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Real transmission and reflection zeros of periodic structures with a bound state in the continuum
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For lossless periodic structures with proper symmetry, the transmission and reflection spectra often have
peaks and dips that are truly 100% and 0%, respectively. The full peaks and zero dips typically appear near
resonant frequencies, and they are robust with respect to structural perturbations that preserve the required
symmetry. However, current theories on the existence of full peaks and zero dips are incomplete and difficult
to use. For periodic structures with a bound state in the continuum (BIC), we present a theory on the existence
of real transmission and reflection zeros that correspond to the zero dips in the transmission and reflection
spectra. Our theory is relatively simple, complete, and easy to use. Numerical examples are presented to validate
the theory.
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I. INTRODUCTION

For periodic structures sandwiched between two homo-
geneous media, the transmission and reflection spectra often
have interesting and useful features. The peaks and dips can be
very sharp. A peak and a dip may appear close to each other
and form an asymmetric line shape. The study on “anoma-
lous” transmission and reflection has a long history [1,2]. It
is widely accepted that the rapid change from a peak to a
dip, the “anomaly” first observed by Wood [1], is in fact a
particular case of Fano resonance [2–5]. The asymmetric line
shape is formed from the interference between the resonant
and nonresonant wave field components [5]. The resonant
wave field component is caused by the excitation of an eigen-
mode of the periodic structure satisfying an outgoing radiation
condition. The eigenmode is either a resonant mode with a
complex frequency or a leaky mode with a complex propa-
gation constant. The nonresonant field component exists in a
direct passway. In case there is no direct passway, the spectra
exhibit a Lorentzian line shape with only a single peak or dip
[5].

For lossless periodic structures, the peaks and dips in the
transmission and reflection spectra can actually be 100% and
0%, respectively. Popov et al. [4] first realized that struc-
tural symmetry is important to the appearance of full peaks
and zero dips. As functions of frequency and wave num-
ber, the reflection and transmission coefficients vanish at
their corresponding zeros (which are complex in general).
For lossless periodic structures with a proper symmetry, the
transmission/reflection zeros are either real or form complex
conjugate pairs [4,6–10]. A real transmission zero corre-
sponds to a zero dip in the transmission spectrum and a full
peak in the reflection spectrum. Since a simple zero cannot be
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turned to a complex conjugate pair by a small perturbation,
the zero dips and full peaks in the transmission/reflection
spectra are robust with respect to small structural perturba-
tions that preserve the required symmetry [10]. However, even
for structures with the required symmetry, the appearance of
a real transmission/reflection zero (near a resonance) is not
guaranteed. To the best of our knowledge, there is no general
theory on the existence of full peaks or zero dips.

Shipman and Tu [11] developed a theory on the existence
of full peaks and zero dips for symmetric lossless periodic
structures with a bound state in the continuum (BIC). A BIC is
a guided mode that decays exponentially in the homogeneous
media surrounding the periodic structure, and it exists in
the radiation continuum, namely, there are propagating plane
waves in the homogeneous media having the same frequency
and wave number as the BIC [12–16]. Importantly, a BIC is
a special point in a band of resonant modes. The theory of
Shipman and Tu is applicable to resonant modes near a BIC.
It is mathematically rigorous, but the technical conditions are
specified on quantities that are difficult to calculate. They
identified a generic condition under which a real transmission
zero and a real reflection zero likely exist near the frequency
of the BIC, and they also studied a nongeneric case.

It should be pointed that the temporal coupled-mode theory
(TCMT) [5,17,18] can approximate full peaks and zero dips
in transmission and reflection spectra. In a recent work [19],
we showed that a direct approximation to the exact scattering
matrix gives the same approximate transmission/reflection
spectra as the TCMT. However, the approximate formulas
have limitations in accuracy, are valid only under proper con-
ditions, and do not provide a rigorous justification for the
existence of real transmission and reflection zeros.

In this paper, we present a theory on the existence of real
transmission and reflection zeros. Similar to the work of Ship-
man and Tu [11], our theory is applicable to lossless periodic
structures with a BIC, but the symmetry requirement in our
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study is less restrictive. Moreover, our results are relatively
simple and more complete, and the technical conditions are
only specified on directly computable quantities. The rest
of this paper is organized as follows. In Sec. II, we recall
the definitions and basic properties for scattering matrices,
resonant modes, and BICs. In Sec. III, we give a brief sum-
mary for the theories of Popov et al [4] and Shipman and
Tu [11]. In Sec. IV, we present our theory with details on
the assumptions, derivations, and results, and also discuss
the difference with existing theories. To valid our theory, we
present numerical examples in Sec. V. The paper is concluded
with a brief discussion in Sec. VI.

II. BACKGROUND

We consider a lossless two-dimensional (2D) periodic
structure that is invariant in z, periodic in y with period L, and
sandwiched between two homogeneous media given for x >

D and x < −D, respectively. The dielectric function ε(x, y) of
the structure is real and periodic in y, and ε(x, y) = ε0 � 1 for
|x| > D. In the homogeneous media for |x| > D, we specify
two time-harmonic E -polarized plane incident waves with a
positive angular frequency ω and real wave vectors (±α, β )
satisfying

−π

L
< β � π

L
, (1)

|β| <
ω

c

√
ε0 <

2π

L
− |β|, (2)

α =
√

(ω/c)2ε0 − β2, (3)

where c is the speed of light in vacuum and α > 0. The z
component of the total electric field, denoted as u, can be
expanded as

u(x, y) = b+
1 ei[βy+α(x+D)] + b−

1 ei[βy−α(x+D)]

+
∑
j �=0

b1 je
iβ j y+τ j (x+D), x < −D, (4)

u(x, y) = b+
2 ei[βy−α(x−D)] + b−

2 ei[βy+α(x−D)]

+
∑
j �=0

b2 je
iβ j y−τ j (x−D), x > D, (5)

where b+
1 and b+

2 are the amplitudes of the given incident
waves in the left and right homogeneous media, respectively,
b−

1 and b−
2 are the amplitudes of the outgoing plane waves,

β j = β + 2π j/L, τ j =
√

β2
j − (ω/c)2ε0 (6)

for j �= 0, τ j is positive, b1 j and b2 j are the amplitudes of the
evanescent waves. The scattering matrix S satisfies

S

[
b+

1
b+

2

]
=

[
b−

1
b−

2

]
(7)

for any b+
1 and b+

2 . We write down the entries of S as

S =
[

r t̃
t r̃

]
, (8)

where r and t are the reflection and transmission coefficients
for the left incident wave, r̃ and t̃ are those of the right incident
wave.

Clearly, the scattering matrix S depends on both ω and β.
The definition of S can be extended to complex ω by analytic
continuation. For a real β, S satisfies

S−1(ω, β ) = S∗(ω, β ), (9)

ST(ω, β ) = S(ω,−β ), (10)

where ω is the complex conjugate of ω, ST is the transpose of
S, and S∗(ω, β ) is the conjugate transpose of S(ω, β ) [4,10].
Equations (9) and (10) are related to energy conservation and
reciprocity, respectively. Notice that if ω is real, S is unitary;
and if β �= 0, S is typically nonsymmetric. If the periodic
structure has a proper symmetry, the scattering matrix can be
further simplified [4]. Specifically, we have three cases.

(a) If ε(x, y) = ε(−x,−y), then r = r̃;
(b) If ε(x, y) = ε(x,−y), then t = t̃ ;
(c) If ε(x, y) = ε(−x, y), then t = t̃ and r = r̃.
Without incident waves, the periodic structure can support

Bloch eigenmodes given by

u(x, y) = eiβyφ(x, y) (11)

where β is the Bloch wave number and φ is periodic in y with
period L. For x → ±∞, an eigenmode should either decay
exponentially or radiate out power to infinity (i.e., satisfy the
outgoing radiation condition). For a real β satisfying (1) and
the real part of ω satisfying (2), expansions (4) and (5) are ap-
plicable to an eigenmode, provided that we set b+

1 = b+
2 = 0.

Notice that b−
1 and b−

2 are the coefficients of outgoing waves.
Since the structure is passive and nonabsorbing (i.e., ε is real
and positive), the existence of outgoing waves is only possible
when ω has a nonzero imaginary part, so that the eigenmode
decays with time. Such an eigenmode with a real β and a
complex ω, and satisfying the outgoing radiation condition, is
a resonant mode (also called a resonant state or quasi-normal
mode) [20,21]. The resonant modes form bands. Each band
is given by a dispersion relation ω = ω
(β ), where ω
(β ) is
a complex-valued continuous function of a real variable β.
Notice that α and τ j given in (3) and (6) are complex for the
resonant modes. Under special circumstances, both b−

1 and b−
2

are zero, then ω is real, the eigenmode decays exponentially
as x → ±∞, and it is a guided mode above the light line,
also called a bound state in the continuum (BIC). Note that
a BIC is a special point in a band of resonant modes. If we
denote the wave number and frequency of a BIC by β† and
ω†, respectively, then ω† = ω
(β†).

Since the inverse of the scattering matrix S maps [b−
1 , b−

2 ]T

to [b+
1 , b+

2 ]T, and b+
1 = b+

2 = 0 for a resonant mode, we have

S−1(ω
, β )

[
b−

1
b−

2

]
= S∗(ω
, β )

[
b−

1
b−

2

]
=

[
0
0

]
. (12)

This above implies that ω
 is a pole of S, and ω
 is a zero
of S. The entries of S can also vanish at special values of
ω and β. We assume the left transmission coefficient t =
t (ω, β ) has a zero set given by a function ω = ω◦

t (β ). Namely,
t (ω◦

t (β ), β ) = 0 for any β. Similarly, the left reflection co-
efficient r has a zero set given by a function ω = ω◦

r (β ).
For a fixed β, we call ω◦

t (β ) a transmission zero and ω◦
r (β )

a reflection zero. In general, for a real β, the transmission
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and reflection zeros are complex. We are concerned with the
existence of real transmission and reflection zeros.

III. EXISTING THEORIES

The possible existence of real transmission and reflection
zeros in symmetric periodic structures was first investigated
by Popov et al. [4]. These authors identified the three different
symmetries (listed in Sec. II) for which t = t̃ , r = r̃, or both
t = t̃ and r = r̃, respectively; and showed that if t = t̃ , then
either a transmission zero is real or there is a pair of complex
conjugate transmission zeros. The case for r = r̃ is similar.
This implies that a real transmission or reflection zero for a
symmetric periodic structure is robust with respect to struc-
tural perturbations that preserve the symmetry. However, the
possibility of complex conjugate pairs cannot be ruled out,
and it remains unclear why real transmission and reflection
zeros are widely observed in practice.

If for a real β, the periodic structure has a high-Q non-
degenerate resonant mode with a complex frequency ω
 =
ω0 − iγ where γ � ω0, and there is no other resonant modes
near ω
, then the reflection and transmission coefficients can
be written as

r(ω) = a(ω)

ω − ω


, t (ω) = b(ω)

ω − ω


, (13)

where a and b are analytic functions of ω near ω
. Since t and
r are bounded by 1 in magnitude, if ω is close to ω0, |a|/ω0

and |b|/ω0 must also be small, but this does not imply that a
or b (thus r or t) must have a single zero in a domain that is
symmetric about the real axis and contains ω
. Consequently,
it is not possible to predict the existence of real transmission
and reflection zeros by considering only the symmetry of the
structure and the resonant modes.

Shipman and Tu [11] considered periodic structures with
a reflection symmetry in x [case (c) of Sec. II], and showed
that the existence of real transmission and reflection zeros is
a generic phenomenon. Their theory is restricted to structures
with a BIC and involves technical conditions are rather diffi-
cult to verify. More specifically, Shipman and Tu defined an
operator A so that the diffraction problem of Sec. II becomes

Au = p, (14)

where both A and p depend on ω and β, and p is related to the
incident wave. They further considered the linear eigenvalue
problem

Av = λv, (15)

where λ is an eigenvalue depending on both ω and β, and λ

vanishes at the BIC point (ω†, β†). The technical conditions
are specified using λ, λr and λt and their partial derivatives at
(ω†, β†).

The theory of Shipman and Tu is difficult to use in practice,
because A is abstractly defined without an explicit expression,
and the eigenvalue problem Eq. (15) does not have a clear
physical interpretation. Moreover, since Shipman and Tu only
considered case (c), it is not clear whether their method can
be extended to cases (a) and (b). In our view, a simpler and
more intuitive theory on the existence of real transmission and
reflection zeros is highly desirable.

IV. THEORY

In this section, we present a theory to clarify the conditions
for the existence of real transmission and reflection zeros. We
consider a lossless periodic structure as described in Sec. II,
and assume there is a BIC with frequency ω† and Bloch
wave number β† satisfying conditions (1) and (2). The BIC is
supposed to be a special point in a band of nondegenerate res-
onant modes with dispersion relation ω = ω
(β ) = ω0(β ) −
iγ (β ), where ω0 and −γ are the real and imaginary parts of
ω
, and they satisfy γ (β†) = 0, ω0(β†) = ω
(β†) = ω†, and
γ (β ) > 0 for β near but not equal to β†.

Our theory depends on the analyticity of a few functions.
First of all, ω
 is an analytic function of real variable β [11].
Therefore ω − ω
(β ), as a function of complex variable ω and
real variable β, is analytic in ω and β. It is known that the
reflection and transmission coefficients, r and t , as functions
of ω and β, are not continuous at (ω†, β†) [11]. However, we
claim that the two functions a and b given by

a(ω, β ) = [ω − ω
(β )]r(ω, β ),

b(ω, β ) = [ω − ω
(β )]t (ω, β ),

are analytic in ω and β in a neighborhood of the BIC point
(ω†, β†). This implies that the singularity of r and t at
(ω†, β†) can be removed by multiplying ω − ω
(β ). Notice
that a(ω†, β†) = b(ω†, β†) = 0. The above proposition is dif-
ferent from our statement about Eq. (13), where β is fixed,
the dependence on β is suppressed, Im(ω
) �= 0, and a and b
are analytic in a single complex variable ω. The analyticity
of a and b can be established following the proof for the
analyticity of λt and λr by Shipman and Tu [11], where λ

is the eigenvalue defined in Eq. (15).
Similarly, for the right reflection and transmission coef-

ficients, the two functions ã = [ω − ω
(β )]r̃ and b̃ = [ω −
ω
(β )]t̃ are analytic in ω and β near (ω†, β†). The scattering
matrix can be written as

S(ω, β ) = 1

ω − ω
(β )

[
a(ω, β ) b̃(ω, β )
b(ω, β ) ã(ω, β )

]
(16)

for ω �= ω
(β ), where a, b, ã, and b̃ are analytic in ω and β,
and vanish at (ω†, β†).

Next, we consider the function

f (ω, β ) = ω − ω
(β )

ω − ω
(β )
det S(ω, β ). (17)

For a fixed β �= β†, ω
 = ω
(β ) is complex with a nonzero
imaginary part. Since the resonant mode is nondegenerate, ω


is a simple pole of det S and ω
 is a simple zero of det S.
Therefore, for the fixed β, f given in Eq. (17) is an analytic
function of ω. For β = β† and ω �= ω†, we have f (ω, β ) =
det S(ω, β†). It is known that for a fixed β, the reflection and
transmission coefficients are continuous in ω. Therefore we
define f (ω†, β†) by

f (ω†, β†) = lim
ω→ω†

det S(ω, β†) = det S(ω†, β†). (18)

Numerical results suggest that f (ω, β ) is an analytic function
of ω and β for ω near ω† and β near β†. Unfortunately, a
formal mathematical proof is currently not available.
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Using Eq. (9), we can easily show that

f (ω, β ) f (ω, β ) = 1, (19)

where f (ω, β ) is the complex conjugate of f (ω, β ). In par-
ticular, if ω is real, then | f (ω, β )| = 1. Since | f (ω†, β†)| =
1, we can choose a small neighborhood (denoted as 
) of
(ω†, β†), and choose a proper branch cut to define a complex
square root function, so that g(ω, β ) = √

f (ω, β ) is nonzero
and analytic (in ω and β) on 
. With this function g, we can
rewrite the scattering matrix as

S(ω, β ) = g(ω, β )

ω − ω
(β )

[
R(ω, β ) T̃ (ω, β )
T (ω, β ) R̃(ω, β )

]
, (20)

where (R, T, R̃, T̃ ) = (a, b, ã, b̃)/g. Clearly, R, T , R̃ and T̃
are analytic functions of ω and β on 
, and they vanish at
(ω†, β†). These functions are introduced, because they have
useful properties. Using Eq. (9), we can show that

T̃ (ω, β ) = −T (ω, β ), (21)

R̃(ω, β ) = R(ω, β ). (22)

In addition, it is also easy to verify that

∂R

∂ω
(ω†, β†) = r†

g†
,

∂T

∂ω
(ω†, β†) = t†

g†
, (23)

where r† = r(ω†, β†), t† = t (ω†, β†) and g† = g(ω†, β†).
For case (a) of Sec. II, we have r = r̃, and thus

R(ω, β ) = R(ω, β ). (24)

This implies that R(ω, β ) is a real analytic function of two real
variables ω and β near (ω†, β†). Since R(ω†, β†) = 0, we can
analyze the zero set of R using the partial derivatives of R at
(ω†, β†).

(1) ∂ωR �= 0 at (ω†, β†). According to Eq. (23), this condi-
tion is equivalent to r† �= 0. In the ω-R plane, R = R(ω, β†)
is a curve passing through zero at ω† with a nonzero slope.
When β is slightly changed, the curve is slightly shifted. The
new curve, given by R = R(ω, β ), still passes through zero
near ω†. More precisely, according to the implicit function
theorem, when ∂ωR is nonzero at (ω†, β†), R(ω, β ) = 0 can
be uniquely solved near β†, and the solution is a function
ω = ω◦

r (β ), such that ω◦
r (β†) = ω† and R(ω◦

r (β ), β ) = 0 for
β near β†. Therefore, if r† �= 0 and β is close to β†, there is
a real reflection zero ω◦

r (β ) near ω†. This is the generic case
and r† �= 0 is the generic condition.

(2) At (ω†, β†), ∂ωR = 0, ∂2
ωR �= 0, ∂2

βR �= 0, ∂2
ωR, and ∂2

βR
have the same sign. This is a nongeneric case. The condition
∂ωR = 0 implies r† = 0, and thus ∂βR = 0 at (ω†, β†). This
is the case for which (ω†, β†) is a local extremum of R. The
function R(ω, β ) is nonzero for real (ω, β ) near but not equal
to (ω†, β†). There is no real reflection zero for β near but not
equal to β†.

(3) At (ω†, β†), ∂ωR = 0, ∂2
ωR �= 0, ∂2

βR �= 0, ∂2
ωR, and ∂2

βR
have the opposite sign. This is another nongeneric case. In
the ω-R plane, R = R(ω, β†) obtains a local minimum (or
maximum) at ω† and is exactly zero at ω†. For β near β†, the
minimum (or maximum) of the curve R = R(ω, β ) is negative
(or positive), and the curve passes zero at two values of ω

near ω†. On the surface given by R = R(ω, β ), (ω†, β†) is a

FIG. 1. Two periodic arrays of cylinders with period L in the y
direction: (a) triangular cylinders with side length Lt ; (b) circular
cylinders with radius a.

saddle point. For β near but not equal to β†, there are real two
reflection zeros near ω†.

There are other nongeneric cases. For example, when
∂ωR = 0, ∂2

ωR �= 0, we can consider the case ∂2
βR = 0 and

∂3
βR �= 0. This leads to one real reflection zero for β < β† (or

β > β†) and no real reflection zero for β > β† (or β < β†).
We can also consider new cases assuming ∂ωR = ∂2

ωR = 0 and
∂3
ωR �= 0. However, these additional nongeneric cases are too

special and difficult to find in practice.
For case (b), we have t = t̃ , thus

T (ω, β ) = −T (ω, β ). (25)

Clearly, if ω is real, T is pure imaginary. Following the ap-
proach for analyzing R, we also identify the generic case and
two main nongeneric cases as follows.

(1) ∂ωT �= 0 at (ω†, β†), equivalent to t† �= 0. This is the
generic case and the generic condition is t† �= 0. For β near
β†, there is one transmission zero ω◦

t (β ) near ω†.
(2) At (ω†, β†), ∂ωT = 0, ∂2

ωT �= 0, ∂2
βT �= 0, and

(∂2
ωT )(∂2

βT ) < 0. This is a nongeneric case. Im(T ) has a local
extremum at (ω†, β†). There is no real transmission zero for β

near β† and β �= β†.
(3) At (ω†, β†), ∂ωT = 0, ∂2

ωT �= 0, ∂2
βT �= 0, and

(∂2
ωT )(∂2

βT ) > 0. This is another nongeneric case. On the
surface given by Im(T ) as a function of real variables ω and
β, (ω†, β†) is a saddle point. For any β near β† and β �= β†,
there are two real transmission zeros.

For case (c), we have both t = t̃ and r = r̃. Therefore the
above results on transmission and reflection zeros for cases (a)
and (b), respectively, are valid for case (c).

V. NUMERICAL EXAMPLES

To validate our theory, we present several numerical ex-
amples involving periodic arrays of dielectric cylinders. In
Fig. 1, we depict two periodic arrays with triangular and cir-
cular cylinders, respectively. The arrays are periodic in y with
period L. The triangular cylinders have one surface parallel
to the y axis, and their cross sections are equilateral triangles
with side length Lt . The radius of the circular cylinders is a.
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(d)

0.686 0.689
-0.02

0

0.02

0

1

0.686 0.689
0

1
(e)

10-6

10-3

100

0.687 0.688

10-2

100
(f)

FIG. 2. Transmission and reflection near a BIC in a periodic
array of triangular cylinders with Lt = 0.45L: (a) the phase of f
in unit of π , (b) Im(T ), (c) Re(R) and Im(R), (d) |t |2, (e) |t |2 for
β = 0.01(2π/L) (with a logarithmic plot in the inset). (f): |r|2 for
β = 0.01(2π/L) (in a logarithmic scale). The solid red curves in
(b) and (c) correspond to T = 0, Re(R) = 0 and Im(R) = 0, respec-
tively. The circle in (d) corresponds the BIC.

All cylinders have the same dielectric constant ε1 = 10 and
are surrounded by air (with dielectric constant ε0 = 1).

Our theory is for periodic structures with a BIC. It is well
known that many different BICs may exist in a periodic array
of dielectric cylinders [22–30]. Our first example is for the
array of triangular cylinders shown in Fig. 1(a). For Lt =
0.45L, we found a BIC with frequency ω† = 0.6875(2πc/L)
and wave number β† = 0. Since β† is zero and the electric
field is an odd function of y, this BIC is an anti-symmetric
standing wave. The transmission coefficient at (ω†, β†) sat-
isfies |t†| = 0.7530. Since the periodic array has a reflection
symmetry in y and t† �= 0, there should be a real transmission
zero ω◦

t for β near β† = 0. In Figs. 2(a)–2(d), we show the
phase f , T , R and |t |2 for (ω, β ) near (ω†, β†). Our theory
relies on the analyticity of function f in ω and β. Since
| f (ω, β )| = 1 for real (ω, β ), we show the phase of f (in
unit of π ) in Fig. 2(a). The periodic array has a symmetry
corresponding to case (b) of Sec. II, thus T is pure imaginary
and R is complex for real (ω, β ). In Figs. 2(b) and 2(c), we
show Im(T ), Re(R) and Im(R), and highlight their zero sets
by the solid red curves. Notice that the two curves for R touch
tangentially at (ω†, β†). In Fig. 2(d), we show transmittance
|t |2 as a function of ω and β, where the BIC point (ω†, β†)
is marked by a small circle. To show peaks and dips more
clearly, we plot transmission and reflection spectra (|t |2 and
|r|2 as functions of ω) for β = 0.01(2π/L) in Figs. 2(e) and
2(f), respectively. There is indeed a zero dip (corresponding

(d)

0.615 0.619
0.21

0.23

0

1

716.0516.0
0

1
(e)

10-8

10-4

100

0.615 0.617
0

1
(f)

10-6

10-3

100

FIG. 3. Transmission and reflection near a BIC in a periodic
array of circular cylinders with radius a = 0.3L: (a) the phase of
f in unit of π , (b) Im(T ), (c) R, (d) |t |2 with the BIC marked by
“◦,” (e) |t |2 for β = 0.21(2π/L), and (f) |r|2 for β = 0.21(2π/L).
The solid red curves in (b) and (c) correspond to T = 0 and R = 0,
respectively. Insets in (e) and (f) are logarithmic plots.

to the real transmission zero) in the transmission spectrum,
but the dip in the reflection spectrum is not zero, and the peak
in the transmission spectrum is not 100%.

The second example is for a periodic array of circular
cylinders with a = 0.3L. In this array, there is a propagat-
ing BIC with β† = 0.2206(2π/L) and ω† = 0.6173(2πc/L).
The transmission coefficient at the BIC point satisfies |t†| =
0.5568. The symmetry of the structure corresponds to case
(c) of Sec. II. Since t† �= 0 and r† �= 0, both transmission and
reflection coefficients have one real zero for β close to β†. In
Figs. 3(a)–3(d), we show the phase of f , Im(T ), R, and |t |2 as
functions of real ω and β. The real transmission and reflection
zeros form curves in the ω-β plane and shown as the solid red
curves in Figs. 3(b) and 3(c), respectively. The transmittance
|t |2 is shown in Fig. 3(d) for (ω, β ) near (ω†, β†). To show
the peaks and dips more clearly, we plot transmission and
reflection spectra for β = 0.21(2π/L) in Figs. 3(e) and 3(f),
respectively. The zero dips in the spectra correspond to the
real transmission and reflection zeros.

The first two examples cover only generic cases with t† �= 0
and r† �= 0. The third example is designed to illustrate a
nongeneric case. The structure is still a periodic array of
circular cylinders. Many BICs in the array exist continu-
ously with respect to radius a. For a = 0.2074L, there is a
BIC (an antisymmetric standing wave) with β† = 0, ω† =
0.5835(2πc/L), and r† = 0. In Fig. 4, we show the phase of
f , imaginary part of T , R, and |t |2 as functions of ω and β,
and transmission and reflection spectra for β = 0.01(2π/L).
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FIG. 4. Transmission and reflection near a BIC in a periodic
array of circular cylinders with radius a = 0.2074L: (a) the phase
of f in unit of π , (b) Im(T ), (c) R, (d) |t |2 with the BIC marked
by “◦,” (e) transmission spectrum, and (f) reflection spectrum for
β = 0.01(2π/L). The solid red curve in (b) corresponds to T = 0.
The sets in (e) and (f) are logarithmic plots.

Since |t†| = 1, there is a real transmission zero for each β near
β† = 0, and it corresponds to the red curve in Fig. 4(b). On the
other hand, (ω†, β†) is a local maximum point of R as shown
in Fig. 4(c), and there are no real reflection zeros for β near
β†. For β = 0.01(2π/L), the transmission spectrum, shown in
Fig. 4(e), has an inverted Lorentzian line shape and a zero dip.
The reflection spectrum, shown in Fig. 4(f), has a full peak and
no dip in the frequency range.

The fourth example is also designed to exhibit a nongeneric
case. It is well known that a periodic array of circular cylin-
ders can support propagating BICs (with a nonzero Bloch
wave number) that depend on the radius a continuously.
For radius a = 0.3087L, we found a propagating BIC with
β† = 0.2018(2π/L) and ω† = 0.5994(2πc/L), and t† = 0. In
Figs. 5(a)–5(d), we show the phase of f , Im(T ), R, and |t |2,
respectively, as functions of real (ω, β ). It is clear that (ω†, β†)
is saddle point of Im(T ). For each β near β†, the transmission
coefficient has two real zeros. As shown in Fig. 5(b), the zero
set of T form two intersecting curves in the ω-β plane. The
real transmission zeros are also shown in Fig. 5(d) as the red
dashed curves. In Figs. 5(e) and 5(f), we show the transmis-
sion and reflection spectra, respectively, for β = 0.19(2π/L).
As shown clearly in the logarithmic plot (in the inset), there
are two zero dips in the transmission spectrum. Since |r†| = 1,
there is one real reflection zero for each β near β†. The zero
set of R is shown as the red curve in Fig. 5(c). The reflection
spectrum of Fig. 5(f) shows clearly a single zero dip.
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FIG. 5. Transmission and reflection near a BIC in a periodic
array of circular cylinders with radius a = 0.3087L: (a) the phase of
f in unit of π , (b) Im(T ), (c) R, (d) |t |2, (e) |t |2 for β = 0.19(2π/L),
and (f) |r|2 for β = 0.19(2π/L). The solid red curves in (b) and (c),
and the dashed red curves in (d), are the real zero sets of T (or t) and
R. The insets in (e) and (f) are logarithmic plots.

The two examples above illustrate the nongeneric cases
where (ω†, β†) is an extremum point of R and a saddle point of
Im(T ), respectively. We have also found numerical examples
(still for a periodic array of circular cylinders) where (ω†, β†)
is an extremum point of Im(T ) or a saddle point of R. Since
the results are quite similar, we skip these examples.

VI. CONCLUSION

For lossless periodic structures with a proper symmetry, the
transmission and reflection spectra often have peaks and dips
that are truly 100% and zero, respectively. When the trans-
mission and reflection coefficients are considered as functions
of the frequency ω, they vanish at their corresponding ze-
ros, but the zeros are complex in general. A zero dip in
the transmission/reflection spectrum corresponds to a real
zero of the transmission/reflection coefficient. Existing the-
ories on real transmission/reflection zeros have limitations
and may be difficult to use [4,11]. In this paper, a relatively
simple theory on the existence (and nonexistence) of real
transmission/reflection zeros is developed. The key step is
to scale the transmission and reflection coefficients, t and r,
to T and R, such that for structures with a proper symme-
try, T is a pure imaginary analytic function and R is a real
analytic function of real ω and β. We identified the generic
case and two nongeneric cases, for which the number of real
transmission/reflection zeros is 1, 0, or 2, respectively. The
nongeneric cases appear when the reflection or transmission
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coefficient at (ω†, β†) (the BIC frequency and wave number)
vanishes, and when (ω†, β†) is either an extremum point or
a saddle point of R or Im(T ). Our theory is validated by
numerical examples involving periodic arrays of dielectric
cylinders.

It should be pointed out that our theory relies on the
analyticity of function f given in Eq. (17), but a rigorous
mathematical proof is not available. In addition, the theory
is only applicable to periodic structures with a BIC. The
transmission and reflection spectra are those for incident
waves with a wave number β near β†. For resonant scat-
tering problems without wave number β, for example, the
scattering problem for a local defect in a closed waveguide,
the transmission and reflection spectra can be approximated

using the transmission and reflection coefficients at the real
resonant frequency [19]. However, it is not clear whether this
approximate theory can be used to establish the existence of
real transmission/reflection zeros rigorously.
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