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Quantum phases of bosonic chiral molecules in helicity lattices
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We reveal the existence of polarizing quantum phases for the enantiomers of cold, interacting chiral molecules
in an optical helicity lattice by means of an extended Bose-Hubbard model. These recently proposed lattices have
sites with alternating helicity which exert a discriminatory force on chiral molecules with different handedness.
In our study of the phase diagram we find that a strong dipolar repulsion between molecules results in the
separation of left and right enantiomers.

DOI: 10.1103/PhysRevA.106.013321

I. INTRODUCTION

Chirality is a near-universal phenomenon in the natural
world, with the most basic building blocks of life consisting of
chiral molecules [1]. It is a geometrical property, with chiral
objects being those that cannot be brought into coincidence
with their mirror image by rotations and translations, much
as left and right hands. The ability to identify and separate
molecules of different chirality (known as enantiomers) is of
crucial importance in pharmaceuticals. A variety of ways of
achieving this have been proposed [2], most of which rely on
circular dichroism spectroscopy [3]. However, such a method
comes with some distinct disadvantages, the most serious of
which is that the signals are so weak that the sample must
be highly concentrated and in the liquid phase [1]. Partly
due to this, there has been a continued interest in alternative
ways of identifying and separating chiral molecules, includ-
ing Coulomb explosion imaging [4], three-wave mixing [5],
mechanical optical forces [6,7], and even phase transitions in
quantum fluids of light [8].

Here, we take a different approach, exploiting recently
proposed helicity lattices [9]. These are optical lattices that
are engineered in such a way that they have perfectly homoge-
neous mean-squared values of the electric field, but spatially
varying helicity (see Fig. 1). This means that chiral molecules
within the lattice will have dynamics induced by their chirality
to leading order, perhaps enabling new methods of separation
and characterization of mixtures.

Recent progress on laser cooling [11–14] has brought
molecules to the ultracold regime [15]. The cooling of a
growing selection of polyatomic molecules has started to
be achieved [16], including the recent cooling of CaOCH3

molecules [17]. In particular, road maps for cooling and trap-
ping chiral molecules have already been proposed [18,19].
This opens the possibility of trapping cold chiral molecules
in helicity lattices in the next few years. At such low temper-
atures, helicity lattices would show novel quantum phases, in
analogy to cold atomic gases trapped in conventional optical
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lattices [20]. In addition, Rydberg atoms with induced chi-
rality have recently been proposed [21], potentially offering
a more controllable scenario for simulating ultracold chiral
particles.

In this paper we consider an idealized system of in-
teracting chiral molecules immersed in a two-dimensional
helicity lattice. We model the lattice with a modified extended
Bose-Hubbard model [22] where the chiral molecules are
represented as structureless bosonic particles. We tune pa-
rameters such as the dipole-dipole coupling strength between
molecules and tunneling rate to identify a number of new
phases which are unique to helicity lattices. This work forms
a proof of principle which should be achievable in near-future
molecular cooling experiments.

II. MODEL

We consider a system of left and right enantiomers of the
same chiral molecule immersed in a square helicity lattice as
depicted in the right panel of Fig. 1. Neighboring sites have
opposite helicity densities h [9], simulating conditions analo-
gous to those of a helicity lattice created by the superposition
of four coherent light waves [9].

The chirality of a particular enantiomer determines
whether it is attracted or repelled from a given site [6]. In-
deed, because the chiral forces acting on the enantiomers are
proportional to ∇h [7,23], the enantiomers are immersed in a
periodic potential with wells at the sites with favorably helic-
ity. For each enantiomer species, the corresponding potential
depth is given by [7,24]

V0 ≈ |G′|I
ε0c2

, (1)

where G′ is the relevant part of the electric dipole–magnetic
dipole optical activity tensor [25] and I is the laser power. V0 is
to be compared with the recoil energy ER = h̄2k2/2m, where
m is the mass of the molecules and k = 2π/λ depends on the
laser’s wavelength λ. In this work we consider tight lattices
with ER � V0 at low temperatures kBT � V0, which we can
model with a Hubbard-based Hamiltonian. In addition, we

2469-9926/2022/106(1)/013321(7) 013321-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1810-0707
https://orcid.org/0000-0001-6931-8840
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.013321&domain=pdf&date_stamp=2022-07-28
https://doi.org/10.1103/PhysRevA.106.013321


ISAULE, BENNETT, AND GÖTTE PHYSICAL REVIEW A 106, 013321 (2022)

FIG. 1. Left: Illustration of a conventional optical lattice. Os-
cillating electric fields induce a periodic potential for atoms
(represented as yellow circles). We show an homogeneous lattice po-
tential V = V0[sin2(kx) + sin2(ky)], where k depends on the laser’s
wavelength [10]. Right: Illustration of a square helicity lattice. Red
and blue regions correspond to sites with opposite helicity densities
h [9] which induce a discriminatory force on enantiomers [6].

consider ultracold regimes where the molecules are dominated
by their ground rovibrational state [17,26].

The previous assumptions set constraints on our proposed
experimental setup. To trap hexahelicene (|G′| ≈ 0.33 ×
10−34 m s3 A2 kg−1) within a helicity lattice in the μK regime
we require a laser power of I = 109 W/cm2 [24]. In a
lattice with λ = 1 μm, the recoil energy takes a value of
ER = 4.0 × 10−31 J, while the potential depth V0 = 4.2 ×
10−28 J ≈ 103ER. Other choices can be used to realize shal-
lower potentials.

By neglecting rovibrational excitations, we can model the
enantiomers as pointlike bosonic particles, and thus we can
describe the system with a modified extended Bose-Hubbard
model [22]

Ĥ = Ĥ(hop) + Ĥ(int). (2)

The hopping of the enantiomers is described by

Ĥ(hop) = − t

2

∑

〈〈i, j〉〉χ

(
b̂†

χ,ib̂χ, j + b̂†
χ,ib̂χ, j

)
, (3)

where t encodes the probability of tunneling to a neighboring
site with favorable helicity, b̂†

χ,i (b̂χ,i) creates (annihilates) an
enantiomer of handedness χ = L, R at site i, and 〈〈i, j〉〉χ
denotes the next-to-nearest neighbor sites, that is, the nearest
sites with the same helicity. We stress that we allow the lat-
tice to have left or right enantiomers at alternating sites. The
tunneling t contains the effect of both the mass of the particles
and of the depth of the lattice potential [22]. Note that because
we consider enantiomers of the same chiral molecule, both
enantiomers have equal masses and therefore t = tL = tR.

Chiral molecules interact through short-range van der
Waals and long-range dipole-dipole interactions [27,28]. By
considering that all the dipoles are polarized orthogonal to
the lattice plane, the dipolar interactions are repulsive and
take the simple form V (dip)

χχ ′ = Ṽχχ ′/r3 for χ, χ ′ = L, R, where
r is the distance between dipoles and Ṽ > 0 characterizes
the strength of the dipolar repulsion. In the following, we

assume equal dipolar repulsion between enantiomers of the
same handedness Ṽ = ṼLL = ṼRR.

In this work, we consider dipolar interactions up to the
next-to-nearest neighbors in order to capture the long-range
interactions between enantiomers with opposite handedness.
Therefore, the interacting part of the Hamiltonian reads [22]

Ĥ(int) =U

2

∑

i

n̂χ,i(n̂χ,i − 1) + VLR

2

∑

〈i, j〉LR

n̂χ,in̂χ ′, j

+ V

25/2

∑

〈〈i, j〉〉χ
n̂χ,in̂χ, j, (4)

where n̂χ,i = b̂†
χ,ib̂χ,i is the number operator and 〈i, j〉LR de-

notes the nearest-neighbor sites, that is, the nearest sites with
opposite helicity. The first term on the right-hand side cor-
responds to the on-site contact repulsion, the second term
to the long-range dipolar repulsion between left and right
enantiomers, and the third term to the long-range dipolar
repulsion between enantiomers of the same handedness where
the 23/2 factor comes from the distance between next-to-
nearest neighbors. We note that similar Hamiltonians have
been used to study two-component Bose-Hubbard models
[29,30]. However, most efforts have focused instead on attrac-
tive interspecies interactions [31–33].

To study the phase diagram of Hamiltonian Eq. (2) we
employ a Gutzwiller ansatz [34,35]

|�(t )〉 =
∏

i

mmax∑

m=0

f (i)
χ,m(t )|m〉χ,i, (5)

where |m〉χ,i denotes the state with m particles of enantiomer
χ at site i and mmax is the maximum occupancy allowed in the
numerical calculations.

In this work we study the ground-state phase diagram
by obtaining the coefficients f (i)

χ,m from the minimization
of 〈�|Ĥ − ∑

i μχ n̂χ,i|�〉, where the chemical potentials μχ

control the density of each enantiomer species. Here, we
work with equal chemical potentials for both enantiomers
μ = μL = μR. We identify the quantum phases by examining
the values of the order parameter and average occupancy per
site φχ,i = 〈�|b̂χ,i|�〉 and nχ,i = 〈�|n̂χ,i|�〉, respectively.
We refer to Ref. [36] for details about the Gutzwiller approach
for similar models.

III. QUANTUM PHASES

Hubbard models show superfluid and insulator phases. An
occupied site is superfluid if its order parameter is finite
(φχ,i > 0), whereas a site is in an insulator state if its order
parameter is zero (φχ,i = 0). Moreover, while superfluid sites
can have any positive and real occupation (nχ,i > 0), insulator
sites have an integer occupation nχ,i = ν, where ν denotes a
positive integer number. In addition, repulsive dipolar interac-
tions induce checkerboard phases with staggered occupations
[37–42]. In this case, the lattice can have unoccupied sites
with nχ,i = 0.

Because we consider up to next-to-nearest neighbor in-
teractions, the system is sufficiently described by a 2 × 2
lattice with periodic boundary conditions. Therefore, we work
with two left (L) and two right (R) sites. We label the four
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FIG. 2. Illustrations of a representative set of quantum phases.
Red and blue squares correspond left and right sites, respectively.
Solid squares correspond to superfluid sites, cross-hatched squares
correspond to insulator sites, and open squares correspond to unoc-
cupied sites. The lattices in the second row correspond to equivalent
degenerate phases by exchanging left with right sites.

sublattices as L(R)A and L(R)B. We perform the minimization
of the Gutzwiller ansatz (5) over 4 × (mmax + 1) coefficients
f (i)
χ,m, where i corresponds to the four sublattices and m =

0, . . . , mmax. Note that χ simply labels the handedness of the
corresponding site. The specific quantum phase depends on
the combination of φχ,a and nχ,a in the four sublattices. We
schematically illustrate the most prominent quantum phases
in Fig. 2.

In the figure, phases shown in Figs. 2(a) and 2(b) corre-
spond to uniform configurations with equal order parameters
and occupations in all sites. In this case, the left and right
sublattices show either a Mott-insulator (MI) or a superfluid
(SF) phase, and therefore we refer to these as 2MI and 2SF
phases.

As mentioned, the presence of a dipolar repulsion between
left and right enantiomers can produce a left/right polarization
with nL/R > 0 and nR/L = 0. Depending on if the sublattice
is a superfluid or an insulator, we refer to these phases as a
polarized superfluid (pSF) or a polarized Mott-insulator (pMI)
[Figs. 2(c) and 2(d)]. In addition, a dipolar repulsion between
enantiomers of the same handedness can produce a further
polarization within left/right sites [Figs. 2(e) and 2(f)]. We
refer to these phases as polarized density-wave (pDW) and
polarized supersolid (pSS) phases [Figs. 2(e) and 2(f)], in
analogy to the crystalline DW and SS phases with staggered
occupations of extended Bose-Hubbard models [38].

The lattice can also show intermediate configurations, such
as SF/MI [Fig. 2(g)] and MI/DW [Fig. 2(h)] phases, where
one enantiomer species shows a MI phase and the other a
SF or DW phase. We present a complete list of the phases
in Tables I and II, including generalizations of the phases
illustrated in Fig. 2 for arbitrary occupations. Note that n and
φ denote the total average occupation and order parameter,
respectively.

IV. PHASE DIAGRAM

We first examine the phase diagram for different values
of VLR = V . We show a representative set in Fig. 3. The
phase diagram is particularly rich for weak dipolar repul-
sion VLR < U/4 and V/22/3 < U/4 [see Fig. 3(a)]. Under
these constraints, the on-site repulsion dominates over the
long-range one, allowing both uniform and polarized config-

TABLE I. Average occupations for the insulator phases, where
ν, ν ′, and ν ′′ denote integer numbers. Note that in these phases the
order parameters are zero.

Phase n |nL − nR| |nA − nB|
2MIν ν 0 0
MIν/MIν′ (ν + ν ′)/2 |ν − ν ′| 0
pMIν ν/2 ν 0
MIν/DW(ν′,ν′′ )

ν

2 + ν′+ν′′
4 |ν − ν′+ν′′

2 | |v′ − v′′|/2
pDW(ν,ν′ ) (ν + ν ′)/4 (ν + ν ′)/2 |ν − ν ′|/2

urations. Indeed, for small tunneling the system shows lobes
of insulator phases where the occupation increases with the
chemical potential. This results in a ladder of occupations
where each sublattice is increasingly occupied (see Fig. 4).

As the tunneling t increases, the lattice shows a com-
bination of insulator and superfluid phases. In between the
insulator lobes, the lattice shows intermediate SF/MIν phases
with increasing occupation, whereas it shows a complete pSF
for small μ. However, if the tunneling is large enough, the
lattice shows a uniform 2SF phase. We note that the transition
to the 2SF for μ = 0 in Fig. 3(a) occurs at t/U ≈ 1.0 (beyond
the scale in the figure).

Particularly interesting are the small regions with semipo-
larized superfluids (spSF). These correspond to phases where
both enantiomer species are superfluid, but one has a larger
occupation than the other. These regions simply connect the
pSF and SF/MI phases with the uniform 2SF phase. The spSF
phases have energy differences per site with adjacent phases
up to the 10%, with a difference of up to 	E/N ≈ 0.02U for
the lower spSF phase. However, we stress that the Gutzwiller
approach is mean field in nature, and thus the predictions for
small phases should not be considered accurate. In addition,
polarized phases in extended Bose-Hubbard models suffer
from competing metastable states [39]. Therefore systems
with large asymmetries between the chemical potentials might
be necessary to observe an spSF phase.

For intermediate dipolar strengths VLR > U/4 and
V/22/3 < U/4, the lattice polarizes with no uniform phases
[see Fig. 3(b)]. In this case, the insulator lobes simply
correspond to pMI and pDW phases with increasing
occupation. For larger tunneling, the lattice shows a pSF
phase, as expected. However, the pDW lobes are surrounded
by small pSS phases, which are not present for weaker
dipolar repulsion. A similar behavior is obtained with
extended Bose-Hubbard models [41].

TABLE II. Average order parameters and occupations for the
superfluid phases. Note that n > 0 and φ > 0 in all phases.

Phase |φL − φR| |φA − φR| |nL − nR|
2SF 0 0 0
pSF 2φ 0 2n
pSS 2φ >0 2n
spSF >0 0 >0
MIν/SF 2φ 0 >0
MIν/SS 2φ >0 >0
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FIG. 3. Phase diagrams for V = VLR and μL = μR as a function
of the chemical potential μ/U and hopping t/U .

For strong dipolar repulsion between all molecules [see
Fig. 3(c)] there is a complete polarization to one of the
four sublattices for small tunneling. Therefore, all insulator
lobes correspond to pDWν phases with increasing occupation.
Moreover, these lobes are constrained to chemical potentials
of ν − 1 < μ/U < ν. The insulator lobes are also surrounded
by a continuous pSS phase. However, for large tunneling the
lattice still shows a pSF phase. This is because the repulsion
between left and right enantiomers has a stronger effect than
the repulsion between enantiomers of the same handedness
due to the shorter distance between left and right sites.

To illustrate how the occupations change in the different
phases, in Fig. 4 we show average occupations for fixed tun-
nelings for V = VLR = 0.2U . The phases can be recognized
by following Tables I and II. Note that for zero tunneling

FIG. 4. Average occupations n (blue solid lines), |nL − nR|
(dashed orange lines), and |nA − nB| (dotted green lines) for V =
VLR = 0.2U as a function of μ/U . We show results for t = 0 (upper
panel) and t = 0.02U (bottom panel).

FIG. 5. Phase diagrams for V �= VLR and μL = μR as a function
of the chemical potential μ/U and hopping t/U .

the occupations show only multiples of quarters of integers,
signaling insulator phases. In contrast, for finite tunneling the
occupations are continuous. This signals superfluid phases
between the insulator lobes.

Finally, in Fig. 5 we show diagrams for V �= VLR. We
show diagrams for VLR = 0.2U to compare with Fig. 3(a).
In general, a small change in V roughly maintains the shape
of the phase diagrams. A smaller V shrinks the DW phases
[Fig. 5(a)], whereas a larger V enlarges them [Fig. 5(b)], as
expected. In addition, a larger V produces small pSS phases
surrounding the DW lobes, similar to what is observed in
Fig. 3(b). However, note that noticeable differences between
V and VLR might not be realizable with chiral molecules as
interaction energies between L-L/R-R pairs differ from those
between L-R pairs at the percent level or less [43].

V. PHASE SEPARATION

We have studied the phase diagram in the grand-canonical
ensemble where each point in the diagram has a fixed chem-
ical potential. However, in an experiment we would aim to
control the number of left and right enantiomers. In this case,
instead of polarization, the system would show phase separa-
tion, where each enantiomer species occupy different regions
of the lattice. This is similar to the phase separation shown by
strongly repulsive bosonic mixtures [29].

The phase separation of enantiomers can be seen as a
method of chiral discrimination. Indeed, by controlling the
parameters in the system, a helicity lattice could separate two
enantiomer species. This could provide a way to control and
study enantiomers of a specific handedness in the ultracold
regime.

To illustrate such a phase separation, we have performed
exact diagonalization (ED) calculations [44] of the Hamil-
tonian Eq. (2) for a small fixed number of left and right
enantiomers. We show examples of different occupations in
Figs. 6(a) and 6(b), where we have chosen V = VLR = 0.2U
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FIG. 6. Ground-state occupations 〈nχ 〉 [(a), (b)] and condensate
fractions 
c,χ and polarizations 	nh.l. [(c), (d)] obtained from ED for
V = VLR = 0.2U . We consider five enantiomers of each handedness
in (a) and (c), and three in (b) and (d).

to compare with Fig. 3(a). In addition, to better illustrate the
results, we have employed a 9 × 2 lattice where the x axis is
periodic and the y axis is finite.

For small tunneling t/U , Fig. 6(a) shows two phase-
separated MIs, instead of a polarized one. As the tunneling
increases, the two enantiomer species start occupying both
halves of the lattice, showing a 2SF phase. Similarly, Fig. 6(b)
shows two phase-separated DWs for small t/U , while for
intermediate tunneling both enantiomers remain phase sep-
arated, but become superfluid in analogy to a pSF phase.
Finally, for large tunneling Fig. 6(b) shows two homogeneous
superfluids, as expected.

To better illustrate the phases in our ED calculations, in
Figs. 6(c) and 6(d) we show the condensate fraction 
c,χ

(blue lines) of each enantiomer species [45]. We observe that
in both cases, the molecules show a significant condensa-
tion for t/U � 0.2. Moreover, 
c,χ increases slightly more
rapidly in Fig. 6(d), consistent with the smaller pDW lobe in
Fig. 3(a). In addition, to quantify the level of phase separa-
tion, we introduce the polarization parameter 	nh.l. = |Nχ,u −
Nχ,b|/(Nχ,u + Nχ,b), where Nχ,u and Nχ,b are the number of
enantiomers χ in the upper and bottom halves of the lattice,
respectively. The polarization (orange lines) decreases with
t , showing that for large tunneling the system converges to

a homogeneous phase. In both cases there is a significant
polarization for t/U � 0.2, above the transitions reported in
Fig. 3(a) for small μ. Nevertheless, we observe that 	nh.l.

decreases more rapidly in Fig. 6(c), consistent with the smaller
polarized phases for larger μ.

Our ED calculations confirm the presence of the most
prominent phases shown in Fig. 3, including polarized and
homogeneous MI, DW, and SF phases. We again stress that
the Gutzwiller ansatz does not take quantum fluctuations into
account, which can significantly change the phase diagram.
Nevertheless, even though we observe signatures of the differ-
ent phases with ED, calculations for small lattices are not able
to unambiguously locate phase transitions [44]. Therefore,
the Gutzwiller calculations should be contrasted instead with
more sophisticated many-body approaches in the future.

VI. CONCLUSIONS

This work is a proof of principle, describing new quan-
tum phases in the recently proposed helicity lattices. We
have shown that repulsive dipolar interactions between chi-
ral molecules immersed in helicity lattices can induce a
plethora of quantum phases. A strong dipolar repulsion be-
tween molecules induces phases with left/right polarization,
as well as phases with asymmetric occupations. Future exper-
iments could produce these systems and examine these novel
forms of chiral matter.

Future work will include consideration of realistic inter-
actions between molecules [28] as well as effects from their
internal structure [46,47] such as from molecular rotation
[47–50]. In this direction, Hubbard models for ultracold di-
atomic molecules have been proposed [47,51–53]. In addition,
we intend to employ beyond mean-field approaches, such as
Quantum Monte Carlo [54] or the Quantum Gutzwiller ap-
proach [55], to provide a more accurate description of helicity
lattices. This will also enable us to correctly study lattices with
different geometries [9].

Ultracold chiral molecules have been proposed as good
candidates to test parity violations [18,19,56–58]—helicity
lattices could provide a better control of cold chiral molecules.
In the future, we intend to study Hubbard-like models with
energy differences between enantiomers. This will enable us
to narrow the conditions in which helicity lattices could probe
parity violation, bringing us a step closer to an understanding
of this fundamental effect.
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