e),
respectively. The boundary condition of the square struc-
ture is set as the perfect electric conductor. The numerical
calculation of the discrete spectrum of modes for the com-
bined structure [see in Fig. 4(a)] is shown in Fig. 5(a).
Figure 5(a) shows a series of eigenstates, such as bulk
states, edge states, and corner states. Clearly, edge states
and corner states exist in the band gap of bulk states,
and four nearly degenerated corner states are marked by
C1, C2, C3, C4 respectively. The frequencies of four cor-
ner states are fC1 = 169.377 90 THz, fC2 = 169.378 31 THz,
fC3 = 169.378 37 THz, fC4 = 169.379 69 THz, respectively.
Remarkably, four corner states are not completely degenerate,
with few differences in frequency. For example, the frequency
difference between C2 and C3 is only 0.000 06 THz. Addition-
ally, a topological index for the corner state can be defined as

Qc = 1
4 ([X 1] + 2[M1] + 3[M2]), (5)

FIG. 4. (a) Box-type combination structure constructed by 16 × 16 array of topologically nontrivial UCs and three-layer trivial UCs;
topological UCs are encompassed by trivial UCs. The bulk probe, edge probe, and corner probe are placed at positions marked by three circles
with different letters, respectively. Right panel: enlarged view of the corner. (b) Schematic plot of box-type combination structure; trivial UCs
are encompassed by topological UCs.
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FIG. 5. (a) Numerical calculation of the discrete spectrum of modes for the combined structure in Fig. 4(a). Gray, blue, and red dots denote
bulk, edge, and corner states, respectively. Four corner states around 169.38 THz are marked by C1, C2, C3, C4, respectively. (b) Electric field
spectrum measured by bulk, edge, and corner probes [see in Fig. 4(a)]. Bottom plane: electric field measured by bulk probe; band gap ranges
from 137.99 to 174.12 THz. Middle plane: electric field measured by edge probe; edge states range from 137.99 to 152.93 THz. Top plane:
electric field measured by corner probe, corner states around 169.38 THz; the inset is the enlarged diagram of electric field around 169.38 THz.

where [
∏

p] = #
∏

p − #p, and #
∏

p denotes the number of
bands underneath the PBG, in which

∏
p = e[2πi(p−1)]/4, where

p = 1, 2, 3, 4. � represents high symmetric points (X, M, and
�) at the first BZ. Herein, the hole-in-slab PC (nontrivial
PC) has [X 1] = −1, [M1] = 1, and [M2] = 0. Therefore, the
corner topological index for the hole-in-slab PC is Qc = 1/4,
indicating 1/4 fractionalized eigenstates (corner states) at
each of the four corners [23,50].

As shown in Fig. 4(a), three probes are set in the bulk, edge,
and corner of the combination structure to measure the electric
field, with notations of bulk probe, edge probe, and corner
probe, respectively. The measured electric field spectra for
those probes are shown in Fig. 5(b). The electric field spectra
of the bulk probe are shown at the bottom of Fig. 5(b). There is
no electric field from 137.99 to 174.12 THz, which reveals the
range of photonic band gap. The electric field spectra of the
edge probe are shown in the middle of Fig. 5(b); although the
range from 137.99 to 152.93 THz is in the photonic band gap,
the edge probe still detects electric field strength. Therefore,
the range of edge states is from 137.99 to 152.93 THz. The
edge states can propagate along the boundary of trivial and
topological regions in the combination structure. In the gap
between bulk states and edge states, topological corner states
around 169.38 THz can be identified from the top of Fig. 5(b),
which has extremely electric field localization compared with
the bulk and edge states. The enlarged view of measured
electric field for corner probe around 169.38 THz is shown
in the inset of the top of Fig. 5(b). We simulate the electric
field distributions of bulk states, edge states, and corner states
as shown in Fig. 6. The electric field profile of the bulk state
at 135.24 THz is presented in Fig. 6(a), revealing that the bulk
state can spread in the region of bulk. Figures 6(b)–6(d) ex-
hibit the electric field profiles of three nearly degenerated edge
states at 138.891 63, 138.891 69, and 138.915 73 THz, re-
spectively. Obviously, the strength of the field is significantly
strong at the boundary of two different topological regions,
and extremely weak in the bulk. Additionally, Figs. 6(e)–

6(h) present the electric field profiles of four corner states
C1, C2, C3, C4, respectively. Corner states are almost to-
tally concentrated at the four corners with strong localization,
respectively.

Further, we investigate another type of combined struc-
ture as shown in Fig. 4(b). In this case, a 16 × 16 array of
topologically trivial PCs (cylinder-in-air PC with R1 = 0.3a)
is surrounded by a three-layer nontrivial PC (hole-in-slab PC
with R2 = 0.48a). Therefore, this combined structure has dis-
parate interfaces of two different topologies compared with
the structure in Fig. 4(a). According to the discrete spectrum
of modes in Fig. 7(a), 2D bulk states, one-dimensional edge
states, and zero-dimensional corner states are generated hi-
erarchically, and four topological corner states are marked
with by C1, C2, C3, C4. C2 and C3 are degenerated around
154.65 THz, C1 with 154.64 THz is lower, C4 with 154.66 THz
is higher. The bulk probe, edge probe, and corner probe are set
in the positions of bulk, edge, and corner of the combination
structure to measure the electric field intensity, respectively.
Figure 7(b) exhibits the measured electric field spectra of
those probes. The bulk band gap from 144.02 to 174.64
THz, edge states from 137.99 to 152.93 THz, and corner
states around 154.65 THz can be revealed in Fig. 7(b). The
inset at the top of Fig. 7(b) exhibits the enlarged view of
measured electric field for the corner probe around 154.65
THz. According to the measured electric field for corner and
edge probes around 154.65 THz, we find that a weak electric
field can be measured at the boundary with the frequency of
a corner state, which illustrates that the corner state is not
completely localized at the corner. Figure 7(c) exhibits the
electric field distributions of four corner states C1, C2, C3,
C4, respectively. Then, we compare corner states between two
combined structures with reversed boundaries. Figures 5 and 6
present the corner states of combined structure with nontrivial
UCs embedded into the trivial UCs; four corner states are
almost concentrated at the four corners respectively and ex-
hibit strong localization. However, for the reversed boundary,
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FIG. 6. Simulated electric field distributions of bulk, edge, and corner states, respectively. (a) Bulk state: fbulk = 135.24 THz.
(b)–(d) Edge states: fedge = 138.891 63 THz, fedge = 138.891 69 THz, fedge = 138.915 73 THz, respectively. (e)–(h) Corner states: f = fC1 ,
f = fC2 , f = fC3 , f = fC4 , respectively.

i.e., a combined structure with trivial UCs embedded into
the nontrivial UCs, four corner states have lower frequency
degeneracy and weaker localization.

To study the robustness of the topological corner states
against disorders, a composite structure with one corner is
designed. The structure in Fig. 8(a) is a perfect structure

without defects. A probe is set at the position of the corner
to measure the electric field. The electric field spectrum is
shown in Fig. 8(c), and the characteristic spectral line of the
corner state at 158.3 THz can be observed. The correspond-
ing electric field profile of the corner state is presented in
Fig. 8(b), which is almost totally concentrated at the corner

FIG. 7. (a) Numerical calculation of the discrete spectrum of modes for the combined structure in Fig. 4(b). Four corner states around
154.65 THz are marked by C1, C2, C3, C4, respectively. (b) Electric field spectrums measured by bulk, edge, and corner probes [see Fig. 4(b)].
Bottom plane: electric field measured by bulk probe; band gap ranges from 144.02 to 174.64 THz. Middle plane: electric field measured by
edge probe; edge states range from 144.02 to 152.88 THz. Top plane: electric field measured by edge probe; topological corner states around
154.65 THz. (c) Simulated electric field distributions of four corner states for the box-type combination structure in Fig. 4(b).
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FIG. 8. (a) Box-type combination structure with one corner; the position of probe is marked by the red pentagram. (b) The simulated electric
field distributions for (a) at 158.3 THz. (c) Electric field spectrum measured by the corner probe in (b). (d) Box-type combination structure
with three cavities and an impurity, which are marked by four dotted boxes. (e) Simulated electric field distribution for (d) at 157.22 THz. (f)
Electric field spectrum measured by the corner probe in (d).

with strong localization. Then, we consider a structure with
defects as shown in Fig. 8(d). Here, three cavities are intro-
duced by removing the medium column or air hole in UCs,
and by inserting an additional medium column for impurity.
According to the electric field spectrum in Fig. 8(f), we can
confirm that the frequency of corner state is 157.22 THz.
The corresponding electric field distribution at 157.22 THz is
shown in Fig. 8(e), where the electric field is concentrated at
the corner. Despite the introduction of cavities and impurity,
the corner state remains almost unchanged except for a slight
change in the frequency.

VI. CONCLUSION

In this paper, we propose two 2D PCs with reversed ma-
terials beyond the 2D SSH model. The UC of a PC has
only one dielectric cylinder in the air background or one air
hole in the dielectric slab. Nevertheless, there is no critical
point of topological phase transition in our proposed PCs.
The cylinder-in-air PC exhibits a trivial topology, while the
hole-in-slab PC has a nontrivial topology. Therefore, we can

realize the topological phase transition by exchanging the
materials between the cylinder and the background. 2D bulk
states, one-dimensional edge states, and zero-dimensional
corner states are generated hierarchically in the configuration
composed of these two PCs. Four almost degenerated corner
states around 169.38 THz arise in the band gap. The corner
states are almost fully concentrated at the four corners, re-
spectively. By comparing corner states in perfect and defective
structures, it is demonstrated that corner states are robust
to defects. The presented results promise wide application
prospects of topological edge and corner states for topological
photonic devices.
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