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Optomechanically enhanced precision measurement

An-Ning Xu1 and Yong-Chun Liu 1,2,*

1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics,
Tsinghua University, Beijing 100084, People’s Republic of China

2Frontier Science Center for Quantum Information, Beijing 100084, People’s Republic of China

(Received 19 February 2022; accepted 28 June 2022; published 12 July 2022)

Cavity optomechanical systems provide excellent platforms for the high-precision measurement of various
physical quantities. Here, we investigate the improvement of optomechanical precision measurements based on
the tuning of the optomechanical interaction, which can surpass the quantum shot-noise limit without using
a squeezed light source. The enhanced performance comes from the optomechanical two-mode squeezing
interaction. The approach is based on the tuning of the mechanical susceptibility using optical force, which can
be adjusted by controlling the laser frequency and power. For proper blue-detuned laser driving, the mechanical
response to the detected signal is greatly enhanced, with improved measurement sensitivity surpassing the
shot-noise limit. Moreover, for proper red-detuned laser driving, the working bandwidth can be broadened when
the quantum shot noise does not dominate. Our work opens an avenue towards significant improvement to all
kinds of optomechanical precision-measurement systems without stringent requirements.
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I. INTRODUCTION

Cavity optomechanics [1–5], which facilitates interactions
between optical cavity fields and mechanical resonators,
provides an important platform for the manipulation of me-
chanical resonators in the quantum regime [6–10]. Recently,
cavity optomechanical systems have been demonstrated to
possess unique advantages in high-precision measurement
and sensing, which are able to efficiently transduce var-
ious types of physical quantities into displacement with
sensitive readout [11–13]. They have been applied to the
study of displacement sensing [14–16], mass sensing [17,18],
force sensing [19,20], torque sensing [21], acoustic sens-
ing [22–33], atomic force microscopy [34–36], magnetic
resonance force microscopy [37–39], accelerometry [40,41],
and magnetometry [21,42–49].

Currently, in most of the experiments for precision mea-
surements, the optomechanical interactions are only used to
realize the transduction of mechanical displacements into op-
tical signals. As a result, the measurement sensitivities are
finally limited by the quantum shot noise of light. Although
squeezed light can be used to suppress the quantum shot
noise [50–54], it greatly increases the system complexity. In
this paper, we analyze the potential of improving the mea-
surement sensitivity by making use of the optomechanical
interaction, without the use of the squeezed light source.
The enhanced performance comes from the optomechani-
cal two-mode squeezing interaction. By adjusting the laser
detuning, the mechanical susceptibility can be tuned freely,
leading to the modification of the mechanical response to the
detected signal. For blue-detuned laser driving, the response
is greatly enhanced, with an improved signal-to-noise ratio
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(SNR), which surpasses the shot-noise limit. On the other
hand, when the quantum shot noise is not the dominant noise
source, a red-detuned laser driving leads to the broadening of
the working bandwidth.

II. SYSTEM MODEL

A typical optomechanical system consists of an optic cav-
ity and a mechanical resonator. As shown in Fig. 1(a), we
consider a basic model of an optomechanical system con-
taining a Fabry-Pérot (FP) cavity with one mirror connected
to a spring. The incident laser at frequency ωL which has
a detuning as � = ωL − ωc is coupled to the optical cav-
ity with resonance frequency ωc. The intracavity field exerts
a radiation-pressure force on the mechanical resonator with
effective mass m, mechanical resonance frequency ωm, and
zero-point fluctuation amplitude xZPF = √

h̄/(2mωm ). With-
out loss of generality, the physical quantity to be measured is
assumed to be an external force F exerted on the mechanical
resonator, which can also be replaced by other physical quan-
tities such as acceleration, magnetic field, etc.

The system Hamiltonian [1,55] is given by

H = h̄ωca†a + h̄ωmb†b + h̄ga†a(b + b†)

+ h̄(�e−iωLt a†+H.c.) − FxZPF(b + b†), (1)

where a† (a) is the photon creation (annihilation) operator,
b† (b) is the phonon creation (annihilation) operator, g is the
single-photon optomechanical coupling strength, and � is the
laser driving strength. When the laser driving is strong so that
the intracavity photon number nc � 1, the system can be lin-
earized with the Hamiltonian simplified as HL = −h̄�a†a +
h̄ωmb†b + h̄(Ga† + G∗a)(b + b†) − FxZPF(b + b†), where G
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FIG. 1. (a) A typical optomechanical system consists of an opti-
cal cavity with one side mirror connected to a mechanical resonator.
The optical cavity has a cavity resonance frequency ωcav and a cavity
decay rate κ , while the mechanical resonator has a mechanical reso-
nance frequency ωm and a mechanical damping rate �m. (b) Typical
mechanical susceptibilities of the optomechanical system for red-
detuned (red curve) and blue-detuned (blue curve) laser inputs. The
black curve denotes the bare mechanical susceptibility without an
optomechanical interaction.

is the strength of light-enhanced optomechanical coupling.
The equation of the motion in the frequency domain reads

ã(ω)

χc(ω)
= −iG[b̃†(ω) + b̃(ω)]−√

κ ãin(ω), (2)

b̃(ω)

χm(ω)
= −i[G∗ã(ω) + Gã†(ω)] + iF

xZPF

h̄
−

√
�mb̃in(ω),

(3)

where χc(ω) = (−iω−i� + κ/2)−1 and χm(ω) = (−iω +
iωm + �m/2)−1 are the response functions (susceptibilities)
of the optical and mechanical modes, and κ = κ0 + κex and
�m are the damping rates for the optical and mechani-
cal modes, with the corresponding noise operators being
ãin(ω) =√

κ0/κ ãin,0(ω)+√
κex/κ ãin,ex(ω) and b̃in(ω), respec-

tively. Here, κ0 and κex are the intrinsic damping rate and the
external damping rate from the input coupling, with the noise
operators being ãin,0(ω) and ãin,ex(ω), respectively.

Note that the strength of light-enhanced optomechani-
cal coupling |G| = √

ncg depends on the intracavity photon
number nc = κexPin/[h̄ωL(�2 + κ2/4)] and the single-photon
optomechanical coupling strength g = xZPF∂ (ωc/∂x). For an

FP cavity with length L, we obtain ∂ωc/∂x = ωc/L, which
yields [1]

|G| = ωc

L

√
2κexPin

mωmωL(4�2 + κ2)
, (4)

where Pin is the input laser power. The argument of G is
determined by the incident laser, which can be assumed to be
zero without loss of generality, i.e., G is assumed to be real.

From Eqs. (2) and (3) we obtain

b̃(ω)

χ eff
m (ω)

� iF
xZPF

h̄
−

√
�mb̃in(ω)

+ i
√

κ[G∗χc(ω)ãin(ω) + Gχ∗
c (−ω)ã†

in(ω)]. (5)

Here, the effective mechanical susceptibility is given by

χ eff
m (ω) = 1

χ−1
m (ω) + i	(ω)

= 1

−iω + i(ωm+δωm ) + �m+�opt

2

, (6)

where 	(ω) represents the optomechanical self-energy which
modifies the mechanical resonance, with the expression given
by

	(ω) = −i|G|2[χc(ω) − χ∗
c (−ω)]

= 2|G|2� �2 + κ2

4 − ω2 + iωκ(
�2 + κ2

4 − ω2
)2 + ω2κ2

. (7)

The resonance frequency shift δωm and the extra damping �opt

of the mechanical modes are given by

δωm = Re 	(ω) = 2|G|2�(
�2 + κ2

4 − ω2
)

(
�2 + κ2

4 − ω2
)2 + ω2

κ2, (8)

�opt = −2 Im 	(ω) = −4|G|2�ωκ(
�2 + κ2

4 − ω2
)2 + ω2κ2

. (9)

III. MECHANICAL RESPONSE

Note that the optomechanical damping rate �opt greatly
affects the mechanical response. It is shown from Eq. (9)
that �opt is an odd function with respect to the detuning
�. For blue-detuned laser driving (� > 0), �opt is a nega-
tive value, corresponding to antidamping, which reduces the
total mechanical damping �eff = �m + �opt, leading to the
amplification of the mechanical motion, and thereby increas-
ing the response of the system to the signal to be measured
[blue curve in Fig. 1(b)]. To keep the system in the stable
regime, we require �opt > −�m so that �eff > 0. Oppositely,
for red-detuned laser driving (� < 0), �opt corresponds to
additional mechanical damping, which broadens the mechan-
ical response bandwidth [red curve in Fig. 1(b)] [1]. In order
to produce a strong antidamping effect with low input laser
power, we need to determine the optimal detuning �max,
which depends on the comparison between the cavity damp-
ing rate κ and the mechanical resonance frequency ωm. In the
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FIG. 2. (a) and (b) The influences on the optomechanical damping rate �opt from different laser detunings � and cavity decay rates κ .
(c) and (d) The influences on the mechanical resonance frequency ωm from different laser detunings � and cavity decay rates κ . The red
solid, black dashed, and blue dashed-dotted curves in (b) and (d) represent κ/ωm = 0.3, 1, and 3, respectively. (e) The optimal laser detuning
corresponding to the maximum optomechanical damping rate as a function of κ/ωm. The red solid curve corresponds to the exact solution.
The cyan dashed curve corresponds to �max = ωm and the blue dashed-dotted curve corresponds to �max = κ/2

√
5. (f) The maximum of the

optomechanical damping rate �opt as a function of κ/ωm. Here, we consider a typical SiN membrane mechanical resonator with the mechanical
resonance frequency ωm/2π = 1.6 MHz, mechanical damping rate �m/2π = 16 kHz, cavity length L = 10 mm, mass m = 340 ng, and the
1550-nm laser incident power Pin = 15 μW.

resolved-sideband regime (κ � ωm), we obtain

�max = ωm, δωm = |G|2
2ωm

, �opt = −4|G|2
κ

. (10)

In the unresolved-sideband regime (κ � ωm), according to
Eqs. (4), (8), and (9), we obtain

�max = κ

2
√

5
, δωm = 2

√
5|G|2
3κ

, �opt = −40
√

5|G|2ωm

9κ2
.

(11)

In the opposite case, to produce a strong damping effect, we
only need to change the sign in the above expressions.

In Figs. 2(a)–2(d) we plot �opt and δωm as functions of the
laser detuning � and the cavity damping rate κ , which verifies

the above analytical expressions. The optimal detuning �max

and the corresponding maximum |�opt| as functions of the
cavity damping rate κ are plotted in Figs. 2(e) and 2(f). It
reveals that the situations for the resolved and unresolved
sideband regimes are quite different. In the resolved-sideband
regime, the optimal detuning is fixed around �max = ωm, and
the maximum |�opt| is almost unchanged. In the unresolved-
sideband regime, the optimal detuning �max = κ/(2

√
5) is

proportional to the cavity damping rate κ , while the max-
imum |�opt| decreases rapidly as κ increases. The reasons
are twofold. On one hand, the increase of the cavity damp-
ing rate κ leads to the decrease of the intracavity photon
number nc, which then degrades the optomechanical coupling
strength |G|. On the other hand, a large κ greatly broadens
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FIG. 3. (a)–(d) The absolute value of effective mechanical susceptibilities for different laser detunings �. (a) and (b) are situations in the
resolved-sideband regime with κ/ωm = 0.3, while (c) and (d) are in the unresolved-sideband regime with κ/ωm = 10. The blue/black/red
curves in (b) and (d) correspond to blue/zero/red detuning of the input lasers with the values shown in the figures, respectively. (e), (f) The
peak value of the effective mechanical susceptibilities under different laser detunings and cavity decay rates, with the same input laser power.
The red solid line, black dashed, and blue dashed-dotted curves in (f) represent κ/ωm = 0.3, 1, and 3, respectively. The input laser power is
Pin = 15 μW in (a), (b), (e), (f) and Pin = 2 mW in (c), (d). Other parameters are the same as those in Fig. 2.

the optical response, which strongly mixes the red and
blue mechanical sidebands, reducing the net optomechanical
damping/antidamping effect. Therefore, in the unresolved-
sideband regime, a larger laser power is required to achieve
the same optomechanical damping/antidamping effect.

The mechanical susceptibilities |χ eff
m (ω)| for different

detuning � are plotted in Fig. 3. The results in the resolved-
sideband regime with κ/ωm = 0.3 are depicted in Figs. 3(a)
and 3(b), and the results in the unresolved-sideband regime
with κ/ωm = 3 are shown in Figs. 3(c) and 3(d). For a better
comparison, the laser powers for the two situations are differ-
ent to ensure the peak values of the mechanical susceptibilities
are comparable. We can find that the mechanical suscepti-
bility strongly increases for blue-detuned driving, while it

decreases for red-detuned driving. The shift of the resonance
point for the mechanical susceptibility, determined by Eq. (8),
is a nonmonotonic function of laser detuning. For the opti-
mal detuning case, the shift can almost be neglected in the
resolved-sideband regime, but needs to be considered in the
unresolved-sideband regime, as in the latter case the required
laser power is larger, and the corresponding mechanical reso-
nance frequency shift becomes notable.

IV. SENSITIVITY ENHANCEMENT

Now we discuss how the measurement sensitivity can be
enhanced by considering the noises. From Eqs. (2) and (3) we
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FIG. 4. Optomechanically enhanced precision measurement in a shot-noise-dominant regime. (a) Displacement spectrum densities Sxx

under different laser detunings as � = 0, κ/(3
√

5), κ/(2
√

5), respectively. The blue dashed line is the level of shot noise. (b) The cor-
responding force spectrum densities SFF with the laser detunings are the same as in (a). The red dashed line is the level of thermal
noise. Here, we consider a whispering-gallery-mode cavity [42] with radius R = 30 μm, mass m = 35 ng, mechanical resonance frequency
ωm/2π = 10 MHz, mechanical damping rate �m = 10 kHz, and cavity decay rate κ/2π = 50 MHz. The input laser power is Pin = 1 nW.

further obtain

ã(ω)

χc(ω)
= Gχ eff

m (ω)
xZPF

h̄
F + Ash(ω)+Ath(ω)+Arp(ω), (12)

which includes four terms. The first term proportional to
F represents the system response to the signal to be mea-
sured, while the other three terms are related to the noise
operators, which represent three different kinds of noises.
The first noise term Ash(ω) = −√

κ ãin(ω) corresponds to the
quantum shot noise of the optical field; the second noise
term Ath(ω) = iGχ eff

m (ω)
√

�mb̃in(ω) corresponds to the ther-
mal noise of the mechanical mode, originating from the
thermal Brownian movement of the mechanical resonator;
the third noise term Arp(ω) = Gχ eff

m (ω)
√

κ[G∗χc(ω)ãin(ω) +
Gχ∗

c (−ω)ã†
in(ω)] corresponds to the radiation-pressure noise,

which comes from the noise of the optical force with photon
number fluctuations. In real experiments, there are also other
technical noises such as laser noises caused by the fluctuations
of the laser’s phase and amplitude, and the electronic noises
induced by the imperfection of electronic devices. From
Eq. (12) we can find that the signal term is modified by the

optomechanical dampling/antidamping effect with effective
susceptibility χ eff

m (ω), while the noises are not fully affected
by χ eff

m (ω). Both the thermal noise and the radiation-pressure
noise are affected, but the shot noise is not. In addition, the
laser noises and electronic noise will also not be affected
by χ eff

m (ω). Therefore, changing the effective susceptibility
χ eff

m (ω) will lead to the change of the SNR, providing the
possibility to improve the measurement.

When the system is dominated by the quantum shot noise,
we can use a blue-detuned laser input, with a negative �opt

and an increased effective susceptibility χ eff
m (ω). Then the

signal response increases, while the main noise remains un-
changed. Thus, the SNR becomes larger, and the shot noise
will no longer be the limiting factor. The optomechanical
antidamping effect also amplifies the thermal noise and the
radiation-pressure noise, so the final measurement sensitivity
will be determined by these two noises. In Fig. 4(a) we take
an unresolved-sideband optomechanical system as an exam-
ple, and plot typical displacement noise spectrum densities
Sxx(ω) for different detuning �. Originally the system mainly
suffers from the shot noise, corresponding to the blue dashed

FIG. 5. Optomechanically enhanced precision measurement in a thermal-noise-dominant regime. (a) Displacement spectrum densities
Sxx under different laser detunings as � = 0, −κ/(5

√
5),−κ/(2

√
5), respectively. The blue dashed line is the level of shot noise. (b) The

corresponding force spectrum densities SFF with the laser detunings are the same as in (a). The red dashed line is the level of thermal noise.
The input laser power is Pin = 0.1 mW. Other parameters are the same as those in Fig. 4.
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horizontal line, which strongly overwhelmed the signal. With
the help of optomechanical antidamping, the signal becomes
amplified, which then can be extracted from the shot-noise
background. When the peak thermal noise reaches the same
as the shot-noise level, the increase of the SNR reaches the
maximum. The corresponding force noise spectra densities
SFF (ω) are plotted in Fig. 4(b), which clearly shows the final
reachable measurement sensitivity. In this case, the measure-
ment sensitivity can reach the thermal noise limit denoted by
the red dashed horizontal curve.

In the opposite case, if the system is dominantly limited
by the thermal noise (or radiation-pressure noise), then the
increase of the effective susceptibility χ eff

m (ω) no longer im-
proves the SNR. However, we can use a red-detuned laser
input, with a positive �opt, to broaden the working bandwidth,
which can be increased from �m to �m+�opt. In Fig. 5(a) we
plot the displacement noise spectrum densities Sxx(ω) and the
force noise spectra densities SFF (ω) for this situation. It shows
that the optomechanical damping effect helps to enlarge the
bandwidth and the SNR remains unchanged until the peak
thermal noise becomes comparable with the shot noise.

V. CONCLUSION

In summary, we study the precision measurement enhanced
by manipulating the optomechanical interaction, which can
surpass the quantum shot-noise limit, without the use of a
squeezed light source. The enhanced performance comes from
the optomechanical two-mode squeezing interaction. It only
requires the tuning of the frequency and power of the incident
laser, which modifies the mechanical susceptibility induced
by the optical force. When the system is dominated by the
quantum shot noise or classical technical noises, by using
blue-detuned laser driving, the signal response is greatly en-
hanced, with improved measurement sensitivity. When the
thermal noise or radiation-pressure noise dominates, by us-
ing red-detuned laser driving, the working bandwidth can
be broadened. Analytical expressions for the optimal laser
detunings for both the resolved-sideband regime and the
unresolved-sideband regime are present. Our work provides
a promising approach for improving the performance of op-
tomechanical sensors.
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APPENDIX: NOISE ANALYSIS AND DEVIATION

From Eq. (12), we are able to classify the noise into three
major resources, which are the quantum shot noise (measure-
ment imprecision noise) due to the fluctuation of the photon
number in the cavity, the thermal noise due to the Brownian
movement of the mechanical resonator, and the backaction

noise due to the radiation pressure from the laser on the
resonator. The displacement spectral density Sxx is defined as

Sxx(ω) =
∫ ∞

−∞
dω′〈x̂†(ω)x̂(ω′)〉, (A1)

and the force spectral density SFF defined with x(ω) =
χM(ω)F (ω) is

SFF (ω) = Sxx(ω)

|χM(ω)|2 . (A2)

Here, Sxx is proportional to the power spectral density (PSD)
on the spectral analyzer because the measurement result is
typically proportional to the displacement, while SFF is asso-
ciated with the physical parameters that are usually measured,
including force, torque, mass, acceleration, supersonic wave,
magnetic field, etc. According to the definition of the displace-
ment operator x̂ = xZPF(b̂ + b̂†), we have the displacement
operator as

x̂

xZPF
= iF

xZPF

h̄

[
χ eff

m
(ω) − χ eff

m

∗
(−ω)

]
−

√
�m

[
χ eff

m
(ω)b̃in + H.c.

]
+ i

√
κ[G∗χc(ω)ãin + H.c.]

[
χ eff

m
(ω) − χ eff

m

∗
(−ω)

]
.

(A3)

The noise correlators associated with the input fluctuations
are given by

〈ain,0(ex)(t )a†
in,0(ex)(t

′)〉 = δ(t − t ′), (A4)

〈a†
in,0(ex)(t )ain,0(ex)(t

′)〉 = 0, (A5)

〈bin(t )b†
in(t ′)〉 = (n̄th + 1)δ(t − t ′), (A6)

〈b†
in(t )bin(t ′)〉 = n̄thδ(t − t ′), (A7)

and the relationships in the frequency domain found by
Fourier transformation are

〈ain,0(ex)(ω)a†
in,0(ex)(ω

′)〉 = δ(ω + ω′), (A8)

〈a†
in,0(ex)(ω)ain,0(ex)(ω

′)〉 = 0, (A9)

〈bin(ω)b†
in(ω′)〉 = (n̄th + 1)δ(ω + ω′), (A10)

〈b†
in(ω)bin(ω′)〉 = n̄thδ(ω + ω′). (A11)

Here, n̄th = [exp(h̄ωm/kBT ) − 1]−1 is the average thermal
phonon number under thermal equilibrium. Therefore, we
obtain the displacement spectral density as

Sxx(ω) = x2
ZPF�m

[
n̄th

∣∣χ eff∗
m

(−ω)
∣∣2 + (n̄th + 1)

∣∣χ eff
m

(ω)
∣∣2]

+ x2
ZPFκ

∣∣χ eff
m

∗
(−ω) − χ eff

m
(ω)

∣∣2|G|2|χc(ω)|2.
(A12)

The first term describes the thermal noise and the second term
describes the backaction noise. We are able to get the force
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spectral density as

Sth
FF � 2mkBT ωm, (A13)

Srp
FF = κ h̄2

x2
ZPF

|G|2|χc(ω)|2. (A14)

Now we turn our attention to the imprecision of the mea-
surement due to shot noise in the output. The appropriate
homodyne quadrature variable to monitor to be sensitive to
the output phase shift caused by position fluctuations is

I = aout + a†
out. (A15)

According to the input-output theory of open quantum
systems, the field that is reflected from the cavity is given by

aout = ain − √
κexa. (A16)

Thus the measurement imprecision spectral density
referred back to the position of the mechanical

resonator is

Ssh
xx = 1

4κex

x2
ZPF

|G|2|χc(ω)|2 . (A17)

Comparing this to Eq. (A4) we see that we reach the quantum
limit relating the imprecision noise to backaction noise

Ssh
xxSrp

FF = h̄2

4

κ

κex
= h̄2

4ηc
� h̄2

4
, (A18)

where ηc = κex/κ is the coupling efficiency of the cavity.
For a mechanical resonator possessing a larger quality factor
(ωm � �m), the displacement spectral density can be de-
scribed as

Stot
xx (ω) = Ssh

xx (ω) + |χM(ω)|2[Sth
FF + Srp

FF (ω)
]
. (A19)

With this equation, we are able to obtain the total noise dis-
placement power density of the system.
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