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Bayesian learning for optimal control of quantum many-body states in optical lattices
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Strongly correlated quantum many-body states provide invaluable resources for state-of-the-art quantum
information science, ranging from quantum simulation to quantum metrology. In this work, we propose a
supervised machine learning algorithm for optimal control of quantum many-body atomic states in optical
lattices by numerical simulations based on the Bayesian method of Gaussian process regression (GPR). We
combine this method with the time evolving block decimation (TEBD) algorithm for the preparation of the
Heisenberg antiferromagnetic state in a system of bosonic atoms confined with a one-dimensional optical lattice.
The quantum many-body ground state of 80 atoms is efficiently optimized within a few hundred machine learning
iterations, reaching a state fidelity above 96%. With a multistep learning strategy, we find the machine-learning-
based optimal control method is scalable to large systems owing to its transferability. Its robustness against
noise is demonstrated by considering imperfections that are typically present in optical lattice experiments. In
the application of the GPR method to the preparation of the two-dimensional (2D) antiferromagnetic state, a
state fidelity of 94% is reached for a 2D array of 6 × 6 spins through the time dependent variational principle
(TDVP) algorithm, confirming the generalizability of our method. We further optimize the Hamiltonian ramping
sequence crossing a quantum phase transition of the quantum XXZ spin chain with the exact diagonalization
method, from which a control protocol for generating the long-sought atomic Greenberger-Horne-Zeilinger state
is obtained. We believe the proposed optimal control method for quantum Hamiltonian ground-state preparation
would benefit present ultracold-atom experiments in the study of strongly correlated many-body physics.
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I. INTRODUCTION

Controlling and studying quantum many-body physics are
an important research frontier in quantum information science
and condensed-matter physics [1–5]. In the last few decades,
quantum simulation has become a versatile tool to investigate
quantum many-body phases and dynamics [6–8]. By engi-
neering strongly correlated many-body systems, varieties of
quantum Hamiltonians have been studied based on different
platforms, such as cold atoms, ion traps, superconducting
circuits, and photonic systems [9–15].

One major challenge in these platforms is preparing a
quantum many-body state in a large Hilbert space with a
dimensionality that scales exponentially with the system size.
One standard approach to reach a quantum many-body ground
state is via adiabatic time evolution. Specifically, one first
prepares an isolated pure quantum state under an initial
Hamiltonian, then changes the Hamiltonian while preserving
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coherence so that the quantum state approaches the target
state [16]. In experiment, the adiabatic passages can be op-
timized with the help of classical optimal control methods,
such as the chopped random basis [17], gradient-ascent pulse
engineering [18], and the quantum approximate optimiza-
tion algorithm [19,20]. They have been successfully used in
optimizing multiqubit quantum gates [21], controlling nu-
clear magnetic resonance [22], and solving the maximum
2-satisfiability (MAX-2-SAT) problems [23]. However, their
performances are limited in multivariable optimization prob-
lems, especially when considering experimental constraints,
such as time limitations and systematic noises [24,25].

An alternative approach is to optimize the coherent evo-
lution through machine learning algorithms [26–29], which
has been shown to be successful in treating large parameter
space by exploiting a large amount of data. Several algorithms
have been used for different platforms [30–32], and schemes
have been proposed for ultracold atoms [33,34]. Specifically,
Gaussian process regression (GPR) is a generic supervised
learning method based on Bayes’ rule, which can build a
probabilistic model from training data [35].
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FIG. 1. The AFM preparation assisted by GPR. (a) The general scheme for a single GPR loop. (b) Ground-state passage in the 1D
Heisenberg chain to the AFM. The dynamical evolution starts from the Néel state (circle) in a strong field and ends in an AFM (star). The
solid lines are the energy levels for finite chain length L = 20 (thick line: the gap between the ground state and the first excited state). �g is
the energy gap between the ground state and the first excited state when the external field q = 0.

Compared to other machine learning methods, such as
support vector machines [36] and neural networks [37], GPR
is expected to be more feasible to experimental implemen-
tation, as it requires a relatively smaller training data set,
especially in solving the optimizing problem with few dozens
of control parameters [38,39]. Moreover, folding noise into
the kernel function, one can accommodate different instabil-
ities in experiments [40]. This algorithm has been recently
used to optimize the creation of Bose-Einstein condensate in
cold-atom experiments [41,42].

In this work, we implement the GPR algorithm to optimize
scalable quantum many-body states with ultracold atoms in
optical lattices. First, we simulate the preparation process
of the bosonic Heisenberg antiferromagnet (AFM) state in
a spin-1/2 chain [43–45] with matrix product states (MPSs)
[46]. By maximizing the fidelity of the final state to the many-
body ground state, the GPR algorithm produces sweeping
profiles of the control fields by which the one-dimensional
(1D) AFM state preparation fidelity reaches above 96%. Then,
we utilize the transferability of the optimization tasks to apply
a multistep learning strategy, further improving the scalability
of our method. Compared to the traditional methods, such as
the differential evolution (DE) and the Nelder-Mead (NM)
method, our method shows greater robustness against noise.
Afterward, we extend the algorithm to a square lattice and suc-
cessfully achieve a two-dimensional (2D) AFM in favorable
experimental settings. Finally, in optimizing the Hamiltonian
ramping sequence across a quantum phase transition in an
XXZ spin chain, we obtain an efficient protocol for creat-
ing the highly entangled Greenberger-Horne-Zeilinger (GHZ)
state. In this regard, we conclude that GPR is a practical ma-
chine learning tool for optimal control of quantum many-body
states.

II. OPTIMIZING WITH SUPERVISED LEARNING

We focus on the optimization problems in a class of quan-
tum many-body dynamics. The quantum system is prepared

from an initial state |�0〉 through a dynamical control field
X into a final state |�final〉. As sketched in Fig. 1, we use
the GPR algorithm based on the online policy [47], which
is convenient for experiments, to perform optimization tasks.
We first generate m sets of control fields {X1,X2, . . . ,Xm}
randomly. The corresponding costs {Y1,Y2, . . . ,Ym} are de-
rived from numerical simulations or laboratory experiments.
Next, these fields and costs are sent into the GPR as the
initial training set. The algorithm will build a probabilistic
model between the control fields and costs based on the ker-
nel function K{Xl ,Xm} [48]. Afterward, it will predict the
smallest cost with an optimal control field Xm+1. Then, the
corresponding cost Ym+1 is obtained from the final state, and
the probabilistic model is updated. Following this regression
loop, the optimization is achieved by gradually decreasing
the cost. For convenience, we define the cost function of the
control fields with the infidelity to the target state Y = 1 − F ,
F = |〈�final|�target〉|2. We can also choose other observables
for the cost functions according to the properties of the target
state, such as the energy E (|�final〉) for preparing a ground
state [48].

In this work, we choose the control field with a piecewise
linear function for experimental feasibility,

X (t ) = xi − xi−1

ti − ti−1
(t − ti−1) + xi−1, ti−1 � t < ti, (1)

with i = 0, 1, . . . , s (s is the segment number). Therefore,
the control field can be represented by a set of parameters
X = {t0, x0, t1, x1, . . . , ts, xs}. In the following sections, we
set segment number s = 4, and the dimension of the parame-
ters is 10–12 for different constraints, which is very suitable
for the GPR. The initial field is t0 = 0, x0 = xstart , and the
ending field is ts = τ , xs = xend. These control parameters will
be updated during the regression loops. It should be noted that
the control fields can be described with interpolated splines or
other designed continuous functions.
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III. OPTIMIZING HEISENBERG ANTIFERROMAGNETS
IN OPTICAL LATTICES

In this section, we apply the GPR method to optimize the
dynamical evolution to prepare bosonic AFMs in a spin-1/2
Heisenberg chain. The system was realized in our recent ex-
periments [45] and can be described by the spin-exchange
interactions and a staggered external field,

H (t ) = J
∑

〈i, j〉
SiS j + q(t )

L∑

i

(−1)iSz
i , (2)

where Si = {Sx
i , Sy

i , Sz
i } are the spin operators on the ith site,

L is the length of the lattice chain, J >0 describes the spin-
exchange interaction between nearest neighbors, and q(t )
is the time-dependent staggered longitudinal field. At zero
temperature, this model hosts a global SU(2) spin-rotation
symmetry. It can be solved with the exact methods for finite
systems of L�20, as shown in Fig. 1(b). In the thermo-
dynamic limit, the energy gap �g tends to be closed with
�g∝1/L [49]. Another interesting feature of this system is the
ground state, which is the Néel state in the strong staggered
field (i.e., |q|�J) and becomes the Heisenberg AFM at zero
field, q(t ) = 0.

In the experiment [45], we can easily initialize the system
in high field to the Néel state |↑↓↑↓ . . . ↑↓〉 with the spin-
dependent site-resolved addressing method [50]. Followed by
a designed passage for the fields of q(t ) and J (t ) in the spin
chain, the antiferromagnetic correlations are built up, and the
spin-rotation symmetry is successfully probed. However, nu-
merical simulations show that the AFMs remain imperfect due
to the nonadiabaticity of the fields. To improve this ground-
state passage, one must carefully find out an optimized path
for the control fields to achieve the AFMs.

Here, we use MPSs to derive the antiferromagnetic ground
state of a finite system and simulate its dynamical evolutions
with the TEBD method [46]. The bond dimensions are set to
D = 200 after checking the convergence of the simulations.
A set of typical experimental parameters is considered, with a
staggered field q(t ) of h × (0–25) Hz and spin-exchange inter-
action J (t ) of h × (0.2–26) Hz, and both of the control fields
are parametrized with four linear segments by Eq. (1). For a
demonstration of optimizing with GPR, we first take the case
of L = 80 and duration τ = 800 ms, in which the timescale
is comparable to current ultracold-atom experiments [51]. As
shown in Fig. 2(a), the cost Y converges quickly, which gives a
state fidelity of 96.2% in 432 loops and 97.1% in 1000 loops.
Thus, we successfully achieve the AFM with optimized fi-
delity, which is higher than the protocol in the XXZ spin chain
[52]. The ramping rate of optimized fields slows down when
approaching the critical region, where the energy gap tends to
be closed. It is in agreement with the local-adiabaticity (LA)
approach [53]. The spin correlations of the output state can be
derived as

Cd = 1

Nd S2

∑

i, j,d=i− j

〈
Sz

i Sz
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉
, (3)

with Nd being the number of different two-point lattice sites
separated by a distance d . The typical power-law-type spin
correlations for the optimized state are derived [shown in

FIG. 2. Optimizing the preparation of 1D Heisenberg AFMs.
(a) Optimization process for L = 80, τ = 800 ms. Each dot is the
measured cost in a single loop. Inset: the optimized sweeping pro-
files of staggered field q(t ) (blue diamonds) and the spin-exchange
interaction J (t ) (red circles) after 1000 loops. The markers indicate
the parametrized control fields at different time points (qi, Ji, ti ).
(b) Spin correlations Cd for the optimized fields (diamonds). The line
is the fitting curve with the power-law function. The inset shows the
difference of the correlation functions between the final state (Cd ) and
antiferromagnetic ground state (C0

d ). (c) and (d) Optimized fidelities
for increased chain lengths L and ramping times τ . The color bar is
in the parabolic scale.

Fig. 2(b)], where the nearest-neighbor (NN) and next-nearest-
neighbor spin correlations achieve C1 = −0.595 and C2 =
0.243, respectively. They are stronger than the experimentally
measured results in the Fermi-Hubbard model with C1 <−0.1
[54]. The strong correlations are very close to the AFM
ground states, indicating the establishment of entanglement
among the spin chain. Next, we analyze the preparation of
1D AFMs for different chain lengths L and evolution time τ ,
as shown in Fig. 2(c). By increasing the ramping time, the
output fidelity to the AFM gets larger and converges with
F >96%, proving the validity of our method. Meanwhile, the
expenditure of time is on the order of the quantum speed limit
[55], which is predicted to be τ ∝ h/�g ∝ L [dashed line in
Fig. 2(d)]. Compared to the previous proposal using linear
ramping curves, the required time to maintain the adiabaticity
scales as τ ∝ L2 [43]. Hence, our method may effectively
save the time cost to realize scalable quantum many-body
states [56].
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FIG. 3. The scalability of the GPR method. (a) The scheme of
a multistep learning strategy. The optimized field Xopt is transferred
step by step with increasing chain length from L = 10 to L = 80.
The GPR builds the training set with the derived costs from several
fields around Xopt to optimize a long chain. (b) Optimization process
of multistep learning strategy for τ = 800 ms. The area enclosed by
the dashed lines represents the learning process for different chain
lengths. Each dot is the measured cost in a single loop.

An important aspect for implementing the algorithm is the
resource cost, especially when optimizing large systems. For
example, the optimization task for L = 80 and τ = 800 ms
takes about 74 h to reach 96% state fidelity on a commercial
computer (Intel i9-10900X@3.7GHz processor). The time
cost is mainly for calculating the time evolution of MPSs,
which almost scales with the system size, limiting further
scaling of the system size. Taking advantage of the transfer-
ability of the GPR, we implement a multistep learning strategy
for a large system, which gradually finds the approximate
hyperparameters and a good initial curve from a small system.
Specifically, from the completed tasks, where the state fidelity
F�96%, the optimized fields and the hyperparameters of the
kernel function are subsequently forwarded to the training
process for a longer chain, as shown in Fig. 3(a). Following
this strategy, we consecutively optimize the AFMs of different
chain lengths from L = 10 to 80. With the increasing chain
length, we repeat 1, 29, 73, 37, 80, 90, 1, and 88 training
loops [see Fig. 3(b)]. To analyze the efficiency of the multistep
strategy, we compare its time costs with the direct learning
method [48]. For a small system (L<40), the time costs of
the two strategies are similar. However, for a large system
(L>40), the efficiency of the multistep strategy is apparently
shown. Especially, the total time cost for L = 80 is 49 h,
which is a decrease of about 33%. Hence, combined with
such a multistep learning strategy, it will enhance the potential
scalability of our method for large system sizes.

IV. OPTIMIZING AGAINST NOISES

Next, we benchmark the performance of the GPR with the
other two optimal control methods, the NM algorithm based
on the direct search method [57] and the DE based on an
evolution method [58]. For a clean chain with L = 20 and
τ = 150 ms [shown in Fig. 4(a)], the GPR method reaches

FIG. 4. A comparison among different optimization methods,
including the GPR [blue (dark gray)], the DE [red (medium gray)],
and the NM [yellow (light gray)]. (a)–(c) Convergence processes in
the cases of no noise, system-size noise, and field noise, respectively.
The solid lines are the convergence curves of the mean infidelities of
every five simulations, while the shaded areas represent the statistical
errors. (d) A comparison of the mean fidelities after 1000 GPR loops.

a ground-state fidelity of 98.4% in 1000 loops, while it is
86.3% for DE and 77.6% for NM. It shows that the machine
learning method is potentially more efficient than the other
two methods for multivariable optimizing tasks. Moreover,
considering systematic noises of experiments, such as fluctu-
ations of the system size [59] and Gaussian noises of control
fields, will lead to the failure of some traditional optimal
control methods [24,25]. However, these noises will be folded
into the probabilistic model in GPR.

For example, we consider the noise of the system size
caused by the particle-hole excitations in optical lattices at
finite temperature. More specifically, the chain length in
each run of the simulation is randomly picked from L∈
{16, 18, 20, 22, 24}; that is, there is a uniform noise of δL = 4
for a system of 〈L〉 = 20. We choose a system size with even
numbers to conserve zero magnetization. In this model, we
use the mean infidelity of every five runs of the simulation
for the cost function, Y = 1 − F̄ . As shown in Fig. 4(b),
the GPR and DE methods can still converge quickly with
fluctuating system sizes and achieve state fidelities of F =
98.2% ± 0.4% and 92.1% ± 5.1%, respectively. In contrast,
the NM method gives a reduced final-state fidelity of F =
32.8% ± 0.2%. This shows that the NM method is susceptible
to system-size noises, which strongly depend on the tempera-
ture of the system.

Another typical noise in the laboratory is the noises in
control fields. We assume that they are typical Gaussian
noises,

Jn(t ) = J (t )[1 + ε1(t )], qn(t ) = q(t )[1 + ε2(t )], (4)
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FIG. 5. The preparation of AFMs in a 2D optical lattice by GPR. (a) The 2D lattice configuration (6 × 6) in the staggered field. (b) The
optimized sweeping profiles of the staggered field q(t ) (blue diamonds) and the spin-exchange interaction J (t ) (red circles). The markers
indicate the parametrized control fields at different times (qi, Ji, ti ). (c) The evolutions of fidelity F (dark blue diamonds) and staggered
magnetization Ms

z (yellow circles) for the optimized fields in a square lattice. (d) The establishment of the spin correlation. The correlator
C(dx, dy ) of the final state for different displacements shows antiferromagnetic order. (e) The correlation function Cd after the azimuthal
average. The line is the exponential fit to the data (circles) of the final state for |d|>2 sites.

where ε1,2(t )∼N (0, σ 2) follows the normal distribution with
mean amplitudes of zero and standard deviations of σ = 10%.
The convergence process is shown in Fig. 4(c), where the
final-state fidelity for the GPR method reaches 97.1% ± 0.3%
after 1000 regression loops. However, it results in 85.3% ±
2.2% for DE and 36.8% ± 0.6% for NM. Hence, the GPR
method is more resistant than the two traditional optimal
control methods.

We note that other kinds of experimental constraints can be
studied with our method as well, such as measurement noises,
limited bandwidth of the driving fields, etc.

V. OPTIMIZING TWO-DIMENSIONAL HEISENBERG
ANTIFERROMAGNETS

We further extend the machine-learning-assisted opti-
mizing method into a more complex system, i.e., the 2D
Heisenberg model on a square lattice with a staggered external
field, where the target state becomes the 2D AFM. It plays an
important role in simulating 2D magnetic materials [60], such
as La2CuO4. The system can be described by the following
Hamiltonian:

H (t ) = J (t )
∑

〈i, j〉
SiS j + q(t )

∑

ix,iy

(−1)(ix+iy )Sz
i , (5)

where 〈i, j〉 are the nearest-neighbor sites on a square lattice
with a size of nx × ny, where nx,y are the sizes in the x and
y directions and ix,y are the coordinates of the ith site. The
lattice constant is a. As shown in Fig. 5(a), the dynamical
field is along the diagonal direction, where the staggered field
strength is q(t ) in both the x and y axes. Similar to the 1D
case, the ground state of the system at high field is the Néel
state, while at zero field it becomes the 2D AFM. The energy
gap scales as �g∝ (nx × ny)−1 in the thermodynamic limit
[49]. Therefore, one can also prepare 2D coherent many-body
states through ground-state passages from Néel states to the
2D AFMs. At low temperature, the 2D Heisenberg model
hosts antiferromagnetic correlations ∼exp(−d/ξ ), with d be-
ing the distance between two sites and ξ being the correlation
length [61].

For a demonstration, we optimize a finite 6 × 6 system
with typical experimental parameters. The dynamical evolu-
tions of the 2D system are implemented by the TDVP method
[62]. Similar to the 1D case, the initial state is set to the Néel
state in a large staggered field. Then, we optimize the control
fields of J (t ) and q(t ) by GPR with a constrained evolution
time of τ =100 ms and an initial staggered field of h × 25 Hz.
After 1000 regression loops, we achieve the 2D AFM ground
state with a state fidelity of F = 94.0%. The corresponding
control fields are shown in Fig. 5(b). The disappearance of
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FIG. 6. The preparation of the GHZ state in a spin-1/2 XXZ chain for L = 12. (a) The energy levels of the XXZ chain in a staggered
magnetic field q and a uniform field hx . The normalized correlation 〈Sz

jS
z
j+1〉 of the ground state is plotted in the x-y plane, and the solid line is

an evolutionary path from the Néel state (circle) to the GHZ state (star). The dots are the critical points where the energy levels of the ground
state and the first excited state cross without a uniform field (hx = 0). (b) The optimized sweeping profiles of q(t ) (blue diamonds) and hx (t )
(red circles) for τ = 200 ms. The markers indicate the parametrized control fields at different times (qi, hxi, ti ). (c) The optimized evolution
of fidelity F . (d) The dynamics of the spin correlations 〈Sz

jS
z
j+1〉 from the AFM phase to the FM phase. (e) The generation of quantum Fisher

information FQ from the Néel state to the GHZ state. (f) The instantaneous magnetization 〈Mz〉 by projection measurements. The color bar
shows the measurement probabilities P .

staggered magnetization Ms
z = ∑

ix,iy
(−1)(ix+iy )Sz

i presents the
spin dynamics from the Néel state to the AFM, as shown in
Fig. 5(c). Then, we characterize the establishment of N-site
antiferromagnetism with the spin correlator

C(dx, dy)= 1

N (dx, dy)S2

∑

dx,dy

〈
Sz

i Sz
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉
, (6)

where N (dx, dy) is the number of two lattice sites i, j sepa-
rated by the displacement (dx, dy). As shown in Fig. 5(d), the
state initially does not exhibit antiferromagnetic correlation.
While entering into a critical region q/J 
1 at 60 ms, it first
appears. The system finally arrives at a state with the spin
correlations matching well with the 2D AFM. The correlation
functions Cd are calculated through the azimuthal average
of the sign-corrected spin correlators (−1)(ix+iy )C(dx, dy) for
d =

√
d2

x + d2
y [see Fig. 5(e)]. The NN spin correlation C1

reaches 0.48, which is higher than the measured results of
0.3 in the experiments [61]. It exhibits an exponential scaling
after fitting by exponential functions exp(−d/ξ ) for long dis-
tance (d >2) [63]. The final state reaches correlation length
ξ = 6.6a, which matches the size of the full system. This
proves that the optimized final state generates strong 2D anti-
ferromagnetic order in the system.

VI. OPTIMIZING THE PREPARATION OF GHZ STATES

Moreover, we propose to generate the maximally entangled
states in optical lattices via a machine-learning-optimized
quantum phase transition. Specifically, we consider a 1D
anisotropic spin-1/2 XXZ model in external fields, which
breaks the spin-rotational symmetry. The system is strongly
correlated at low temperature and hosts long-range orders in

spin correlations. It is described by the Hamiltonian

H (t ) = − J
∑

〈i, j〉

[(
Sx

i Sx
j + Sy

i Sy
j

) + δSz
i S

z
j

]

+
L∑

i

[
q(t )(−1)iSz

i + hx(t )Sx
i

]
, (7)

where J >0 is the spin-exchange interaction, δ>1 is the
anisotropic parameter, q(t ) describes a staggered longitudinal
field, hx(t ) describes a uniform transverse field, and L is the
chain length. In experiment, one can introduce the anisotropy
of spin interactions by varying the spin-dependent lattice po-
tentials V↑ and V↓ [64]. Here, we set δ = 1.5 [48]. One can
solve the model with exact diagonalization methods for finite
system sizes, e.g., L = 12 [shown in Fig. 6(a)]. The system
size in this work is limited mainly by our computational
resources.

For q�J and hx = 0, the ground state is a Néel state
belonging to the antiferromagnetic phase, which is aligned
by the staggered field. By decreasing the staggered field, the
system crosses a quantum phase transition from antiferromag-
netic to ferromagnetic with the closure of the energy gap,
where the normalized correlation 〈Sz

jS
z
j+1〉 = ∑

Sz
jS

z
j+1/(L)

changes sign, as shown in Fig. 6(a). Especially, at q = 0 and
hx = 0, i.e., without any external field, the model elaborates
Z2 symmetry, resulting in the ground states being a set of
degenerate states of cos θ | ↑↑ . . . ↑〉 + eiφ sin θ | ↓↓ . . . ↓〉.
When θ = ±π/4, the ground state becomes the GHZ-type
state. However, the gap-closure feature prevents us from
achieving GHZ states by simply ramping down the staggered
field. By introducing a finite transverse field hx, the symmetry
of the ground state will be broken, and a finite energy gap
will be opened. Hence, one can find a path by carefully tuning
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both q(t ) and hx(t ) to prepare the GHZ state. Additionally, the
system is in a gapped phase at zero external fields, protecting
the GHZ states from perturbations.

As in the previous simulations, we set the Néel state as
the initial state and a constraint of qend = 0, hend = 0 for the
control fields. The spin-exchange interaction is set to a typical
experimental parameter with J = h × 31.8 Hz. Then, we start
the GPR optimizations by simulating the evolutions through
the Schrödinger equation. For an evolution time of τ = 200
ms, we achieve a final-state fidelity of the GHZ state higher
than 99%, as shown in Figs. 6(b) and 6(c). The optimized
control fields drive the system to avoid the critical point and
traverse the quantum phase transition. We characterize the
phases by the spin correlation 〈Sz

jS
z
j+1〉, which changes sign

from antiferromagnetic to ferromagnetic [see Fig. 6(d)].
The output state can be further estimated by a Ramsey

experiment or the projection measurements [65]. Here, we in-
vestigate the generation of entanglement during the quantum
phase transition by introducing the quantum Fisher informa-
tion [66],

FQ(|�〉, R̂) = 4(�R̂)2, (8)

where R̂ = �n · �̂M, �n is the interferometric direction, and M̂k =∑L
i Sk

i is the sum of all the spins along k = x, y, z. As shown
in Fig. 6(e), the initial Néel state is a product state with zero
Fisher information. The entanglement is gradually built up in
the system through the optimized control fields. In the end, it
arrives at the GHZ state with FQ/L2 ≈1, i.e., approaching the
Heisenberg limit. One can also measure the magnetizations
〈i|Mz|i〉 during the evolution; |i〉 is the eigenstate of the in-
stantaneous Hamiltonian. The total magnetization

∑〈i|Mz|i〉
is always kept at zero for the whole process. However, the dis-
tribution of magnetizations by the projection measurements
shows a clear transition from a single peak at zero to a binary
distribution at ±0.5, as shown in Fig. 6(f).

VII. SUMMARY

In summary, we applied the Bayesian learning method
based on GPR to optimize the coherent quantum many-body
ground state via numerical simulations. With the optimized
control fields of spin interactions and staggered external
fields, we obtained efficient Hamiltonian ramping sequences
in preparing correlated ground states of 1D and 2D spin-1/2
Heisenberg models and produced high-quality antiferromag-
netic states in our numerical simulation. By integrating a
multistep learning strategy in the GPR method, we demon-
strated its scalability from relatively small to large systems.
By considering different noise channels that are relevant to
optical lattice experiments, the machine-learning-assisted op-
timal control method exhibits significant robustness, which is
crucial for laboratory implementation. We extend this method
to an anisotropic XXZ model, where the maximally entan-
gled GHZ state is generated by crossing a quantum phase
transition from antiferromagnetic to ferromagnetic. Since the
examined models and the parameter regions in our numerical
simulations are directly from the ongoing optical lattice ex-
perimental setups, the results help clarify the nonadiabaticity
in the experiments [45] and provide important guidance for
further improvement.
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