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Controlling particle transitions with weak periodic perturbations
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We investigate the particle transition dynamics in two-component Bose-Einstein condensates dominated
by pair-particle transitions by introducing weak periodic perturbations to the initial states. We show that the
transitions can be well controlled by varying the perturbation period while maintaining the external fields and
nonlinear parameters during the transition process. In particular, there exists a critical period at which the
transition efficiency is approximately 100%, with a numerical error of 0.72%. Analytic Akhmediev breather
solutions and linear stability analyses show that modulation instability is the underlying mechanism for these
transition dynamics. Furthermore, we establish a quantitative relation between the transition efficiency and
phase shifts induced by the modulation instability. This relation can be used to measure the phase shift of the
plane-wave background in well-known Akhmediev breathers.

DOI: 10.1103/PhysRevA.106.013318

I. INTRODUCTION

The experimental realization of the Bose-Einstein conden-
sate (BEC) launched a new era in the investigation of particle
transition dynamics between two quantum states due to its
unique macroscopic and controllable properties [1–5]. Particle
transition dynamics in two-component BECs and two-mode
systems, including single-particle transition [6–18] and pair-
particle transition effects [19–22], have been the main focus
of research over the past two decades. For single-particle
transitions (i.e., linear coupling), multiple types of particle
transition dynamics have been demonstrated in BECs con-
fined in double-well potentials (or other effective nonlinear
two-level systems), such as nonlinear Josephson oscillations
[6–8], nonlinear Rosen-Zener transition dynamics [9–12], and
nonlinear Landau-Zener transitions [13–17]. Additional par-
ticle transition dynamics have been observed in other BEC
systems trapped in periodic potentials [23,24] and other cir-
cumstances [25,26]. Highly controllable particle transitions
are crucial for applications in atomic and molecular physics,
such as high-precision measurements and quantum informa-
tion processing [27–30].

Controllable particle transitions are usually realized by
time-dependently manipulating the external fields or nonlin-
ear parameters during the transition process [9,12–14,18].
These manipulations are essential for single-particle transition
dynamics since particles tend to pass through the transition
path if the particles do not occur in the self-trapping regime.
Interestingly, particles may not pass through the transition
path when pair-particle transitions dominate [19,22]. Some
nonlinear effects can induce particle transitions in various
circumstances, such as interference effects between different
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nonlinear waves and phase shifts induced by nonlinear wave
collisions [20,21]. These characteristics suggest that there are
many possibilities for controlling particle transition dynamics
without manipulating the external fields or nonlinear parame-
ters during the transition process when pair-particle transitions
dominate.

This paper reports that controllable particle transition dy-
namics can be realized in two-component BECs with strong
pair-particle transition effects by introducing a weak periodic
perturbation to the initial states. The transition efficiency and
transition time are investigated for various perturbation peri-
ods through direct numerical simulations. The results indicate
that the desired final states can be achieved by adjusting the
period of the initial perturbation rather than by manipulating
the external fields or nonlinear parameters during the transi-
tion process. However, switch manipulation of the nonlinear
strength is still necessary for the initial state operation. We
achieve a nearly perfect particle transition with a transition
efficiency of almost 100% with a specific perturbation period.
Moreover, we provide analytic descriptions for the particle
transition dynamics with exact Akhmediev breather solutions
and linear stability analyses. Our analysis suggests that mod-
ulation instability is the generation mechanism of controllable
particle transitions. The analytic descriptions are consistent
with the numerical simulation results, except for perturbations
with large periods. The complicated particle transition dynam-
ics related to the initial perturbations with large periods can be
explained by higher-order modulation instability. The analytic
results provide a quantitative relation between the transition
efficiency and the phase shift induced by the modulation
instability, resulting in a potential method for measuring the
background phase shift of the Akhmediev breather.

Our paper is organized as follows. In Sec. II, we present
a theoretical model for two hyperfine states in the 87Rb BEC
with particle transition effects. In Sec. III, we use numerical
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simulations to demonstrate the highly controllable particle
transition phenomena by manipulating initial weak perturba-
tions. In addition, the transition efficiency and transition time
are characterized in detail. Then, we present analytic descrip-
tions for the transition dynamics. In Sec. IV, we demonstrate
that modulation instability is the underlying mechanism of
the particle transition dynamics. The analytic descriptions are
consistent with the numerical simulation results, except for
cases with large perturbation periods. In Sec. V, the compli-
cated particle transition behavior of perturbations with large
periods is explained by higher-order modulation instability. In
Sec. VI, we propose an application of the particle transition
phenomena for measuring the phase shift of the plane-wave
background in Akhmediev breathers. In Sec. VII, we discuss
the possibility of observing the transition dynamics in experi-
ments. Finally, the conclusions are discussed in Sec. VIII.

II. PHYSICAL MODEL AND THEORETICAL CONCEPTS

We consider a two-component BEC with particle transi-
tion effects that is confined in a harmonic trapping potential.
To reach a quasi-one-dimensional (quasi-1D) regime, highly
anisotropic traps with axial and radial trapping frequen-
cies that satisfy the condition ωx � ω⊥ are selected; thus,
the radial characteristic length is less than the healing
length, and the dynamics are essentially 1D [31]. The di-
mensionless mean-field energy functional for the (quasi-1D)
two-component BEC system can be written as

E =
∫ +∞

−∞

[
ψ∗

1

(
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2
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2
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where x is the axial coordinate and the field ψ1 (ψ2) describes
the wave function of the first (second) component.

The time evolution of the two-component BEC can be
derived from the variational principle: i∂ψ j/∂t = δE/δψ∗

j
( j = 1, 2). We can substitute Eq. (1) into this formula to
obtain the following dynamical equation:

i
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Here, H0
j = − 1

2∂2
x , HMF

1 = g11|ψ1|2 + g12|ψ2|2, and HMF
2 =

g22|ψ2|2 + g21|ψ1|2 are the mean field interactions. g11 = g22

is the intracomponent interaction strength, and g12 = g21 is
the intercomponent interaction strength, which are character-
ized by the corresponding s-wave scattering lengths. J1 and
J2 denote the first-order (single-particle) and second-order
(pair-particle) atom transition strengths [4,5,8], respectively.
The dimensionless form used in this work was obtained af-
ter a renormalization of the length x′ =

√
h̄

mω⊥
x, time t ′ =

t/ω⊥, energy E ′ = h̄ω⊥E , interatomic interactions coeffi-
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j (x

′) = ( mω⊥
h̄ )

1
4 ψ j (x). The transition

terms can be realized by combining external coupling fields,

such as radio frequency, microwave fields [32,33], and
coupling sweeps (phase-transition sweeps) [34]. The experi-
mental observations suggested that first-order tunneling could
be highly suppressed, while second-order tunneling processes
dominate in double-well potentials [4,5]. The two-mode tun-
neling dynamics are similar to the transition behavior of a
two-component BEC [7–10]. It is naturally expected that
the second-order transition term can dominate with proper
nonlinear interactions. Furthermore, the first-order coherence
vanished after the sweep, while the second-order coherence
was macroscopically large under moderately rapid exponen-
tial sweeps [35,36]. Therefore, we consider the case when
the second-order transition dominates, namely, J1 � J2. This
case provides the possibility of controlling the particle tran-
sition dynamics without manipulating the external fields or
nonlinear parameters during the transition process [19–22],
in contrast to the cases guided by single-particle transitions
[9,12–14,18], in which the external fields or nonlinear param-
eters must be controlled.

We study the particle transition dynamics in the coupled
model shown in Eq. (2) with the system parameters g12 = −2,
g11 = g22 = J2 = −1, and J1 = −0.01. For simplicity and
without loss of generality, we assume that the atoms mainly
populate one of the components. We introduce weak periodic
perturbations to the two components simultaneously. These
perturbations are induced by periodic external potentials by
applying far off-resonant standing light waves or spatially
periodic magnetic fields [37–39]. Then, the initial states are
given as

ψ1(x, t = 0) = 1 + ε cos

(
2π

D
x

)
, (3a)

ψ2(x, t = 0) = −ε cos

(
2π

D
x

)
. (3b)

Here, D and ε (ε � 1) are the period and amplitude of the
periodic perturbation, respectively. It should be mentioned
that these initial states are not the solution of the dynami-
cal equation [Eq. (2)] and are not stable; however, they can
first be prepared by setting the nonlinear parameters in the
repulsive interaction regime according to quantum engineer-
ing techniques [40–42]. Then, we manipulate the nonlinear
parameters in several microseconds by using the Feshbach
resonance to switch the atomic interactions from repulsive to
attractive [43–45]. The two states will evolve and redistribute
in several milliseconds due to modulation instability. During
this process, we no longer need to manipulate the nonlinear
parameters and external potentials. This is discussed in detail
in Sec. VII. The basic particle transition schematic diagram is
shown in Fig. 1. Due to the emergence of single-particle and
pair-particle transition effects, Eq. (2) can no longer be solved
analytically. Therefore, we exploit the fourth-order Runge-
Kutta algorithm to numerically trace its evolution. We are
concerned with the population evolution of each component
during the particle transition process. The population Nj =∫ |ψ j |2dx ( j = 1, 2) should be calculated in the integration
interval [−nD, nD] (where n is a positive integer), with n
adjusted for different periods D.

It is appropriate to characterize the particle transition
process using the variation in the relative population (RP)
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FIG. 1. Sketch of particle transition between two hyperfine states
of 87Rb condensates with hyperfine states ψ1 and ψ2. J1 and J2 denote
the first-order (single-particle) and second-order (pair-particle) atom
transition strengths. When J2 � J1 and both components are simulta-
neously subjected to weak periodic perturbations, particle transitions
can occur between two states.

between the two components. The RP herein is defined as

η(t ) = N1 − N2

N1 + N2
. (4)

Since the perturbations applied to the initial states in Eq. (3)
are very weak, the initial RP η(0) can reasonably be regarded
as 1. Therefore, the transition efficiency can be determined
according to the RP difference 	η between the initial and final
states, namely,

	η = 1 − η(t ). (5)

A larger value of 	η results in a higher transition efficiency.
Notably, 	η = 0 and 	η = 2 correspond to transition effi-
ciencies of 0% and 100%, respectively. Next, we use 	η to
quantitatively characterize the transition efficiency.

III. PARTICLE TRANSITION DYNAMICS INDUCED
BY WEAK PERIODIC PERTURBATIONS

A. Numerical simulation results

Our numerical simulations indicate that particle transi-
tions can be well driven by the weak periodic perturbations,
while keeping the nonlinear parameters and transition terms
unchanged during the transition process. A typical particle
transition phenomenon is presented in Fig. 2, with D = √

2π

FIG. 2. An approximate 100% population transfer between the
two components. (a) and (b) correspond to the density evolutions
of components ψ1 and ψ2, respectively. (c) Numerical results of RP
versus time. The RP of the initial and final states is flipped. The
parameters are D = √

2π and ε = 0.0095.

FIG. 3. (a) The RP difference 	η and the modulation instabil-
ity gain G versus the perturbation period D. The blue squares and
blue solid curve correspond to the numerical and analytical results,
respectively. The red dashed line represents the modulation instabil-
ity gain. The transition efficiency is proportional to the modulation
instability gain G over a large range of perturbation periods. (b) The
inverse of the transition time T −1 and the other modulation instabil-
ity gain G′ versus the perturbation period D. The blue circles and
blue solid curve correspond to the numerical and analytical results,
respectively. The red dashed line represents the other modulation
instability gain G′. The results show that T −1 and G′ have the same
change trend with the period. However, the simulation results deviate
from the analytical results for the perturbation with a large period due
to higher-order modulation instability.

and ε = 0.0095. Figures 2(a) and 2(b) correspond to the den-
sity evolutions of components ψ1 and ψ2, respectively. At
approximately t = 5, periodic breathing structures appear in
the spatial direction for both components, which are similar
to the well-known Akhmediev breather [46,47]. However, the
background density of each component varies greatly after
the emergence of the breathing structure, resulting in a large
number of particles transferring from component ψ1 to com-
ponent ψ2. To further describe the particle transition process,
we show the RP evolution in Fig. 2(c), which presents three
distinct transition stages. In the first stage (0 < t � 3), the
RP remains almost unchanged; namely, a small fraction of
particles is transferred from component ψ1 to component ψ2.
In the middle stage (3 < t � 7), the RP changes from approx-
imately 1 to −1. This result signifies sharp and rapid particle
transitions between the two components, and the breather
structures form during this period. In the final stage (t > 7),
the RP gradually stabilized, with a value of approximately
−1. This value indicates a nearly perfect particle transition
between the two components, achieving a transition efficiency
of nearly 100% with a numerical error of only 0.72%.

Furthermore, we discuss the relations between the tran-
sition efficiency and the initial perturbation period. The
numerical results are shown in Fig. 3(a) as blue squares. The
perturbation period has four distinct intervals. (i) When 0 <

D � π , 	η is zero, indicating that no particle transitions occur
between the two components. (ii) When π < D �

√
2π , the

transition efficiency improves significantly with increasing
perturbation period. In particular, when D equals

√
2π , the

transition efficiency reaches nearly 100%; that is, the pro-
duction of the particle transition is maximized. (iii) When√

2π < D < 16, the transition efficiency decreases with in-
creasing perturbation period. (iv) When D � 16, the transition
efficiency anomalously increases with increasing perturba-
tion period. These numerical results demonstrate that particle
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transitions can be controlled by the initial periodic perturba-
tion, providing a possible way to control particle transition
dynamics without manipulating the external fields or nonlin-
ear parameters during the transition process.

The transition time of the particle transition process has
also attracted considerable attention [48–51]. In a nonlinear
Landau-Zener model, the transition time indicates the amount
of time in which the system experiences a structural change
that leads to a nonzero transition probability in the adiabatic
limit [51]. Thus, we also investigated the time to complete
the particle transition process for different initial modulation
periods. First, we define an appropriate quantity to character-
ize the particle transition time. Because breatherlike density
distributions appear at a certain time during the particle tran-
sition process, we define the transition time as T = |T1 − T2|,
where Tj ( j = 1, 2) denotes the time when the density of the
breathing structure reaches a maximum in each component.
The variations in T with the initial perturbation period are nu-
merically shown in Fig. 3(b) (see the blue circles), where T −1

is the inverse of T . The transition time T first decreases (T −1

increases; D < 10) and then remains approximately constant
with increasing perturbation period (10 � D < 16). However,
the transition time decreases (T −1 increases) when D � 16,
which is explained in detail in Sec. V.

B. Analytical descriptions of the transition dynamics

We would like to derive an analytical description of the
above particle transition dynamics to comprehensively ana-
lyze the transition characteristics. Since the pair transition
guides the particle transition between the two components,
we can investigate the transition dynamics with an integrable
coupled nonlinear Schrödinger equation with a pair-transition
term [52] while safely ignoring the single-particle transi-
tion effect (i.e., J1 = 0). Our simulation results demonstrate
Akhmediev breatherlike structures during the particle tran-
sition (see Fig. 2). Akhmediev breathers can be excited
by superimposing weak periodic perturbations on plane-
wave backgrounds [46,53]. Thus, we analytically derive the
Akhmediev breather solutions of the integrable model, which
can be expressed as [19,22]

ψ1 = 1

2
eit

[
1 + a cos(ωx) − σ cosh(δt ) + iδ sinh(δt )

a cos(ωx) − cosh(δt )
eiτ

]
,

ψ2 = 1

2
eit

[
1 − a cos(ωx) − σ cosh(δt ) + iδ sinh(δt )

a cos(ωx) − cosh(δt )
eiτ

]
,

(6)

where σ = 2a2 − 1, ω = 2
√

1 − a2, δ = aω, and a =√
D2−π2

D . The parameter D is the spatial period and satisfies
D > π for this breather solution. The parameter τ is a real
constant that can be used to adjust the initial phase of the
solution. The second term on the right-hand side of Eq. (6)
is identical to the well-known Akhmediev breather solution of
the scalar nonlinear Schrödinger equation [46].

To analytically analyze the above numerical simulations,
we first ensure that η(0) = 1 at the initial states for a per-
turbation with an arbitrary period. We deduce the asymptotic
expressions of Eq. (6) in the limit of t → ∓∞ to describe

TABLE I. The initial phase and final phase of the Akhmediev
breather’s background in different periods.

Period D Initial phase ϕi Final phase ϕ f

(π,
√

2π ) arctan[δ/σ ] + π − arctan[δ/σ ] − π√
2π π/2 3π/2

(
√

2π,+∞) arctan[δ/σ ] − arctan[δ/σ ]

the initial state (ψ i
j) and final state (ψ f

j ) of the breather solu-

tion. When t → −∞, we obtain ψ i
1 = 1

2 eit [1 + ei(τ+ϕi )] and

ψ i
2 = 1

2 eit [1 − ei(τ+ϕi )], where ϕi is the phase of the com-
plex number σ + iδ. We maintain |ψ i

1|2 = 1 and |ψ i
2|2 = 0

by setting τ = −ϕi so that η(0) = 1 is satisfied in the ana-
lytical analyses. When t → +∞, the asymptotic expressions
of the final states of Eq. (6) are ψ

f
1 = 1

2 eit [1 + ei(τ+ϕ f )] and

ψ
f

2 = 1
2 eit [1 − ei(τ+ϕ f )], where ϕ f is the phase of the complex

number σ − iδ. The exact forms of ϕi and ϕ f for various
perturbation periods are summarized in Table I. It is easy
to obtain |ψ f

1 |2 = cos [ ϕi−ϕ f

2 ]
2
, |ψ f

2 |2 = sin [ ϕi−ϕ f

2 ]
2
. There-

fore, the RP of the final state can be calculated as η(t ) =
cos(	ϕ), where 	ϕ = ϕ f − ϕi. In fact, 	ϕ corresponds to
the phase shift of the plane-wave background in the Akhme-
diev breather. Consequently, the RP difference between the
initial and final states can be analytically expressed as

	η = 1 − cos(	ϕ). (7)

The analytical results based on Eq. (7) are shown by the
blue solid curve in Fig. 3(a). The results agree well with
the numerical results (blue squares) for a large range of
initial-state periods. Then, the transition time can be calcu-
lated analytically as T = |T1 − T2|, where Tj can be obtained
exactly by determining the roots of ∂t |ψ j (x = 0)|2 = 0 ( j =
1, 2). The corresponding analytical results of T −1 are shown
by the blue solid curve in Fig. 3(b), and the results also agree
with the numerical results (blue circles) for a certain range
of periods. However, for perturbations with large periods, the
numerical results deviate from the analytical results, which
will be discussed in Sec. V.

The good agreement between the analytical and numeri-
cal results indicates that the Akhmediev breather solutions
can characterize the particle transition process. It is well
known that the Akhmediev breather solution can describe the
modulation instability characteristics of a plane-wave back-
ground [46,54]. The initial stage in the development of the
modulation instability was investigated with the linearization
method [55–57]. Therefore, the modulation instability of a
two-component BEC with particle transition effects could
help to explain these transition dynamics.

IV. MECHANISM FOR THE PARTICLE
TRANSITION DYNAMICS

We perform a standard linear instability analysis by adding
small-amplitude Fourier modes to the initial backgrounds
of Eq. (3), namely, ψ1 = (1 + f+eiκ (x−�t ) + f−e−iκ (x−�t ) )eit ,
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ψ2 = (0 + g+eiκ (x−�t ) + g−e−iκ (x−�t ) )eit (where f± and g±
are the small amplitudes of the Fourier modes). After these
values are substituted into Eq. (2) with J1 = 0, the equa-
tions are linearized, and we obtain the following dispersion
relation: � = ± 1

2

√
κ2 − 4, where κ = 2π

D . Then, the mod-
ulation instability gain can be expressed as G = Im|κ�|.
Although this expression is mathematically precise, it cannot
reasonably demonstrate the modulation instability gain value
near the resonance line κ = 0 (i.e., D → ∞) [57]. It should
be noted that the modulation instability gain has another form,
namely, G′ = Im|�|. This gain properly reflects the modula-
tion instability growth rate in physics since the growth rate
tends to reach its maximum value on the resonance line in this
form.

The modulation instability gain G versus the perturbation
period D is demonstrated by the red dashed curve in Fig. 3(a).
The modulation instability gain has the same change trend
as the analytical RP difference results. When 0 < D � π ,
the modulation instability gain is zero, and the RP difference
is also equal to zero. This result indicates that there are no
particle transitions between the two components in the ab-
sence of modulation instability. When D > π , the modulation
instability gain is stronger, and more particles are transferred
from component ψ1 to component ψ2. In particular, when the
perturbation period is equal to

√
2π , the modulation instabil-

ity gain reaches its maximum value of 1, and the transition
efficiency achieves its highest value of 100%. On the other
hand, we note that the other form of the modulation instability
gain, G′ = Im|�|, has the same trend as the transition time
for different perturbation periods, as shown in Fig. 3(b) by the
red dashed curve. These results suggest that the modulation
instability can be used to understand the generation mecha-
nism of particle transition dynamics. This differs significantly
from the Bloch-band tunneling reported in [24], in which the
tunneling dynamics strongly depend on the band gap structure
and modulation instability.

We emphasize that the numerical simulation results deviate
from the analytical results when the perturbation period is sub-
stantially larger. These deviations occur because higher-order
modulation instability arises when the perturbation period ex-
ceeds 2π [58]. The higher-order modulation instability causes
complex dynamics after the first particle transition. In the fol-
lowing section, we investigate the particle transition dynamics
for initial perturbations with large periods in detail.

V. COMPLICATED PARTICLE TRANSITION DYNAMICS
WITH HIGHER-ORDER MODULATION INSTABILITY

Based on the quantitative relations between the modula-
tion instability and the nonlinear excitations [57], when the
perturbation period is less than 2π , a fundamental particle
transition is induced by the fundamental modulation instabil-
ity. However, when the perturbation period is in the range of
D > 2π , higher-order modulation instability induces particle
transitions with complex splitting dynamics [58]. The higher-
order modulation instability effect becomes more noticeable
for perturbations with considerably larger periods. Our simu-
lation results show that complex splitting dynamics can lead
to large deviations from the analytic descriptions, as shown in
Fig. 3 for D > 16.

FIG. 4. Complicated particle transition dynamics for initial per-
turbations with large periods. (a) and (b) correspond to components
ψ1 and ψ2, respectively. The simulation results show complex split-
ting dynamics induced by the higher-order modulation instability.
(c) The time evolution of RP. The parameters are D = 26 and
ε = 0.033.

For example, we show the numerical results with a per-
turbation period of D = 26 in Fig. 4. The results present
complicated particle transition dynamics, in sharp contrast
to the fundamental particle transition shown in Fig. 2. The
simulations show a series of progressive spatial bifurcation
dynamics induced by higher-order modulation instability.
These excitations split the initial modulated field into up to
four subwaves during the evolution. Similar phenomena have
been shown both numerically and experimentally in scalar
nonlinear systems [58–60]. We present the corresponding evo-
lution of the RP in Fig. 4(c). The result demonstrates that the
RP changes dramatically over time due to the splitting dynam-
ics, resulting in deviations from the analytical descriptions.

VI. APPLICATION OF PARTICLE TRANSITION
DYNAMICS

The background phase shift 	ϕ of the Akhmediev breather
solution is directly related to the transition efficiency for a
certain perturbation period [see Eq. (5)]. This result indicates
that the phase shift can be represented in the following form:

	ϕ = ± arccos(1 − 	η). (8)

We plot the relation between the phase shift and the transition
efficiency in Fig. 5. Here, we show only the positive branch
of the phase shift, as the negative branch has a distribution
symmetric to the positive branch. A phase shift of zero cannot
induce particle transitions, while a phase shift of π results
in the maximum number of particle transitions. It should be
noted that because Kuznetsov-Ma breathers and rogue waves
do not have global phase shifts between the final and initial
states, they can experience only local particle transitions, and
thus, the particles eventually return to their original com-
ponent [19,22]. These results suggest that the background
phase shift of the Akhmediev breather plays a crucial role in
particle transition dynamics. This characteristic is helpful for

013318-5



QIN, MENG, LI, XIN, AND ZHAO PHYSICAL REVIEW A 106, 013318 (2022)

FIG. 5. The phase shift 	ϕ of the plane-wave background of the
Akhmediev breather versus the transition efficiency 	η.

understanding the two modulation-instability-gain forms
shown in Fig. 3.

More importantly, the quantitative phase-shift relation
shown in Eq. (8) is meaningful for measuring the nonlinear
phase shift of the well-known Akhmediev breather based on
the transition efficiency. A perturbation with a trigonometric
function form has been widely used to excite Akhmediev
breathers both numerically and experimentally [58,61,62].
Therefore, this relation offers a potential new method for
measuring the phase shift of the breather’s plane-wave back-
ground.

VII. POSSIBILITIES FOR OBSERVING THE PARTICLE
TRANSITION DYNAMICS

We discuss the possibility of observing particle
transition dynamics in a two-component BEC. We consider
two hyperfine states, |F = 1, mF = −1〉 = |ψ1〉 and
|F = 2, mF = 1〉 = |ψ2〉, in the 87Rb BEC trapped by
the harmonic potential 1

2ω2
⊥(y2 + z2) + 1

2ω2
x x2 [41,42,63].

The atoms mainly populate state |ψ1〉, while state
|ψ2〉 is coupled to |ψ1〉 through the radio frequency or
microwave-pulse or sweep techniques [32–34,41,63]. These
techniques can also be utilized to ensure that pair-particle
transitions dominate [34]. The Feshbach resonance or
confinement-induced resonance is used to ensure that
the nonlinear interaction strength satisfies our condition
[64–66]. The evolution of the particle transition in the
three-dimensional (3D) setting can be described by iψ1,t =
− 1

2∇2ψ1 + (g3D
11 |ψ1|2 + g3D

12 |ψ2|2)ψ1+J1ψ2+J3D
2 ψ2

2 ψ∗
1 +[ω2

⊥
(y2+z2)/2+ω2

x x2/2]ψ1 and iψ2,t = − 1
2∇2ψ2 + (g3D

22 |ψ2|2 +
g3D

12 |ψ1|2)ψ2 + J1ψ1+J3D
2 ψ2

1 ψ∗
2 +[ω2

⊥(y2 + z2)/2 + ω2
x x2/2]

ψ2, where g3D
i j = 2π

ω⊥
gi j and J3D

2 = 2π
ω⊥

J2, and the atomic mass
and Planck’s constant are rescaled to 1. The other parameters
are the same as those in the homogeneous case.

We first prepare the initial states by setting the nonlinear
parameters in the repulsive interaction regime since the
background of the breather excitation is not stable in
the attractive interaction case, which makes it difficult to
prepare the initial states for the above transition dynamics.

FIG. 6. The particle transition dynamics in a 3D setting with
a harmonic trap along the x axis (ωx = 0.01 and ω⊥ = 20).
The dynamics agree well with the effective 1D counterpart [see
Figs. 2(a) and 2(b)]. Because the condensate has rotational symmetry
along the x axis, only the x-z cross section is shown. The other
parameters are the same as those in Fig. 2.

For repulsive interactions, we use a strongly confining
transverse frequency ω⊥ and a weak axial frequency ωx to
ensure that the radial characteristic length is smaller than
the healing length in the quasi-1D approximation. Thus,
the initial states of the numerical evolutions are ψ1 = [1+
ε cos ( 2π

D x)]
√

max ((1−ω2
x x2/2)/|g11|, 0)

√
ω⊥
π

e− 1
2 ω⊥(y2+z2 ) and

ψ2 = −ε cos ( 2π
D x)

√
max ((1 − ω2

x x2/2)/|g22|, 0)
√

ω⊥
π

e− 1
2 ω⊥

(y2+z2 ), and the Thomas-Fermi ground state was used to
modify the initial-state profiles. A considerably weaker
harmonic trap along the x direction can be used to
approximate the above initial states, as shown in Eq. (3)
for the homogeneous case. The weak spatial external periodic
potentials are temporarily and synchronously applied to
the two states, producing periodic perturbations in each
component by using a far-off-resonant laser field or a
spatially periodic magnetic field [37–39].

Then, we switch the nonlinear parameters to the attractive
interaction regime in several microseconds [43–45]. The tran-
sition dynamics in the 3D setting can be investigated in several
milliseconds [40–44,63,67]. For example, we consider a BEC
trapped in a harmonic potential with ω⊥ = 20 and ωx = 0.01
(the radial characteristic length is approximately 0.22, and
the healing length is approximately 0.71 in this case). We
numerically solve the corresponding dynamical equation with
the fourth-order integrating-factor method, and we apply pe-
riodic boundary conditions to both components because the
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condensate is trapped. We show the transition dynamics in the
axial range of [−15, 15] in Fig. 6, which presents a striking
particle transition phenomenon, the dynamics of which agree
well with the effective 1D counterpart, as shown in Fig. 2.

In recent experiments, various types of vector solitons
and breathers were successfully created in different BEC
systems with well-developed quantum engineering tech-
niques [40–42,63,67]. These results indicate that the initial
states can be prepared in various forms in BEC systems
[39,64–66,68], for which the operation time (several mi-
croseconds) of the initial states is substantially smaller than
the characteristic evolution timescale (milliseconds for usual
BECs) [40–42,63,67]. Our numerical simulations indicate that
particle transition dynamics can emerge in 3D settings. This
result provides many possibilities for observing controllable
particle transition processes.

VIII. CONCLUSION AND DISCUSSION

We demonstrated that controllable particle transition dy-
namics can be obtained by introducing weak periodic pertur-
bations to initial states in two-component BECs dominated by
pair-particle transition effects. The detailed analyses revealed
that modulation instability is the underlying mechanism of

such transition dynamics. Additionally, we demonstrated the
complicated particle transition dynamics for perturbations
with spatial periods in the range of D > 2π , which are
induced by higher-order modulation instability. This result
suggests that controllable particle transitions should be real-
ized outside the range of higher-order modulation instability.
Furthermore, we proposed that the transition efficiency can
be used to measure the background phase shift of Akhme-
diev breathers [47], which could be helpful for measuring the
geometric phases of some nonlinear waves [69]. Our numer-
ical simulations and recent experimental techniques [40–42,
63–67] suggest that there are many possibilities for realizing
the controllable particle transition.
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