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Ground states of atomic Fermi gases in a two-dimensional optical lattice
with and without population imbalance
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We study the ground-state phase diagram of population balanced and imbalanced ultracold atomic Fermi
gases with a short-range attractive interaction throughout the crossover from BCS to Bose-Einstein condensation
(BEC), in a two-dimensional (2D) optical lattice comprised of a 2D array of 1D lines. We find that the mixing
of lattice and continuum dimensions, together with population imbalance, has an extraordinary effect on pairing
and the superfluidity of atomic Fermi gases. In the balanced case, the superfluid ground state prevails over the
majority of the phase space. However, for relatively small lattice hopping integral t and large lattice constant
d , a pair density wave (PDW) emerges unexpectedly at intermediate coupling strength, and the nature of the
in-plane and overall pairing changes from particlelike to holelike in the BCS and unitary regimes, associated
with an abnormal increase in the Fermi volume with the pairing strength. In the imbalanced case, the stable
polarized superfluid phase shrinks to only a small portion of the entire phase space spanned by t , d , imbalance p,
and interaction strength U , mainly in the bosonic regime of low p, moderately strong pairing, relatively large t ,
and small d . Due to the Pauli exclusion between paired and excessive fermions within the confined momentum
space, a PDW phase emerges and the overall pairing evolves from particlelike into holelike, as the pairing
strength grows stronger in the BEC regime. In both cases, the ground-state property is largely governed by the
Fermi surface topology. These findings are very different from the cases of a pure 3D continuum, a 3D lattice,
or a 1D optical lattice.

DOI: 10.1103/PhysRevA.106.013317

I. INTRODUCTION

Ultracold Fermi gases have provided an ideal platform for
investigating the pairing and superfluid physics over the past
decades, primarily owing to the high tunability of multiple pa-
rameters [1,2]. Using a Feshbach resonance [3], one can tune
the effective pairing strength from the weak-coupling BCS
limit all the way through to the strong-pairing Bose-Einstein
condensation (BEC) limit. There have been a great number
of experimental and theoretical studies on ultracold Fermi
gases in recent years, with many tunable parameters which
have been made accessible experimentally, including pairing
interaction strength [1], population imbalance [4–12], and
dimensionality [13–15]. In particular, ultracold Fermi gases
in an optical lattice exhibit rich physics due to the tunable
geometry [16–18]. As is well known, population imbalance
suppresses or destroys superfluidity in three-dimensional (3D)
homogeneous systems [9,19]. For example, superfluidity at
zero temperature is completely destroyed at unitarity and in
the BCS regime, whereas stable polarized superfluid (PSF)
with a finite imbalance p exists only in the BEC regime [19].

*Corresponding author: qchen@uchicago.edu

Meanwhile, in the absence of population imbalance in a 3D
lattice, one finds the superfluid transition temperature Tc ∝
−t2/U in the BEC regime, due to virtual pair unbinding
in the pair hopping process [20,21], which makes it hard
to reach the superfluid phase in the BEC regime. (Here t
is the lattice hopping integral and U < 0 is the on-site at-
tractive interaction.) While the superfluid transition for both
population balanced and imbalanced Fermi gases have been
realized experimentally in the 3D continuum case (often
in a trap), it has not been realized even for the balanced
case in 3D lattices. However, superfluidity, long-range or
Berezinskii-Kosterlitz-Thouless–like [22], and pairing phe-
nomena have been explored experimentally in 2D and 1D
optical lattices [23–28] or quasi-2D traps [29–35]. Common
to these experiments is the presence of one or two continuum
dimensions. Until a further breakthrough is made in cooling
techniques, the presence of continuum dimensions seems to
be crucial for the superfluid phase to be accessible experimen-
tally so far in low-dimensional optical lattices (and quasi-2D
traps) besides the 3D continuum. We note, however, that
these optical lattice experiments have mostly been restricted
to the small-t limit such that the coupling between different
pancakes (2D planes) or cigar-shaped tubes (1D lines) is
negligible. Therefore, a systematic investigation of the vast
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unexplored parameter space of the low-dimensional optical
lattices is important in order to uncover possible exotic and
interesting new quantum phenomena.

In the presence of population imbalance, an open Fermi
surface of Fermi gases in a one-dimensional optical lattice
(1DOL), caused by large lattice constant d and/or small hop-
ping t , often leads to destruction of the superfluid ground
state in the BEC regime [36]. Our recent study on pairing
and superfluidity of atomic Fermi gases in a 2DOL, which
is comprised of two lattice and one continuum dimensions,
reveals that for relatively large d and small t , a pair density
wave (PDW) ground state emerges in the regime of intermedi-
ate pairing strength, and the nature of the in-plane and overall
pairing changes from particlelike to holelike in the unitary and
BCS regimes, with an unexpected nonmonotonic dependence
of the chemical potential on the pairing strength [37].

In this paper we focus on the ground-state superfluid be-
havior of atomic Fermi gases in a 2DOL, under the effects
of lattice-continuum mixing, population imbalance, and its
interplay with the lattice parameters. We first investigate the
evolution of the Fermi surface as a function of hopping in-
tegral t and lattice constant d and then calculate the zero-T
superfluid phase diagram using the BCS-Leggett mean-
field equations [38] but supplemented with various stability
conditions, including those derived from finite-temperature
formalism [9]. We explore the superfluid phase diagrams in
various phase planes, as a function of lattice constant, hop-
ping integral, and interaction strength for population balanced
cases and also of polarization for population imbalanced
cases.

We find that in the population balanced case, while the
phase diagram at zero T is dominated by the superfluid phase,
a PDW ground state may emerge at intermediate pairing
strength, for relatively small t and large d , and the nature of
the in-plane and overall pairing changes from particlelike to
holelike in the BCS and unitary regimes. This is associated
with an open Fermi surface, where the effective number den-
sity in the lattice dimensions can go above half filling. The
PDW state originates from strong interpair repulsive inter-
actions and relatively large pair size at intermediate pairing
strength, which is also found in dipolar Fermi gases within
the pairing fluctuation theory [39].

In the population imbalanced case, due to the constraint
of various stability conditions, stable superfluid ground states
are found to exist only in a small portion of the multidimen-
sional phase space, spanned by the parameters t , d , p, and
U , mainly in the low-p and bosonic regime of intermediate
pairing strength, and for relatively large t and small d . As
the pairing interaction becomes stronger in the BEC regime,
the nature of the overall pairing of a polarized Fermi gas in a
2DOL evolves from particlelike into holelike. As manifested
in the momentum distribution of the paired fermions and
excessive majority fermions, there is a strong Pauli exclusion
between them for small t and large d . Therefore, decreasing
t and increasing d and p help extend the holelike pairing
regime toward weaker coupling. These results are very differ-
ent from their counterparts in pure 3D continua, 3D lattices,
and 1DOLs.

We mention that the values of t and d for which one
finds holelike pairing in the weaker-coupling regime in the

balanced case and in the stronger-coupling regime in the
imbalanced case do not overlap. This can be understood as
the balanced case and the p → 0+ case are not continuously
connected at T = 0.

II. THEORETICAL FORMALISM

A. General theory

Here we consider a two-component ultracold Fermi gas
with a short-range pairing interaction, Vk,k′ = U < 0, in a
2DOL. The dispersion of noninteracting atoms without popu-
lation imbalance is given by ξk = εk − μ ≡ k2

z /2m + 2t[2 −
cos(kxd ) − cos(kyd )] − μ, where kz is the momentum in the
z direction in the continuum dimension, kx and ky are the
momenta in the lattice plane, t and d are the hopping integral
and lattice constant in the x-y plane, respectively, and μ is the
chemical potential. Following our recent works [15,36,40,41],
we take t to be physically accessible, under the constraint
2mtd2 < 1 in our calculation. The critical coupling for form-
ing a two-body bound state of zero binding energy is given
by U −1

c = −∑
k 1/2εk = −0.16072

√
2m/

√
td2. Here and

throughout we take natural units and set h̄ = kB = 1. At zero
temperature, the mean-field BCS-Leggett ground state follows
the gap and number equations [38]

0 = 1

U
+

∑
k

1

2Ek
, (1)

n =
∑

k

(
1 − ξk

Ek

)
, (2)

where Ek =
√

ξ 2
k + �2 is the Bogoliubov quasiparticle dis-

persion, with an energy gap �.
To make sure the mean-field solution is stable, we impose

the requirement that the dispersion of Cooper pairs be non-
negative, both in the lattice plane and in the z direction. To
this end, we extract the inverse pair mass (tensor) using the
fluctuating pair propagator, as given in the pairing fluctuation
theory which was previously developed for the pseudogap
physics in the cuprates [42] and extended to address the
BCS-BEC crossover in ultracold atomic Fermi gases [1].1

In particular, we mention that, compared to rival T -matrix
approximations for the pairing physics, the pair dispersion
as extracted from this theory is gapless below Tc, fully com-
patible with the mean-field gap equation. Here the pairing T
matrix is given by tpg(Q) = U/[1 + Uχ (Q)], with the pair
susceptibility χ (Q) = ∑

K G0(Q − K )G(K ), the bare Green’s

1Note that it suffices to extract the pair dispersion at the T -matrix
level, while there exists a small linear pair dispersion regime in the
long-wavelength limit when collective modes and direct pair-pair
interactions are taken into account beyond the T -matrix level. Fur-
thermore, it can be shown that this linear regime is small for both
weak and strong pairing. For weak pairing, the pair mass is very
light [21] and the pair density is very low, while for strong pair-
ing, the interpair interaction becomes weak for short-range pairing
interactions so that the coupled collective mode velocity becomes
low [43]. One may find a larger linear regime for intermediate pairing
strength, if the pairs are energetically stable.
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function G0(K ) = (ω − ξk )−1, and the full Green’s function

G(K ) = u2
k

ω−Ek
+ v2

k
ω+Ek

, where u2
k = (1 + ξk/Ek )/2 and v2

k =
(1 − ξk/Ek )/2 are the BCS coherence factors, and K ≡ (ω, k)
and Q ≡ (�, q) are four momenta.

The inverse T matrix t−1
pg (Q) can be expanded for small Q,

given by

t−1
pg (�, q) ≈ a1�

2 + a0(� − �q + μp),

with dispersion �q = Bqz
2 + 2tB[2 − cos(qxd ) − cos(qyd )]

and the effective pair chemical potential μp = 0 in the
superfluid phase. Through this expansion, we can extract
B = 1/2M, with M the effective pair mass in the z direction,
and the effective pair hopping integral tB in the x-y plane. The
sign of a0 determines whether the fermion pairs are particle-
like or holelike, with positive a0 for particlelike pairing and
negative a0 for holelike pairing. For example, in a 3D lattice,
in general one finds a0 > 0 for fermion density below half
filling, a0 = 0 at half filling due to particle-hole symmetry,
and a0 < 0 above half filling. The sign of a0 is controlled
by the average of the inverse band mass.2 While one could
perform a particle-hole transformation for a pure lattice case,
it does not seem to be feasible in our case since both lattice and
continuum dimensions are present. The expressions for the
coefficients a1, a0, B, and tB can be readily derived during the
Taylor expansion. In this way, using the solution for (μ,�)
from Eqs. (1) and (2), we can extract the pair dispersion
�̃q = (

√
a2

0 + 4a1a0�q − a0)/2a1. The non-negativeness of
the pair dispersion implies that the pairing correlation length
(squared) ξ 2 = a0B and ξ 2

xy = a0tBd2 must be positive.
For the population imbalanced case, the spin polarization

is defined via p = (n↑ − n↓)/(n↑ + n↓), where the spin in-
dex σ =↑,↓ refers to the majority and minority components,
respectively. Then the dispersion of noninteracting atoms is
modified as ξkσ = εk − μσ , with μσ the chemical potential
for spin σ .

Now the bare and full Green’s functions are given by

G0σ (K ) = 1

ω − ξkσ

,

Gσ (K ) = u2
k

ω − Ekσ

+ v2
k

ω + Ekσ̄

,

respectively, where σ̄ is the opposite spin of σ , Ek↑ = Ek − h,
and Ek↓ = Ek + h, with the average μ = (μ↑ + μ↓)/2 and
the magnetic field h = (μ↑ − μ↓)/2. Thus Ek↑ becomes gap-
less, as it should, in order to accommodate the excessive
majority fermions [see Eq. (5) below]. These gapless fermions
will contribute in both the gap and number equations.

Following the BCS self-consistency condition (i.e., the
definition of the order parameter) and the number constraint,
we arrive at the gap and number equations at zero T in the
presence of population imbalance,

0 = 1

U
+

∑
k

	(Ek↑)

2Ek
, (3)

2For the latter case, one can perform a particle-hole transformation
so that it becomes a0 > 0 and below half filling for holes.

FIG. 1. Qualitative behavior of the pair dispersion �̃q for dif-
ferent signs of a0 and ξ 2: (a) and (d) a0 > 0, (b) and (e) a0 = 0,
and (c) and (f) a0 < 0 and (a)–(c) ξ 2 > 0 and (d)–(f) ξ 2 < 0. For
illustrative purposes, a simple isotropic quadratic �q = ξ 2q2/a0 is
used. The black solid curves in (a)–(c) represent propagating modes.

n =
∑

k

[(
1 − ξk

Ek

)
+ 	(−Ek↑)

ξk

Ek

]
, (4)

pn =
∑

k

	(−Ek↑), (5)

where 	(x) is the Heaviside step function and n = n↑ +
n↓ and δn = n↑ − n↓ = pn are the total and the dif-
ference of fermion densities, respectively. In the imbal-
anced case, the pair susceptibility is modified as χ (Q) =∑

K,σ G0σ (Q − K )Gσ̄ (K )/2, which is consistent with the BCS
self-consistency condition so that the pair dispersion remains
gapless at q = 0. Then we follow the same procedure as in the
balanced case and extract the inverse pair mass tensor along
with coefficients a0 and a1 via the Taylor expansion of the
inverse T matrix, t−1

pg (Q). Equations (3)–(5) form a closed
set of self-consistent equations and can be used to solve for
(μ, h,�) as a function of (U, t, d, p), which is then further
constrained by various stability conditions.

B. Stability analysis

As shown in the 3D continuum and 1DOL cases, in
the presence of population imbalance, not all solutions of
Eqs. (3)–(5) are stable [9,19,44]. Following the stability anal-
ysis of Refs. [9,19], the stability condition for the superfluid
phase requires that for fixed μ and h, the solution for the exci-
tation gap � is a minimum of the thermodynamic potential
�S, which is demonstrated to be equivalent to the positive
definiteness of the generalized compressibility matrix [7,9].
Thus we have

∂2�S

∂�2
=

∑
k

�2

E2
k

(
	(Ek↑)

Ek
− δ(Ek↑)

)
> 0, (6)

where δ(x) is the delta function. In addition, the positivity of
the pair dispersion in the entire momentum space imposes
another strong stability condition. Illustrated in Fig. 1 are

013317-3



LIN SUN AND QIJIN CHEN PHYSICAL REVIEW A 106, 013317 (2022)

the qualitative behaviors of the pair dispersion, for differ-
ent signs of a0 and ξ 2. For illustrative purposes, a simple
isotropic quadratic dispersion is assumed. In general, there
are two branches of the dispersion, from the inverse-T -matrix
expansion up to the �2 order. The positive branch represents
a propagating mode, while the negative branch represents a
holelike mode which contributes to quantum fluctuations. The
case of a0 > 0 and ξ 2 > 0 [Fig. 1(a)] corresponds to parti-
clelike pairing, with a monotonically increasing energy and a
positive effective pair mass, B > 0 and tB > 0, so that q = 0 is
the bottom of the pair energy. For the a0 < 0 case [Fig. 1(c)],
this dispersion flips upside down into the blue dashed hole
mode. This corresponds to holelike pairing, for which q = 0
becomes a local maximum, with B < 0 and tB < 0, similar to
the hole band in a semiconductor. In the case of a pure lattice,
one could flip the sign of a0 via a particle-hole transforma-
tion so that this blue dashed line is flipped back to become
positive as the dispersion for hole pairs. However, for our
present case, due to the presence of the continuum dimension,
there is no easy way to do a particle-hole transformation so
that we have to stay with the (black solid) gapped positive
branch, which is a flip of the hole branch in Fig. 1(a), as
the dispersion of particlelike Cooper pairs. When a0 = 0, the
two branches become symmetric, without a gap. For all three
cases, the coefficients of the q2 terms in the inverse-T -matrix
expansion, ξ 2 and ξ 2

xy, must be positive. (Note that a1 is always
positive.) Indeed, as shown in Figs. 1(d)–1(f), for a negative
ξ 2, the dispersion �̃q of both particlelike [Figs. 1(d)] and
holelike [Fig. 1(f)] pairs quickly becomes diffusive and thus
ceases to exist, unless higher-order terms, e.g., the q4 terms,
are included. In that case, the pair dispersion will reach a
minimum at a nonzero q. Our numerics shows that in a 2DOL,
ξ 2 in the continuum dimension remains positive in general but
ξ 2

xy ∝ a0tB in the lattice plane may indeed change sign so that
ξ 2

xy > 0 will constitute another stability requirement for the
superfluid phase.

Finally, the superfluid density must also be positive def-
inite in a stable superfluid [9,19,45]. This, however, has
been found to be a weaker constraint in the cases of a 3D
continuum [9,19].

C. Superfluid density

As a representative transport property, superfluid density
is an important quantity in the superfluid phase. While it is
always given by n/m at zero T for the balanced case in a
3D continuum, it will take the average of the inverse band
mass in the presence of a lattice. Furthermore, in the presence
of population imbalance, it may become negative [9,19,46],
signaling an instability of the superfluid state. Here we also
investigate the behavior of the anisotropic superfluid density
(ns/m) and pay close attention to the population imbalanced
case and the situations where it becomes negative.

The expression for superfluid density can be derived using
the linear-response theory within the BCS framework. The re-
sult is identical to that obtained within the pairing fluctuation
theory [9,19,42,46–48] at T = 0,

(ns

m

)
i
=

∑
k

�2

E2
k

(
	(Ek↑)

Ek
− δ(Ek↑)

)(
∂ξk

∂ki

)2

, (7)

where i = x, y and z for the lattice and the continuum direc-
tions, respectively.

It should be noted that on a lattice, where the band mass is
momentum dependent and thus no longer a constant, one can
only define the ratio (ns/m) as a single variable for the lattice
dimensions, without separate definitions of ns and effective m.
(Experimentally, the superfluid density of a superconductor is
measured via the London penetration depth [42].) For lattice
dimensions the m inside this ratio has no relation to the bare
mass from the continuum dimension. At zero T , one may
however calculate the average (1/m) for the balanced case by
setting ns = n. For the continuum dimension, indeed, we have
(ns/m)z = n/m = (2/3π2)kFEF at zero T .

III. NUMERICAL RESULTS AND DISCUSSION

Due to the multiple tunable parameters for the present
2DOL, the compete multidimensional phase diagram can be
extremely complex. Therefore, we focus on the lattice effect
for the p = 0 case, together with the population imbalance for
the p 
= 0 case, to give several representative and informative
phase diagrams. For our numerics, it is convenient to de-
fine the Fermi momentum kF = (3π2n)1/3 and Fermi energy
EF ≡ kBTF = h̄2k2

F/2m as the units of momentum and energy,
respectively, which also sets 2m = 1. Note, however, that this
EF is not equal to the chemical potential in the noninteracting
limit.

A. Fermi surfaces in the noninteracting limit

The Fermi surface plays an important role in the superfluid
and pairing behavior of atomic Fermi gases. For a 2DOL, it
is very different from the 3D continuum or 3D lattice case,
as well as from the 1DOL case [15,36,40]. This will lead to
different physics. Here we first present the shape and topology
of the Fermi surface for a series of representative sets of lattice
parameters (t, d ). Shown in Fig. 2 is the typical evolution be-
havior of the Fermi surface, calculated self-consistently in the
noninteracting limit at zero temperature. The top row shows
the evolution with the lattice constant, for kFd = 1, 2, 3, and 4
at fixed hopping integral t/EF = 0.05. The bottom row shows
the effect of the hopping integral with t/EF = 0.01, 0.04, 0.07,
and 0.1 and fixed kFd = 3.

The lattice constant d provides a confinement in the mo-
mentum space; the larger the d , the stronger the confinement.3

The top row in Fig. 2 suggests that the Fermi surface becomes
thicker along the z direction as d increases for fixed t . Indeed,
fermions experience a stronger confinement in the lattice di-
mensions with a shrinking first Brillouin zone (BZ), as kFd
increases from 1 to 4, and thus need to occupy higher-kz states
to keep the Fermi volume unchanged so that the noninteract-
ing fermionic chemical potential is pushed up. As a rough
estimate, the maximum occupied kz increases by a factor of
16 from left to right. For relatively small t/EF = 0.05, the
shape and topology of the Fermi surface evolve from a closed
plate for kFd = 1 into one with only the top and bottom faces
while completely open on the four sides at the BZ boundary of

3The confinement also changes the two-body binding energy.
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FIG. 2. Evolution of the Fermi surface of atomic Fermi gases in a 2DOL for fixed t/EF = 0.05 (top row) with kFd = 1, 2, 3, 4, and fixed
kFd = 3 (bottom row) with t/EF = 0.01, 0.04, 0.07, and 0.1, from left to right.

the lattice dimensions for kFd = 3 and 4. For the intermediate
kFd = 2, the Fermi surface is open only at the center of the
four side faces at the BZ boundary. At the same time, the
effective filling factor in the lattice dimensions increases to
nearly unity as kFd increases from 1 to 4. In this way, for
large d , fermion dispersion on the Fermi surface on average
becomes holelike in the lattice plane, while it always remains
particlelike in the continuum dimension.

On the other hand, a smaller t makes the fermion energy
less dispersive in the lattice dimensions, and thus the lattice
band becomes narrower and more fully filled. In other words,
fermions will tend not to go to higher-kz states until the BZ
at lower kz is fully occupied, leading to a flatter top and
bottom of the Fermi surface. This will also pull down the
noninteracting fermionic chemical potential. As shown in the
bottom row in Fig. 2, the Fermi surface becomes thinner and
flatter in the z direction as t/EF decreases from 0.1 to 0.01 for
fixed kFd = 3. In contrast, the t/EF = 0.07 and 0.1 cases have
a much more dispersive Fermi surface as a function of the
in-plane momentum (kx, ky). Fermions at high-(kx, ky) states
are removed for relatively large hopping integrals t/EF = 0.07
and 0.1.

The evolution of the Fermi surface reveals that the in-plane
fermion motion on the Fermi surface becomes holelike for
relatively small t and large d . As a result, the nature of the
in-plane and overall pairing in this case will also change from
particlelike to holelike when the contributions from lattice
dimensions are dominant in the BCS and unitary regimes [37].

It should be mentioned that in the strong-pairing regime,
the detailed shape of the Fermi surface is no longer relevant,
as pairing extends essentially to the entire momentum space.
However, the confinement in the momentum space imposed
by the lattice periodicity is always present and will govern the
physical behavior in the BEC regime.

B. Phase diagram for the population balanced case

It is known from the 3D continuum case that the bal-
anced case and the imbalanced case with p → 0+ are not
continuously connected in the BCS and unitary regimes at
T = 0 [19,49]. Population imbalance leads to very distinct

behaviors. Therefore, we present in this section the balanced
results only.

In Fig. 3 we present a typical phase diagram in the d-U
plane [Fig. 3(a)], for fixed relatively small t/EF = 0.05, and
in the t-U plane [Fig. 3(b)], for relatively large kFd = 3,
corresponding to the cases of the top and bottom rows in

FIG. 3. Phase diagram in the balanced case in (a) the d-U plane
for t/EF = 0.05 and (b) the t-U plane for kFd = 3. The (orange
dashed) a0 = 0 curve separates holelike pairing (yellow shaded re-
gion) on the left from particlelike pairing on the right. Enclosed
inside the (green) tB = 0 line is a pair density wave ground state
(gray shaded region). Also plotted is the (black dot-dashed) μ = 0
line. The (cyan) dotted line denotes the upper limit for (a) d and
(b) t , as defined by 2mtd2 � 1.
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Fig. 2, respectively. The lattice constant in Fig. 3(a) ranges
from relatively small kFd = 1 with 2mtd2 = 0.05 to the upper
limit kFd = 2

√
5 with 2mtd2 = 1 denoted by the horizontal

(cyan) dotted line, and the hopping integral in Fig. 3(b) ranges
from relatively small t/EF = 0.01 with 2mtd2 = 0.09 to the
upper limit t/EF = 1/9 with 2mtd2 = 1 denoted by the hori-
zontal (cyan) dotted line. In both panels the (black dot-dashed)
μ = 0 curve defines the boundary between the fermionic and
the bosonic regimes. The (yellow) shaded region on the left
of the (orange) dashed a0 = 0 curve is a holelike pairing
regime with a0 < 0, whereas the overall pairing evolves from
holelike into particlelike with a0 > 0 across the a0 = 0 curve.
A PDW ground state with tB < 0 emerges within the gray
shaded region, enclosed within the (green) tB = 0 curve. The
entire phase space is a superfluid except for the PDW phase.
Note that the PDW phase usually starts immediately before μ

decreases down to zero, as the pairing strength increases. The
fact that there are two branches of the tB = 0 curve indicates
that there is a reentrant behavior of Tc as a function of pairing
strength. In the absence of population imbalance, similar reen-
trant behavior of superfluidity and associated PDW ground
state have not been found in any other balanced systems with
a short-range pairing interaction, except in a very narrow
range of density slightly above 0.53 in the attractive Hubbard
model [48,50,51]. With a long-range anisotropic dipole-dipole
interaction, however, such a reentrant behavior and PDW state
have been predicted in the p-wave superfluid in dipolar Fermi
gases [39].

As shown in Fig. 3, the interaction range for holelike pair-
ing extends toward a stronger-pairing regime with increasing
d [Fig. 3(a)] or decreasing t [Fig. 3(b)]. This can be explained
by the evolution of the shape and topology of the Fermi
surface, as shown in Fig. 2. As d increases or t decreases,
the Fermi surface gradually opens up at the four X or Y points
located at (kx, ky) = (±π/d, 0) and (0,±π/d ) and becomes
fully open at the first BZ boundary for large d and small t ,
leading to an effective filling factor above 1

2 in the lattice
dimensions. In contrast to the 1DOL case, the existence of two
lattice dimensions is enough to dominate the contributions
of the remaining one continuum dimension (which is always
particlelike due to its parabolic fermion dispersion) so that
both the in-plane and overall pairing become holelike when
d is large or t is small, with a0 < 0 in the linear frequency
term of the inverse-T -matrix expansion. This is especially true
in the weak-coupling regime, where the superfluidity is more
sensitive to the underlying Fermi surface. As the interaction
becomes stronger toward the BEC regime, the gap becomes
large and the Fermi level (i.e., chemical potential μ) decreases
and then becomes negative; hence the shape of the noninter-
acting Fermi surface is no longer important. In this case, the
contributions from the lattice dimensions will spread evenly
across the entire BZ, so that the continuum dimension will
become dominant, and the overall pairing eventually changes
from holelike to particlelike (with a0 > 0). As shown in Fig. 2,
within the occupied range of kz, the average (or effective)
filling factor within the first BZ in the x-y plane increases with
increasing d and/or decreasing t . Therefore, as d increases or
t decreases, the effect of the above-half-filling status persists
into stronger pairing regime and thus the holelike pairing
region in Fig. 3 extends toward right.

FIG. 4. Behaviors of (a) μ and a0 and (b) 2np/n and � as a
function of U/Uc for t/EF = 0.05 and kFd = 3 without population
imbalance. The maximum of μ corresponds to the minimum of the
pair fraction 2np/n.

Shown in Fig. 4 is the behavior of μ as a function of U
[Fig. 4(a)], along with 2np/n [Fig. 4(b)], where np ≡ a0�

2,
for t/EF = 0.05 and kFd = 3. Also plotted are a0 and �. This
corresponds to a horizontal cut at kFd = 3 in Fig. 3(a) or at
t/EF = 0.05 in Fig. 3(b). Inside the holelike pairing regime,
a0 < 0 and thus the chemical potential μ goes above its nonin-
teracting value. This can be seen from the expression [37,48]

∑
k

	(−ξk ) = n/2 − a0�
2. (8)

The chemical potential μ increases with the pairing strength,
until it reaches a maximum where np reaches a minimum.
Here np can be roughly understood as the pair density, so
2np/n is the pair fraction, which reaches unity in the BEC
regime. This plot is very close to its counterpart at Tc, which
can be found in Ref. [37], since the temperature dependences
of both μ and a0 are weak, except that here a0 changes sign
at a slightly larger U/Uc. As usual, the excitation gap �

increases with U/Uc.
The PDW ground state in Fig. 3 with tB < 0 at a

intermediate-coupling strength for relatively large kFd with
fixed t/EF = 0.05 [Fig. 3(a)] or small t with fixed kFd = 3
[Fig. 3(b)] is associated with the strong interpair repulsive
interaction, relatively large pair size, and high pair density.
Close to μ = 0, nearly all fermions have paired up with a
relatively large pair size and a heavy effective pair mass, and
the interpair repulsive interaction becomes strong. A large d or
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FIG. 5. Behaviors of (a) μ or μσ and (b) � as a function of U/Uc

for p = 0 (black lines), 0.05 (red lines), and 0.1 (blue lines), with
fixed t/EF = 0.05 and kFd = 1. Here solid and dashed lines denote
stable and unstable solutions, respectively.

small t strongly suppresses the pairing hopping kinetic energy,
and the large pair size and high pair density strongly reduce
the pair mobility. All these factors lead to Wigner crystalliza-
tion and hence PDW in the x-y plane, which can also be called
a Cooper pair insulator. The negative sign of tB within the gray
shaded region indicates that the minimum of the pair disper-
sion �̃q has shifted from q = 0 to q = (π/d, π/d, 0), with
a crystallization wave vector (qx, qy) in the x-y plane.4 An
example of the pair dispersion in the PDW state can be found
in Fig. 4 of Ref. [37]. As the pairing interaction increases
in the BEC regimes, the pair size shrinks and the interpair
repulsive interaction becomes weak; hence tB changes from
negative back to positive, corresponding to a quantum phase
transition from a PDW insulator to a superfluid.

Combining Figs. 2 and 3, we find that the emergence
of holelike pairing and the PDW phase is associated with
the open Fermi surface topology. Once the Fermi surface is
closed, both holelike pairing and the PDW phase disappear.

In the case of a closed Fermi surface, typical behaviors
of the chemical potential μ and the excitation gap � for the
balanced case can be seen from the p = 0 lines in Fig. 5,
calculated for t/EF = 0.05 and kFd = 1. Here μ decreases

4Here we use a simple nearest-neighbor tight-binding form as an
approximation for the pair dispersion. If higher-order terms are in-
cluded, the crystallization wave vector could be at different momenta
other than q = (±π/d,±π/d, 0).

FIG. 6. Phase diagrams at p = 0.001 in (a) the d-U plane with
t/EF = 0.05 and (b) the t-U plane with kFd = 1.5. As labeled, the
solid lines along with the (red) stability line split the diagram into
four phases: normal gas (gray shaded region, on the left of the black
T MF

c = 0 line), unstable mean-field superfluid (unshaded region),
PDW phase (dot shaded region), and stable polarized superfluid (yel-
low shaded region, bounded by the green tB = 0 line). The pairing
on the right of the a0 = 0 (blue dashed) line has a holelike nature.
The chemical potential μ = 0 (black dot-dashed) line separates the
fermionic regime (on the left) from the bosonic regime (on the right).
The (magenta) dotted line sets the upper bound for t via 2mtd2 � 1.

monotonically with U/Uc. Without a holelike pairing regime,
these solutions look qualitatively similar to other cases, e.g.,
in a 3D continuum or 3D lattice, except that they follow a
different asymptotic behavior in the BEC limit [37].

C. Phase diagram for the population imbalanced case

We now proceed and present our results for the popula-
tion imbalanced case. With the added parameter p, the phase
diagram becomes much more complicated. It renders the oth-
erwise superfluid state unstable in the vast areas in the phase
space.

To make the comparison easier, we begin by presenting
phase diagrams in Fig. 6 in the same d-U [Fig. 6(a)] and
t-U [Fig. 6(b)] planes as in Fig. 3 but with a tiny nonzero
p = 0.001. Here a normal gas phase (gray shaded) emerges
in the weak-coupling regime, delineated by the (black solid)
T MF

c = 0 line, which is given by Eqs. (3)–(5) with � = 0.
Indeed, in the presence of an imbalance, pairing cannot take
place for an arbitrarily weak interaction. There exists a stable
PSF phase (yellow shaded region), defined by the (green solid)
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tB = 0 line and further confined by the stability condition (red
solid line). The PSF phase resides in the low-d and large-t
regime. A PDW ground state emerges in the dot shaded re-
gion, enclosed by the tB = 0 line and the dashed part of the
(red) stability line. Then the rest, unshaded space allows for
an unstable mean-field superfluid solution, which may yield
to phase separation. Now that the underlying lattice in the
x-y plane breaks the continuous translational symmetry, the
exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states may
possibly exist in part of the unstable region [52–54].

One can immediately tell that the vertical axes in Fig. 6
take different parameter ranges from those in Fig. 3, even
though the imbalance p = 0.001 is very small. While the d-U
phase diagram in Fig. 6(a) is still calculated with t/EF = 0.05,
the stable PSF phase is now restricted to relatively small d
(yellow shaded area). However, the t-U phase diagram has
to be calculated at a much smaller d , with kFd = 1.5, as
there is no stable PSF phase for kFd = 3 within the constraint
2mtd2 � 1 (i.e., t/EF � 1/9). In both cases in Fig. 6, the
Fermi surface is closed. Unlike the balanced cases, one cannot
find a stable superfluid solution with an open Fermi surface.
For this reason, one does not find a holelike pairing region
in the weak-coupling regime, but rather one in the strong-
coupling regime, on the right of the (blue dashed) a0 = 0
line. Note that in the superfluid phase of holelike pairing
(on the right of the blue dashed line), both a0 and tB are
negative but the product ξ 2

xy is positive. Outside the tB = 0
curve, we have ξ 2

xy < 0, so the mean-field superfluid solution
becomes unstable, yielding to the PDW phase. The smallness
of p suggests that the ground state of p → 0+ is not con-
tinuously connected to the p = 0 case, consistent with that
in the 3D continuum [19]. In comparison with Fig. 3, the
current large PDW phase in the bosonic regime is totally a
consequence of population imbalance.

Now we take p as a varying parameter and explore phase
diagrams in the p-U plane. Shown in Fig. 7 are the phase di-
agrams for (t/EF, kFd ) = (0.15, 1) [Fig. 7(a)], (t/EF, kFd ) =
(0.05, 1) [Fig. 7(b)], and (t/EF, kFd ) = (0.15, 1.5) [Fig. 7(c)].
Figures 7(b) and 7(c) show the effect of changing t and d ,
respectively. In all three cases, there are three different phases,
delineated by solid lines, as well as a PDW phase. A normal
gas phase (gray shaded region) takes the weaker-coupling and
larger-p area, on the left of the T MF

c = 0 curve. The vast ma-
jority is an unstable mean-field superfluid (unshaded region),
which should yield to phase separation or FFLO solutions.
The stable PSF phase (yellow shaded region) occupies only
a small area. Finally, the PDW phase (dot shaded region)
takes the small region next to the PSF phase, bounded by the
(red dashed) stability ∂2�S/∂�2 = 0 line and (green solid)
tB = 0 line. When compared with Fig. 7(a), one readily sees
that the PSF phase shrinks as t decreases [Fig. 7(b)] and/or
as d increases [Fig. 7(c)]. This is because both increasing d
and reducing t lead to stronger momentum confinement in the
lattice dimensions. In agreement with Fig. 6, the Fermi surface
for all these three cases is closed. Note that the (red) stability
line and the (green) tB = 0 line cross each other, and the PSF
phase is bounded by the stronger of these two conditions. Also
plotted here are the lines along which the superfluid density
vanishes. As found in the 3D continuum, the positivity of su-

FIG. 7. Phase diagrams in the p-U plane for (a) (t/EF, kFd ) =
(0.15, 1), (b) (t/EF, kFd ) = (0.05, 1), and (c) (t/EF, kFd ) =
(0.15, 1.5). The solid T MF

c = 0 (black) and tB = 0 (green) lines,
as well as the (red) stability ∂2�S/∂�2 = 0 line (both solid and
dashed) divide the plane into four phases: normal gas (gray shaded
region), unstable superfluid (unshaded region), PDW phase (dot
shaded region), and stable PSF. Across the a0 = 0 (blue dashed) line
the pairing nature changes from particlelike (on the left) to holelike
(on the right). The μ = 0 (violet dotted) line separates fermionic
(left) from bosonic (right) regimes. Also plotted are lines of the
superfluid density (ns/m)x = 0 (magenta dot-dashed line) in the x
direction and (ns/m)z = 0 (cyan dot-dashed line) in the z direction.
The superfluid density is negative on the weaker-coupling or larger-p
side of these curves. Shown in the inset of (c) is a close-up of the
PSF phase.

perfluid density constitutes a much weaker stability constraint,
as both lines of (ns/m)x = 0 in the lattice dimension and
of (ns/m)z = 0 in the continuum dimension lie completely
within the unstable area. Note that while the (ns/m)z = 0
line looks very similar to its 3D continuum counterpart, the
(ns/m)x = 0 line exhibits an unusual nonmonotonic behavior,
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caused by the lattice effect. From the (violet dotted) μ = 0
curve, one readily sees that, as in Fig. 6, the PSF phase resides
completely within the bosonic regime.

The fact that the PSF phase exists only in a small bosonic
region (in both Figs. 6 and 7) is in stark contrast with the 3D
continuum case, for which the stability line ∂2�S/∂�2 = 0
extends monotonically up to p = 1, and a polarized superfluid
exists for arbitrary imbalance p in the BEC regime [19].
Apparently, this difference can be attributed to the presence
of two lattice dimensions. Indeed, for a 1DOL, with only one
lattice dimension, the stability line already cannot extend to
p = 1. However, the PSF phase in the 1DOL can extend all
the way to the deep BEC limit [44]. This is also supported by
the fact that with three lattice dimensions in a 3D attractive
Hubbard model, one can barely find a PSF state except at
very low density and extremely low p [55]. Therefore, one can
conclude that more lattice dimensions makes it more difficult
to have a stable PSF ground state.

This phenomenon can be easily understood from the mo-
mentum distribution of paired fermions, which would be given
by v2

k had there been no imbalance. In the 3D continuum,
v2

k in the deep BEC regime extends to the entire infinitely
large momentum space in all directions, leading to a van-
ishingly small occupation for paired fermions. Therefore, the
excessive majority fermions can readily occupy the low mo-
mentum states, with essentially no Pauli blocking from paired
fermions. However, when one or more lattice dimensions are
present, the momentum in these dimensions is restricted to the
first BZ, so that v2

k in these dimensions cannot be infinitesi-
mally small even in the extreme BEC limit, which will cause
a repulsion with excessive majority fermions. This repulsion
increases with p and may become costly enough so as to
render the mean-field superfluid solution unstable. As a result,
the distribution of paired fermions is now roughly given by
that of the minority fermions, nk↓ = 	(Ek↑)v2

k, which reduces
to v2

k for p = 0.
Unlike the p = 0 case, for which holelike pairing takes

place in the weaker-coupling regime when t is small and/or
d is large, here holelike pairing occurs in the BEC regime
via a completely different mechanism. As mentioned above,
all three cases shown in Fig. 7 have a closed noninteracting
Fermi surface. As the pairing becomes stronger, the momen-
tum distribution of v2

k in the x-y plane extends to the entire first
BZ and becomes roughly a constant at strong coupling; in the
absence of population imbalance, this would lead to a rough
cancellation (via averaging over the inverse fermion band
mass) due to the particle-hole symmetry of the lattice band.
However, for any finite p, the excessive majority fermions
will tend to occupy the low-(kx, ky) states and thus expel
paired fermions toward higher (kx, ky) states, which have a
negative (i.e., holelike) band mass, leading to a net holelike
contribution to a0 in the pair propagator, when integrated over
the entire BZ. This also explains why the a0 = 0 line leans
toward weaker coupling with increasing p.

Shown in Fig. 8 is an example of the momentum distri-
butions of v2

k (left column), nk↓ (middle column), and δnk
(right column) in the (kx, ky) plane at kz/kF = 0 (top row),
kz/kF = 0.2 (middle row), and kz/kF = 0.4 (bottom row), with
U/Uc = 4 and p = 0.05, for t/EF = 0.15 and kFd = 1.5. This
corresponds to a PDW state in Fig. 7(c). Indeed, the exces-

sive fermion distribution δnk = 	(−Ek↑) occupies the low
in-plane momentum part and below kz/kF = 0.4 (right col-
umn). In addition, v2

k (left column) remains roughly constant
in the entire BZ and for |kz/kF| � 0.4. Most interestingly, the
minority fermion distribution nk↓ (middle column) is given
by v2

k but with a hole dug out at the center, due to the Pauli
repulsion with the excessive fermions.

As a representative example, we show in Fig. 5 the behav-
ior of μσ [Fig. 5(a)] and the gap � [Fig. 5(b)] for p = 0.05
(red line) and 0.1 (blue line) with fixed t/EF = 0.05 and
kFd = 1, as a function of U . They correspond to horizontal
cuts at p = 0.05 and 0.1 in Fig. 7(b) and should be compared
with the p = 0 case (black solid curves). The solid parts of
these lines are stable PSF solutions, while the dashed lines
are unstable mean-field solutions. There are a few remarkable
features. First, the excitation gap changes only slowly with
imbalance p, except that it does not have a solution below a
certain threshold of interaction strength. Second, at a given
pairing strength, the μσ for p = 0.05 and 0.1 are very close to
each other, but both far separated from the μ curve for p = 0.
This again indicates that the p → 0+ case is not continuously
connected to the p = 0 case; with a tiny bit of imbalance, μ↑
and μ↓ immediately split up. Finally, μ↑ increases slowly with
pairing strength in the BEC regime. This is different from its
counterpart in the 3D continuum and 1DOL; for the former μ↑
decreases, while for the latter μ↑ approaches a p-dependent
constant asymptote, as the pairing strength increases toward
the BEC limit. This can be attributed to the emergence of
holelike pairing (with a0 < 0) in the strong-pairing regime
as the number of lattice dimensions increases. To verify this
idea, we have also checked the mean-field solution for an
imbalanced 3DOL and found that, indeed, μ↑ also increases
with the pairing strength in the BEC regime at T = 0, along
with a negative a0.

Finally, we present the typical behavior of the superfluid
density in the imbalanced case. Shown in Fig. 9 are (ns/m)z

[Fig. 9(a)] and (ns/m)x [Fig. 9(b)] in the continuum and lattice
dimensions, respectively, as a function of U/Uc for p = 0,
0.05, and 0.1 at fixed t/EF = 0.05 and kFd = 1. Here solid
and dashed lines are stable and unstable solutions, respec-
tively. As expected, both are always positive for the balanced
case. In addition, (ns/m)x is much smaller than (ns/m)z, be-
cause it involves the average of the inverse band mass. Note
that (ns/m)z = n/m ≈ 0.0675(kFEF), as expected. For the im-
balanced case, the superfluid density deviates continuously
from its positive p = 0 value as p increases from 0. However,
in the unitary and weak-coupling regimes, both continuum
and lattice components will become negative for p 
= 0. Fur-
thermore, the superfluid density is more negative for smaller
(but finite) p. This implies an immediate discontinuous jump
from the p = 0 value to a large negative value for p = 0+ in
this regime. Note that for strong enough interaction, (ns/m)x

will again change sign to negative, but gradually rather than
abruptly, as can already be seen from the p = 0.1 curve.
This has to do with the lattice-induced confinement in the
momentum space and the Pauli exclusion between paired and
excessive fermions.

So far, it is not yet clear whether the PDW state can sustain
a superfluid order, with and without an imbalance. If the
answer is that it can, then it will become a supersolid state
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FIG. 8. Momentum distributions of v2
k (left column), nk↓ (middle column), and δnk (right column) in the (kx, ky ) plane at kz/kF = 0 (top

row), kz/kF = 0.2 (middle row), and kz/kF = 0.4 (bottom row), with U/Uc = 4 and p = 0.05, for t/EF = 0.15 and kFd = 1.5. The excessive
fermion distribution δnk occupies the low in-plane momentum part and below kz/kF = 0.4 (right column), v2

k (left column) remains roughly
constant in the entire BZ and for |kz/kF| � 0.4, and nk↓ (middle column) is given by v2

k but with the central part expelled.

rather than a Cooper pair insulator. Other issues include how
the wave vector of the PDW evolves with various parameters.
The exact solution of the PDW state will require a new theory
that is beyond the scope of the present work. We leave this to
a future study.

It should be noted that we have worked with a system with
homogeneous fixed densities. For this reason, we have not
chosen to use μ and h as control variables, which are more
appropriate for systems connected with a large reservoir so
that the chemical potentials are fixed or can be tuned sepa-
rately. In such a case, all h <

√
min(0, μ)2 + �2 correspond

to the population balanced state. One can, however, convert
between these two approaches, by calculating corresponding
densities (and Fermi energy) for given μ and h and performing
a rescaling.

Finally, we mention that the polaron physics [31,32,56,57]
is partially included in the BCS–mean-field-like treatment, in
that the Hartree self-energy has been absorbed in the fermion
chemical potential μσ [see Eq. (2.4) in Ref. [48]]. While
this chemical potential does determine the location of the
Fermi surface in momentum space, it however differs from the
physical chemical potential by the Hartree energy. The treat-

ment of fermion mass renormalization as done in the polaron
physics goes beyond the mean-field level of the current BCS-
Leggett formalism, despite that it can be readily calculated
using a T -matrix approach. Nevertheless, we emphasize that
the polaron physics is most relevant at extreme high imbal-
ance, whereas the stable polarized superfluid and PDW state
of interest are mainly in the low imbalance regime (Fig. 7),
where the polaron physics is not expected to play an important
role.

IV. CONCLUSION

In summary, we have studied the superfluid phase diagram
of Fermi gases with a short-range pairing interaction in a
2DOL at zero temperature with and without population im-
balance in the context of BCS-BEC crossover. We found that
the mixing of lattice and continuum dimensions, together with
population imbalance, has an extraordinary effect on pairing
and the superfluidity of atomic Fermi gases. For the balanced
case, the ground state is a stable superfluid, except that a PDW
ground state emerges for a finite range of intermediate pairing
strength in the case of relatively small t and large d , and the
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FIG. 9. Superfluid densities (a) (ns/m)z and (b) (ns/m)x , in units
of kFEF, as a function of U/Uc for p = 0 (black line), p = 0.05
(red line), and p = 0.1 (blue line) at t/EF = 0.05 and kFd = 1.
Solid (dashed) lines denote stable (unstable) solutions. Shown in the
inset is 20 times magnified (ns/m)x vs U/Uc. Note that for p = 0,
(ns/m)z = n/m at T = 0.

nature of the in-plane and overall pairing may change from
particlelike to holelike in the BCS and unitary regimes for
these t and d , which are associated with an open Fermi surface
on the BZ boundary of the lattice dimensions. Thus the phase
space for the PDW ground state and holelike pairing shrinks
with increasing t and/or decreasing d .

For the imbalanced case, the presence of population im-
balance has a dramatic detrimental effect, in that the stable
polarized superfluid phase occupies only a small region in

the bosonic regime in the multidimensional phase space and
will shrink and disappear with increasing d and p and de-
creasing t . The PSF phase can be found only for relatively
large t and small d , associated with a closed noninteracting
Fermi surface, as well as for low p. In comparison with the
3D continuum, the presence of lattice dimensions introduces
confinement in the momentum space, which leads to strong
Pauli repulsion between paired and excessive fermions. Due to
this repulsion, the nature of pairing changes from particlelike
to holelike in the strong-pairing regime and a PDW phase
emerges next to the PSF phase. In addition to the normal gas
phase, stability analysis shows that an unstable mean-field so-
lution exists and may yield to phase separation (and possibly
FFLO states) in the rest of the phase diagram.

These findings for the 2DOL are very different from
pure 3D continua, 3D lattices, and 1DOLs and should be
tested in future experiments. The momentum distributions
of both fermion spin components may be detected using
spin-selective momentum-resolved rf spectroscopy [58,59].
Precision momentum-resolved rf spectroscopy may also help
measure the quasiparticle dispersion and the pairing gap and
detect the movement of the Fermi level with the interac-
tion strength in the holelike pairing regime [60]. The pair
momentum distribution and pair fraction may be detected
using time-of-flight measurements, for which, in both the
superfluid and PDW phases, magnetic-field sweep may be
needed [61,62]. A maximum of pair distribution at a nonzero
in-plane momentum will be support for the PDW phase.
The Fermi surface and its topology may be detected with
the fermion band-mapping technique [17]. One may also
explore the unstable phases using in situ imaging techniques
to probe possible phase separation [63]. A vortex experiment
may also be done to delineate possible superfluid regions in
the phase diagrams [4].
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