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Resonant absorption in an inhomogeneous disordered metamaterial: First-principles simulation
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In this study, we perform first-principles simulations of the resonant excitation of plasmalike oscillations in a
two-dimensional inhomogeneous disordered metamaterial. The oscillations are initiated by an oblique incidence
of a linearly polarized electromagnetic wave. The conditions for resonant excitation are satisfied near the point
where the real part of the effective permittivity of the metamaterial changes sign from positive to negative and
crosses zero. First, the problem was analyzed in the framework of the effective medium approximation, which
predicts a resonant growth of the electric field and associated resonant absorption near the interface between
positive and negative permittivity. It was shown that an array of point dipoles can sustain plasmalike waves near
the zero of the effective permittivity. In order to trace the appearance of such a mode at the microscopic scale,
full-scale first-principles simulations of a two-dimensional metamaterial with a randomly generated distribution
and a linearly increasing average concentration of meta-atoms were performed. The results of the simulations
were compared to the predictions of the effective medium approximation. The influence of the fluctuations in the
meta-atom concentration on the excitation of the field oscillations and the resonant absorption was quantified.
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I. INTRODUCTION

In modern electromagnetics, studies of metamaterials
(MMs) occupy an important place as they pave the way for the
control of electromagnetic fields at the micro- and nanoscales.
Since the first studies [1,2] and until today, a variety of types
of MMs have been proposed and fabricated, such as linear
and nonlinear negative-index (or left-handed) MMs [3–8],
tunable nonlinear and elastic MMs [9,10], plasmonic MMs
[11–13], and artificial hyperbolic media [14–16]. Inspired by
their very special properties, which are not found in natural
materials, MMs have found a wide range of applications,
including invisibility cloaking [17,18], superlensing [19,20],
transformation optics [21,22], and enhancement of chirality
and optical activity [23,24].

Historically, much attention has been paid to MMs with
periodically ordered structural elements, called meta-atoms.
Various methods have been formulated to quantify the prop-
agation of electromagnetic waves in such systems [25–30].
Notably, a variety of homogenization techniques has been
developed to simplify the macroscopic description of MMs
[31–35]. At the same time, a large class of MMs, including
liquid MMs [36–38], does not suggest periodicity, implying
random variations in the parameters of meta-atoms or their
spatial distribution. The properties of such disordered MMs
have been extensively studied [39–41]. Different effective
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medium approximations for random MMs have been elabo-
rated [42–44]. Yet, the examination of the effects beyond the
effective medium approximation is attractive from a theoreti-
cal point of view.

A particular case of interest is the analysis of electro-
magnetic systems that show a singular behavior within the
effective medium approximations. An example of such a sys-
tem can be an MM whose permittivity varies continuously.
Indeed, near the zero-index transition point, i.e., the point
where the effective refractive index crosses zero, anomalous
field enhancement and resonant absorption have been pre-
dicted [45,46]. Similar effects are observed in inhomogeneous
plasmas where the permittivity changes sign [47].

In this study, we perform first-principles simulations of a
resonant excitation of plasmalike oscillations near the transi-
tion point in an inhomogeneous disordered two-dimensional
(2D) MM. The MM is modeled as an array of randomly
distributed meta-atoms, each of which is represented by a
2D ball (disc) with a Drude permittivity. The resonant mode
is excited by an oblique incidence of a linearly polarized
plane electromagnetic wave on a layer of MM with a linearly
increasing average concentration of meta-atoms. As meta-
atoms possess a negative polarizability in a certain frequency
range above the plasmon resonance, the effective medium
theory predicts the emergence of negative effective permit-
tivity at sufficiently high meta-atom concentrations. As a
result, with a linear increase in concentration, at a certain
point the real part of the effective permittivity changes sign
and crosses zero. This leads to the appearance of a resonant
collective excitation near the transition point, along with the
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FIG. 1. (a) Schematic picture of the simulated system. An elec-
tromagnetic wave with Ex and Ey components of the electric field
E and Hz component of the magnetic field H is incident on an MM
with randomly distributed meta-atoms with linearly increasing con-
centration in the x direction. The dashed box shows the area occupied
by the MM. When randomly seeded, the meta-atoms were prevented
from overlapping and touching. The inset schematically shows the
zoomed area enclosed by the red rectangle. (b) Qualitative plots of
the meta-atom concentration (blue, upper subplot) and the effective
permittivity (red, lower subplot). When the concentration reaches
some critical value nc, the real part of the effective permittivity
crosses zero and becomes negative.

associated resonant absorption of the incident electromagnetic
wave.

The paper is organized as follows: In Sec. II, we define
the studied system and analyze it in the effective medium
approximation in order to establish a reference for the fol-
lowing simulations. In Sec. III, we describe the simulations
performed for several realizations of the randomly distributed
meta-atoms, as well as for the effective medium, with the pa-
rameters obtained by homogenizing the randomly generated
systems. In Sec. IV, we analyze the results of the simulations,
compare them with the effective medium approximation, and
discuss the effects beyond the homogenization theory. Finally,
the conclusion section summarizes the results.

II. THEORETICAL EVALUATION

The studied system is an inhomogeneous MM with a
random distribution of meta-atoms whose concentration is
linearly dependent on a single coordinate. As this system
will subsequently be a subject of full-scale numerical sim-
ulations, we consider a two-dimensional problem to remain
within the limits of the available computational power. This
has no qualitative effect and thus no loss of generality. The
geometry of the problem is shown in Fig. 1(a). A linearly
polarized electromagnetic wave with Ex and Ey components
of the electric field E and Hz component of the magnetic field
H is obliquely incident on a slab of inhomogeneous MM. The
MM is composed of randomly distributed meta-atoms with an
average concentration that increases linearly along the x axis.
The meta-atoms are represented by circles and are therefore
isotropic in two dimensions. We assume that the meta-atom

material has a Drude relative permittivity,

εMA(ω) = 1 − ω2
p

ω2 + iγω
, (1)

where ωp is the plasma frequency, ω is the frequency, γ is the
damping factor, and i is the imaginary unit. Thus, the polar-
izability per unit length of such particles in the xy transverse
plane can be written as follows:

αMA(ω) = 1

4π
2S0

εMA(ω) − εm

εMA(ω) + εm
, (2)

where S0 = πr2
0 is the area of a meta-atom of radius r0 and

εm is the relative permittivity of the surrounding medium.
At frequencies higher than the surface plasmon frequency,
ωsp = ωp/

√
1 + εm, the polarizability becomes negative [see

Fig. 1(b)].
First, let us consider the problem within the continuous

medium approximation. Assuming that the radii of the meta-
atoms are much smaller than the wavelength, and that the
number of meta-atoms on the wavelength scale is much larger
than 1, i.e., λn1/2 � 1, where n is the 2D concentration and
λ is the wavelength, the meta-atom distribution can be treated
as a continuous medium with an effective relative permittivity.
As so far we are interested only in qualitative effects, we
will use the simplest homogenization technique, namely, the
Maxwell Garnett (MG) mixing formula, which in 2D takes the
form

εeff (ω, x) = εm

1 + ρ(x)π
2

εMA(ω)−εm

εMA(ω)+εm

1 − ρ(x)π
2

εMA(ω)−εm

εMA(ω)+εm

, (3)

where ρ(x) = n(x)S0 is the average filling fraction of meta-
atoms. Evidently, this formula does not account for the finite
size of the meta-atoms or for any retardation effects. As
follows from Eq. (3), in the frequency range where the polariz-
ability is negative, the effective permittivity may also become
negative at sufficiently high filling fractions. We will focus on
this particular case, when, due to the increasing concentration
of meta-atoms along the x axis, the effective permittivity be-
comes negative at some point.

The problem stated above has a strong resemblance to that
of electromagnetic wave propagation in an inhomogeneous
plasma, which was solved elsewhere [47]. It is indeed clear
that the fields in these problems are governed by similar equa-
tions,

d2u

dx2
− 1

εeff (x)

dεeff (x)

dx

du

dx
+ k2

0[εeff (x) − q2]u = 0, (4)

where k0 = ω/c is the wave number in vacuum, c is the speed
of light, and q = sin θ0, where θ0 is the value of the incidence
angle. The function u defines the magnetic and electric fields
as follows:

Hz = u(x)e−iωt+ik0qy, (5)

Ex = 1

ik0εeff (x)

∂Hz

∂y
, (6)

Ey = − 1

ik0εeff (x)

∂Hz

∂x
. (7)
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FIG. 2. Examples of distributions of the real part of dielectric
permittivity (right scale, dashed lines) and the corresponding dis-
tribution of the normalized electric field (left scale, solid lines)
for four different frequencies: ω = 0.735ωp, 0.773ωp, 0.804ωp, and
0.836ωp. The incidence angle was set to π/7.

It can be shown that u(x) remains finite at the point x0 where
εeff crosses zero, which leads to the appearance of singular-
ities in both Ex and Ey. Namely, Ex diverges as 1/(x − x0),
while Ey has a logarithmic divergence. Evidently, in a lossy
material, the fields do not tend to infinity and grow to some
maximum value, which is defined by the losses. It should be
noted that the resonant growth of the electric field only takes
place at the oblique incidence of the electromagnetic wave.
Indeed, according to Eq. (6), the most divergent component
of the electric field, Ex, is proportional to q = sin θ0, which
disappears at normal incidence, θ0 = 0. Moreover, as shown
in [47] and references therein, the singular logarithmic term in
Ey is also proportional to q, and also disappears at normal inci-
dence. As a result, at normal incidence, the resonant increase
of the field does not appear. At the same time, at sufficiently
high values of the incidence angle θ0, the maximum of the
electric field is suppressed because of the exponential decay of
u(x) between the reflection point defined by εeff (x) − q2 = 0
and the point of singularity, εeff (x) = 0. Thus, for further
calculations, we have arbitrarily set the value of the incident
angle to π/7. Examples of the electric field distribution are
shown in Fig. 2.

The associated total resonant absorption W can be calcu-
lated by integrating the electromagnetic power loss density,
1/2Re(jE∗), as follows:

W = 1

2

∫
Re(jE∗)dx =1

2

∫
Re(σ )|E|2dx, (8)

where j is the current density and σ is the effective electrical
conductivity of the medium. The integration can be performed
by substituting (6) and (7) into (8) and approximating the real
part of the permittivity as a linear function crossing zero. As a
result, the total absorption W can be estimated as follows:

W = π

2k2
0

Re(σ )

Re(dεeff/dx)Im(εeff )

∣∣∣∣∂Hz

∂y
(x = x0)

∣∣∣∣
2

. (9)

Given that the real part of the conductivity can be expressed as
Re(σ ) = ωIm(εeff ), we obtain that Im(εeff ) in Eq. (9) cancels
out. Therefore, the resonant absorption does not depend on
the imaginary part of the permittivity, which means that even
though the losses may have a different origin or value, the total
absorption remains the same as long as the other parameters
are similar. Such a behavior is common for resonant systems,
as changing the losses simultaneously changes the width and
the height of the resonant peak while keeping the integral
Eq. (8) unchanged.

Although the problem statements for plasma and MM are
seemingly very similar, the microscopic mechanisms under-
lying the enhancement of the electric field are different. In
plasma, charge separation is possible and is responsible for
the increase of the macroscopic electric field near the surface
where the real part of the permittivity crosses zero. Indeed,
when the real part of the permittivity is zero, the electro-
static plasma oscillations can be resonantly excited, leading to
the rapid growth of the electric field. The width of this reso-
nance and the amplitude of the field oscillations are defined
by the losses.

On the other hand, in a MM, charge separation is only
possible within the meta-atoms, which are assumed to be
small compared to any other scale of the problem. In other
words, the MM considered here can be generally treated as
an array of point dipoles, which do not allow for macroscopic
charge separation. Therefore, the macroscopic increase in the
electric field must be attributed to the excitation of a collective
dipole mode, which may propagate in the MM. To understand
this, consider a 2D MM with randomly distributed meta-
atoms. Assuming that the excitation propagates along the x
axis as a longitudinal wave, it will induce the polarization
of meta-atoms in the x direction with the dipole moment,
p(rm) = x̂p exp (ikxm), where rm = (xm, ym) are the coordi-
nates of the mth meta-atom, x̂ represents the unit vector along
the x axis, p is the dipole moment value, and k is the wave
vector.

A dipole positioned at an observation point r = (x, y) is
subject to the electric field produced by all the other dipoles,
which can be expressed by the following sum:

E(r) =
∑

m

4δrm(p(rm)δrm)

δr4
m

− 2p(rm)

δr2
m

, (10)

where δrm = r − rm is the vector connecting the mth dipole
and the observation point. Substituting the expression for the
dipole moments, the electric field takes the form

E(r) = x̂E (r) = x̂eikx
∑

m

pe−ikδrm cos φm
4 cos2 φm − 2

δr2
m

, (11)

where φm is the angle between p(rm) and δrm. As we are
interested in the field averaged over the spatial variations of
the dipole distribution, the summation can be approximated
by integration, leading to

E (r) = 2pneikx
∫ ∞

l
δrdδr

∫ 2π

0
dφe−ikδr cos φ 2 cos2 φ − 1

δr2
,

(12)
where n is again the concentration of meta-atoms, i.e., the
number of meta-atoms per unit area, and l = n−1/2 is the
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average distance between the meta-atoms, which plays the
role of cutoff distance. The integration thus gives

E (r) = −4πpneikx J1(kl̄ )

kl̄
, (13)

where J1(z) is the first-order Bessel function.
Finally, the self-consistency restriction requires that p(r) =

αMA(ω)E (r), which provides us with the condition for the ex-
istence of a special eigenmode, a self-correlated longitudinal
dipole wave analogous to a plasma wave:

1 + ρ
εMA(ω) − εm

εMA(ω) + εm

J1(kl̄ )

πkl̄
= 0. (14)

It can be seen that the propagation of such waves is governed
solely by spatial dispersion, while otherwise they reduce to
simultaneous dipole oscillations in the entire space. Neverthe-
less, in the nondispersive limit kl̄ → 0, Eq. (14) reduces to
1 + ρ π

2
εMA(ω)−εm

εMA(ω)+εm
= 0, which reads exactly as εeff = 0. Thus,

the increase in the electric field near the transition point is
attributed to the resonant excitation of plasmalike longitudinal
waves sustained by the dipole oscillations.

III. SIMULATION

The simulations were performed using COMSOL MULTI-
PHYSICS (Electromagnetic Waves, Frequency Domain solver).
The system was modeled by randomly seeding 2485 circular
meta-atoms with linearly increasing concentration on a rect-
angle with an aspect ratio of 2.43. When randomly seeded, the
particles were prevented from overlapping and touching. The
permittivity of the meta-atoms was simulated by the Drude
model. The angle of incidence was set to π/7.

Figure 3 shows the electric field distribution at different
frequencies. It can be seen that at each frequency, there is
an area of maximum average field, which corresponds to the
satisfaction of condition (14).

The dependence of the field distribution on the real-time
frequency change is available in the Supplemental Material
[48].

Figure 4 shows the frequency dependence of the trans-
mission and reflection coefficients averaged over five random
realizations and the absorption as a function of the damping
factor at different frequencies. The irregular behavior of the
reflection and transmission in Fig. 4(a) is evidently a con-
sequence of the random character of the considered system.
The absorption, given by Fig. 4(b), depends weakly on the
damping factor of the meta-atom material and varies between
0.6 and 0.8 depending on the frequency.

It is interesting to trace the similarities between the excited
modes in the homogenized and random systems with similar
average parameters. The comparison between the simulations
of the MG approximation and the random system at different
frequencies is shown in Fig. 5.

Figure 6 shows the comparison of the averaged electric
field distributions for MG approximation and random dis-
tribution. The averaging was performed over the entire y
coordinate and with the Gaussian smoothing function over the
x coordinate.

Finally, to verify that the simulation results do not quali-
tatively depend on a particular realization of the meta-atom

FIG. 3. Electric field distribution in the MM system shown in
Fig. 1 illuminated by an electromagnetic wave at different frequen-
cies. The wave polarization and orientation of axes are the same
as in Fig. 1. The frequencies were set to ω = 0.773ωp, 0.785ωp,
0.798ωp, 0.810ωp, 0.823ωp, and 0.836ωp, as indicated in the upper
left corner of each subimage. The incidence angle was set to π/7.
The number of meta-atoms is 2485. The meta-atom distribution was
randomly generated with a concentration increasing linearly in the
x direction; the meta-atoms were prevented from overlapping and
touching. The color bar represents the absolute value of the electric
field normalized by the incident wave amplitude. It should be noted
that the color scale is limited to 50 for ease of reading the figure,
while the actual maximum of the normalized electric field reaches
approximately 250.

distribution, several random distributions generated by the
same randomization procedure were simulated. The compari-
son of these simulations is shown in Fig. 7.

The averaged field distributions in the random systems
shown in Fig. 7 are presented in Fig. 8.

IV. DISCUSSION

The problem considered here is of interest as it sheds light
on how collective modes appear in random MMs without
turning to effective medium approximations.

First, as can be seen in Fig. 3, with the increase of the
electromagnetic wave frequency, the resonant region moves to
the areas of higher meta-atom concentration. This observation

FIG. 4. (a) Reflection (blue solid line) and transmission (red
dot-dashed line) coefficients of the MM layer as a function of
frequency averaged over five random realizations. Dashed lines rep-
resent reflection and transmission of particular random realizations.
(b) Absorption as a function of the damping factor γ at three different
frequencies.
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FIG. 5. Comparison between the field distributions calculated for
(a1)–(a4) the random system and (b1)–(b4) the MG approximation.
The frequencies were set to (a1),(b1) ω = 0.792ωp, (a2),(b2) ω =
0.804ωp, (a3),(b3) ω = 0.823ωp, and (a4),(b4) ω = 0.842ωp. The
other parameters are similar to those in Fig. 3.

is in agreement with the condition given by Eq. (14) with
the permittivity given by Eq. (1). Furthermore, Figs. 5 and 6
demonstrate similar trends between the resonance excitations
in the random and homogenized systems. Second, although
the resonant region is clearly visible, it is not very pronounced,
unlike one might have expected from Fig. 2. However, it is
clear that in a system constituted by discrete particles, field
cannot be localized in a region smaller than the interparticle

FIG. 6. Comparison between the averaged field distributions
calculated for the random system (blue solid line) and the MG
approximation (red dot-dashed line) for four different frequencies:
(a) ω = 0.792ωp, (b) ω = 0.804ωp, (c) ω = 0.823ωp, and (d) ω =
0.842ωp. The averaging was performed over the entire y coordinate
and with the Gaussian smoothing function over the x coordinate. The
other parameters are similar to those in Fig. 5.

FIG. 7. Comparison between three different realizations of ran-
dom distribution at two different frequencies: (a1)–(a3) ω = 0.785ωp

and (b1)–(b3) ω = 0.842ωp. The other parameters are similar to
those in Fig. 3.

distance. Moreover, as the considered field enhancement is
maintained by a collective excitation of dipoles, a significant
number of dipoles is required to sustain it. The comparison
presented in Fig. 5 shows that randomness plays a crucial role
in the widening of the resonant region.

The widening of the resonant area is evidently attributed
to the breakdown of the continuous medium approximation.
Indeed, when the localization of the field reaches certain
intrinsic scales of the material, the continuous medium ap-
proximation is no longer applicable. An evident intrinsic scale
is the average interparticle distance. However, for the random
distribution of meta-atoms, the resonant area is much wider
than the average distance between the meta-atoms. It turns out
that the factor that defines the size of the resonance region in
this case is the fluctuations of the meta-atom concentration.
Indeed, let us write the meta-atom filling fraction in the fol-
lowing form:

ρ(x, y) = ρ(x) + δρ(x, y), (15)

where ρ(x) is the average filling fraction, which grows lin-
early in the x direction, and δρ(x, y) is the local deviation of
the filling fraction from the average. Therefore, according to
Eq. (3), the effective permittivity can also be expressed in a
similar form,

εeff (x, y) = εeff (x) + δεeff (x, y), (16)

where εeff (x) is the average effective permittivity and
δεeff (x, y) is its deviation from the average. Using Eqs. (6)

FIG. 8. Comparison between averaged field distributions calcu-
lated for the three realizations of random systems shown in Fig. 7.
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and (7), the expression for the squared electric field amplitude
can be written as

|E |2 = |Ex|2 + |Ey|2 = 1

k2
0 |εeff (x, y)|2

(∣∣∣∣∂Hz

∂x

∣∣∣∣
2

+
∣∣∣∣∂Hz

∂y

∣∣∣∣
2)

.

(17)
As we are interested in the general properties of the random
system, the expression for the electric field amplitude, given
by Eq. (17), should be averaged over the random realizations
of the distribution. Thus, the average amplitude will take the
form

〈|E |2〉 = 1

k2
0〈|εeff (x, y)|2〉

〈(∣∣∣∣∂Hz

∂x

∣∣∣∣
2

+
∣∣∣∣∂Hz

∂y

∣∣∣∣
2)〉

, (18)

where the angular brackets 〈·〉 represent the averaging. It is
easy to see that the amplitude is maximal when the averaged
permittivity is minimal. The averaged square of the effective
permittivity can be rewritten as follows:

〈|εeff (x, y)|2〉 = (Reεeff (x))
2 + [Imεeff (x)]

2 + 〈[δεeff (x, y)]2〉.
(19)

It takes its minimal value when [Reεeff (x0)]2 = 0, which
corresponds to the condition given by Eq. (14). Thus, the
maximum value of the field in the resonance region as well as
its size are determined by the imaginary part of the effective
permittivity and the average absolute value of the deviation
of the effective permittivity from its mean. It is noteworthy
that the average deviation of the permittivity, i.e., the fluc-
tuations of the meta-atom concentration, plays a similar role
to that of the imaginary part of the effective permittivity. In
other words, the meta-atom density fluctuations operate as
additional losses, decreasing the maximum field value in the
resonance region and increasing the size of this region.

At the same time, the resonant absorption in the disordered
system is still defined by Eq. (9) with Re(σ ) = ωIm(εeff ).
Thus, although the concentration fluctuations act like losses
on the height and width of the resonance, they do not con-
tribute to the absorption. As a result, the imaginary part of the
permittivity does not cancel, and the following factor appears
in the expression for the total losses:

W ∝ Imεeff (x)√
[Imεeff (x)]2 + 〈[δεeff (x, y)]2〉

. (20)

Therefore, fluctuations in the meta-atom concentration reduce
the total resonant absorption.

To estimate the widening of the resonant area, it is pos-
sible to find the standard deviation of the permittivity. If the
positions of the meta-atoms are assumed to be uncorrelated,
the fluctuations in the number of meta-atoms in a given area
S is

√
N̄ , where N̄ = ρ̄S/S0 is the average number of particles

in this area. Thus, the filling fraction distribution can be as-
sumed to be Gaussian with the distribution function f (ρ) =
A exp (− (ρ−ρ̄ )2

ρ̄
S
S0

). The standard deviation of the permittivity
can be found as follows:

〈δε2〉 =
∫ ∞

0
f (ρ)[εeff (ρ) − εeff ]

2dρ, (21)

where εeff (ρ) is given by Eq. (3). Applied to the consid-
ered system, Eq. (21) allows estimating the widening of the

FIG. 9. Widening of the resonance region due to fluctuations
in the meta-atom concentration. The theoretical estimate obtained
by calculating the standard deviation of the permittivity, given by
Eq. (21), is represented by the blue line; the widening obtained by
direct simulation of the random system is represented by the red
circles.

resonance region as
√

Imε2 + 〈δε2〉/Imε, which gives the ra-
tio of the width of the resonant region in the random system to
that in the homogenized system. The comparison between the
widening of the resonance region calculated using Eq. (21)
and that obtained using first-principles simulations is shown
in Fig. 9. Despite the evaluative nature of the estimates, they
are quite consistent with the numerical calculations.

As the relative fluctuations in the number of meta-atoms
are proportional to the inverse square root of the number of
meta-atoms itself, δN/N̄ ∝ 1/

√
N̄ , the larger the number of

meta-atoms is in a given area, the smaller are the relative
fluctuations. In other words, if the number of meta-atoms
is increased while keeping the filling fraction constant, the
role of fluctuations decreases. Finally, in the effective medium
limit N → ∞, the influence of the fluctuations tends to zero.

Another distinctive feature of the considered system,
directly related to the concentration fluctuations, is the appear-
ance of the hot-spot pattern outside the resonant region. Two
examples of such hot spots are shown in Fig. 10.

Such a picture can be explained by the fact that due to
random fluctuations in the concentration, the condition given
by Eq. (14) can be satisfied at some random spots sufficiently
far from the line where the real part of the average permit-
tivity crosses zero. As a result, at these spots, resonant field
excitation takes place.

From a practical point of view, systems similar to the one
considered here might be advantageous as wide-range elec-
tromagnetic absorbers. Indeed, the position of the resonance
region where the absorption takes place is determined by
the condition given by Eq. (14), which links the frequency
and the local concentration. As a result, with the change of
frequency in a certain range, the resonance region changes
its position in the layer of continuous variation of meta-atom
concentration, thus constantly providing resonant absorption.
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FIG. 10. Appearance of hot spots in a random distribution of
meta-atoms at two different frequencies, ω = 0.773ωp and ω =
0.798ωp. The hot spots are marked by white circles. The light-gray
dashed line represents the line at which the condition given by
Eq. (14) is satisfied. The other parameters are similar to those in
Fig. 3.

According to Fig. 4(a), the considered layer provides signif-
icant suppression of both reflected and transmitted radiation
in a fairly wide range of frequencies. In particular, reflection
is suppressed by 10–18 dB, while transmission is suppressed
by 4–11 dB. It should be noted that the thickness of the
MM layer is smaller than the wavelength, ranging between
0.68 and 0.85 of the wavelength depending on the frequency.
As shown in Eq. (20), the absorption can be improved by

reducing the fluctuations in the effective relative permittivity,
i.e., by increasing the number of meta-atoms while simultane-
ously decreasing their size.

V. CONCLUSION

In this study, first-principles simulations of an inhomoge-
neous 2D MM with a random distribution of meta-atoms were
performed. In particular, a resonant excitation of plasmalike
oscillations by an oblique incidence of a linearly polarized
electromagnetic wave was demonstrated. Within the effective
medium approximation, such an excitation appears near the
surface where the real part of the effective permittivity crosses
zero. It has been shown that although the effective medium
approximation becomes inadequate near the transition point,
it still produces qualitatively reasonable predictions about the
existence and position of the resonant mode. While the MG
approximation fails to produce the width of the resonant area,
analysis of the statistical properties of the system allows for
accurate estimates. It has been shown that fluctuations in the
meta-atom concentration in a random distribution act as addi-
tional losses. The simulations showed that the randomness of
the MM causes electric field hot spots to appear outside the
resonant region. The fluctuations in the meta-atom concen-
tration can lead to an accidental satisfaction of the resonant
excitation conditions of plasmalike oscillations at some point,
producing hot spots.
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