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Evolution of the unitary Bose gas for broad to narrow Feshbach resonances
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We study the postquench dynamics of unitary Bose gases using a two-channel model, focusing on the effect of
variations in the width of the Feshbach resonance due to density changes. We generally find that increasing the
density leads to a corresponding increase in the production of closed-channel molecules, a decrease in the buildup
of quantum depletion and a transition from linear to quadratic early-time growth of the two-body contact as well
as the condensed pair fraction. Motivated by the presence of closed-channel molecules in the unitary regime, we
study the embedded two-body problem, finding a transition from open- to closed-channel-dominated dimers due
to many-body effects.
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I. INTRODUCTION

The magnetic tunability of Feshbach resonances [1] in
ultracold gases makes it possible to experimentally control
the two-particle interaction strength as characterized by the
s-wave scattering length a(B),

a(B) = abg

(
1 − �B

B − B0

)
, (1)

with background scattering length abg, magnetic resonance
width �B, and resonance position B0 [2]. By diabatically
quenching the scattering length to unitarity (|a(B)| → ∞)
[3–6], it is possible to beat disastrous per-particle losses in
bosonic gases that scale as n2a4, with atomic density n. At
unitarity, the density scales remain finite and according to
the “universality hypothesis” all properties of unitary quan-
tum gases should scale continuously with the Fermi scales
kn = (6π2n)1/3, En = h̄2k2

n/(2m) and tn = h̄/En, where m is
the atomic mass [7]. This universality and the associated scale
invariance relate the properties of ultracold gases at unitary to
other seemingly unrelated strongly correlated systems, such
as the quark-gluon plasma and the inner crust of neutron stars
[8–10]. However, the nonuniversal scales associated with the
Feshbach resonance in addition to the finite size of Efimov
states in a unitary Bose gases [4,11–14] can alter the universal
scaling and time dependence of system properties.

To describe the interplay between resonance and density
scales, the vacuum classification of a Feshbach resonance
must be revisited in the many-body context [15]. The mag-
netic resonance width can be defined as

�B = h̄2

δμmR∗abg
, (2)

where δμ is the difference in the magnetic moment between
two free atoms and the Feshbach molecule and R∗ is the
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resonance width parameter. The comparison of the length
scale R∗ to the typical momentum scale of the gas allows
us to classify the resonance width. In the vacuum classi-
fication scheme, the momentum scale k ∼ 1/abg, such that
|R∗/abg| � 1 corresponds to a broad resonance. In the many-
body classification scheme on the other hand, as elaborated
on in Sec. II B 1, the momentum k is set by kn [15] rather
than abg, such that knR∗ � 1 corresponds to a broad res-
onance. Furthermore, whereas the vacuum classification is
fixed by the specifics of the resonance and the atomic species,
the many-body classification varies with the density of
the gas.

In this work, using the many-body classification of the
resonance width, we go beyond the single-channel models of
Refs. [13,14,16–26] and study the postquench evolution of the
unitary Bose gas using a two-channel model that explicitly
contains the multichannel nature of the Feshbach resonance.
The one- and two-body correlation dynamics in the system
are modeled using the cumulant method [16,17]. The corre-
lation dynamics are studied over a range of knR∗, where we
characterize the onset of nonuniversal effects in the dynam-
ics of the two-body contact; the atomic, pair, and molecular
condensate fractions; and the quantum depletion. To describe
the pair formation, the single-channel formalism of Ref. [26]
is generalized to the two-channel model. Here, the presence
of the molecular fraction in the two-channel system provides
us with an additional probe of the many-body state at unitarity
by using molecular spectroscopy [27]. To explain the presence
of molecules in the unitary regime, we study the impact of
many-body effects on the embedded few-body problem. This
problem is a generalization of the single-channel formalism
of Ref. [17], which considers both the dressing due to the
channel couplings and the impact of the quantum statistics
of the medium in the spirit of the Cooper pair problem
[28–30]. We observe that, for all considered values of knR∗,
the embedded dimers become the dominant contribution to
the quantum depletion as the system evolves in the unitary
regime.
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FIG. 1. Schematic of the basic two-channel model. A bound state
with energy ν is in the closed-channel subspace Q (black curve).
Atoms enter in the open-channel subspace P (red curve) with in-
cident energy E and couple to the closed-channel bound state. By
varying the applied magnetic field, the bound state can be tuned to
resonance.

The paper is outlined as follows. In Sec. II A we review the
two-channel model of a Feshbach resonance, which provides a
foundation for the many-body model that follows in Sec. II B.
We then apply the cumulant expansion to include up to two-
body correlations in the dynamics. Within this formalism we
derive the expressions for the pair condensate fraction and the
dynamical two-body contact. Next, we proceed with the for-
malism of the embedded two-body problem. These concepts
are subsequently used to understand the results presented in
Sec. III and to form the conclusions in Sec. IV.

II. TWO-CHANNEL MODEL

In this paper we aim to study the onset of nonuniversal
effects over a range of resonance widths knR∗. To this end, we
develop a two-channel model that captures the multichannel
nature of Feshbach resonances. We start by reviewing the
two-channel model in vacuum in Sec. II A and then solve the
many-body version in Sec. II B using the method of cumu-
lants. Here we derive the two-channel generalizations of the
pair condensate fraction and the two-body contact. In Sec. II C
we include many-body effects in the vacuum two-channel
model in an effort to investigate how the few-body physics
is altered by the medium.

A. The two-body problem

We employ a two-channel model in order to describe the
effect of the resonance width, classified in terms of knR∗, on
the dynamics of the quenched unitary Bose gas. To that end,
we begin with a brief review of Feshbach resonance theory
[31] which serves as a basis for the generalizations to the
many-body context in what follows.

Considering an energetically open channel in the subspace
P coupled to an energetically closed channel in the subspace
Q with a bound state with energy ν as sketched in Fig. 1,
we split the coupled-channel Schrödinger equation into two

components [32], such that

E

[|�P〉
|�Q〉

]
=

[
ĤPP ĤPQ

ĤQP ĤQQ

][|�P〉
|�Q〉

]
, (3)

where we have employed the open- and closed-channel pro-
jection operators P̂ and Q̂ that project the total scattering
wave function � and the Hamiltonian Ĥ = Ĥ0 + V̂ onto the
open- and closed-channel subspaces, respectively, such that
|�P〉 ≡ P̂|�〉, |�Q〉 ≡ Q̂|�〉, ĤPQ ≡ P̂ĤQ̂, etc.

Assuming that the energy ν of the closed-channel bound
state is close to the collision energy E of the interacting
particles in the subspace P , we make the single-resonance
approximation and neglect the scattering states and other
bound states in the closed-channel subspace Q. Under this
approximation, we can solve Eq. (3) for the closed-channel
wave function |�Q〉, finding

|�Q〉 = |φ〉〈φ|
E − ν

ĤQP|�P〉, (4)

where |φ〉 is the closed-channel bare bound state. Substituting
the previous relation into Eq. (3), we eliminate |�Q〉 from the
expression for the open-channel scattering wave function |�P〉
such that

E |�P〉 = (
Ĥ0

PP + V̂eff
)|�P〉, (5)

with

V̂eff = V̂PP + ĤPQ
|φ〉〈φ|
E − ν

ĤQP. (6)

Equation (5) can be solved straightforwardly, yielding

|�P〉 = |ψ+
P 〉 + 1

E+ − ĤPP

ĤPQ|φ〉〈φ|ĤQP

E − ν
|�P〉, (7)

where |ψ+
P 〉 is the eigenstate of the direct open-channel in-

teraction Hamiltonian ĤPP and E+ = E + iδ, with δ → 0+ to
avoid singularities.

Throughout this work, we consider the following separable
potentials:

V̂PP = v|ζ 〉PP〈ζ |, (8a)

V̂PQ = β|ζ 〉PQ〈ζ |, (8b)

with form factors |ζ 〉P,Q and open-channel and coupling po-
tential strengths v and β, respectively. Analogous to Ref. [32],
we define the closed-channel amplitude �Q ≡ 〈φ|�Q〉/√2
for the system to be in the bound state. Using Eqs. (4)–(8b),
Eq. (3) takes the form

E�P(k) = h̄2k2

m
�P(k) + vζ (2k)

∑
q

ζ ∗(2q)�P(q)

+ gζ (2k)�Q, (9a)

E�Q = ν�Q + g

2

∑
k

�P(k)ζ ∗(2k), (9b)

with potential interaction strength g = √
2β〈φ|ζ 〉Q. Following

Refs. [16,17,25,26], we choose a step-function form factor
〈k/2|ζ 〉P,Q = ζ (k) = �(
 − |k|/2), with relative two-body
momentum k and momentum cutoff 
. The value of the
cutoff is calibrated by matching the dimer binding energy
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of the two-channel model to the full coupled-channel dimer
binding energy [33,34]. The potential strengths v and g can
be modeled using the following set of renormalization equa-
tions [35,36]:

v = v0� = 4π h̄2abg

m
�, (10)

g = g0� = 2h̄

√
2πabg�E

m
�, (11)

with energy width �E = δμ�B, scaling factor � = (1 −
2
abg/π )−1, and the renormalized interaction parameters v

and g. In order to investigate the effect of the separable po-
tential interaction on the open-channel wave function |�P〉,
we multiply Eq. (7) from the left by 〈k|V̂eff , where |k〉 is an
unscattered state. Exploiting the relation between the transi-
tion operator T̂ and the scattering potential operator T̂ |k〉 =
V̂eff |�P〉, we can find the following expression for the coupled-
channels two-body transition matrix in the case of a separable
potential interaction:

T (E ) = vζ (2k) P〈ζ |ψ+
P 〉 +

g2

2 |P〈ζ |ψ+
P 〉|2

E − ν − g2

2 P〈ζ |ĜP(E )|ζ 〉P

,

(12)
where we have introduced the open-channel Green’s operator
ĜP(E ) = (E − Ĥ0 − v|ζ 〉PP〈ζ |)−1. We can use Eq. (12) in
order to extract important scattering parameters and obtain the
bound state energies from its poles, which we do presently.

1. Vacuum classification of the resonance width

As mentioned in Sec. I, the description of narrower res-
onances, which in the vacuum classification corresponds to
the limit |R∗/abg| � 1, requires the inclusion of finite-range
scales. These finite-range scales affect the universal scaling of
the system, which is clear from the effective-range expansion
[37]

k cot[δ0(k)] ≈ −1

a
+ 1

2
k2Reff + O(k4), (13)

where δ0(k) is the s-wave phase shift which depends on the
scattering length a as defined in Eq. (1) and the effective range
Reff . The necessity to consider the energy-dependent correc-
tion to the phase shift follows directly from the inspection of
the Breit-Wigner form of the phase shift for a nonresonant
open-channel interaction, which can be expressed as [15]

tan[δ0(k)] = −kabg −
h̄2k
mR∗

E − ν0
, (14)

where ν0 = δμ(B − B0) is the energy detuning from the Fes-
hbach resonance. Analogous to Ref. [32], the detuning ν0

can be related to the closed-channel bound state energy ν as
[35,36]

ν = ν0 + m


4π2h̄2 gg0. (15)

Multiplying the numerator and denominator of the second
term on the right-hand side of Eq. (14) by a factor mR∗/h̄2,
we can recognize that the term that scales with the square of
the momentum and sets the energy scaling depends on the size
of the resonance strength parameter R∗ [38].

In order to find the exact relation that connects the effective
range to the resonance strength parameter R∗, we use the
transition matrix as presented in Eq. (12) and relate it to the
phase shift δ0(E ) as

kcot[δ0(E )] = ik − 4π h̄2

mT (E )
. (16)

In the case of step-function separable potential interactions,
the expansion of Eq. (16) around k → 0 and its comparison to
Eq. (13) yield the following expression for the effective range:

Reff = −2R∗ + 4

π

+ 1

a

(
4abgR∗ − 2a2

bgR∗

a

)
, (17)

which reduces to Reff ≈ −2R∗ at unitarity and for large values
of the momentum-space cutoff [39].

2. Dimer wave function

In the two-channel model, the bound state is dressed by
the channel coupling. The closed-channel amplitude of this
dressed bound state is quantified by the dimer wave-function
normalization factor, or Z parameter. This parameter can be
introduced consistently with Refs. [40,41] as [42][|�P〉

|�Q〉
]

=
√

Z

[
ĜP(ED)β|ζ 〉PQ〈ζ |φ〉

|φ〉
]
, (18)

such that 〈�|�〉 = 1 and where ED is the bound state energy
of the dressed dimer state. In the case of the separable poten-
tial, the Z parameter takes the form

Z =

⎡
⎢⎢⎣1 +

g2

2

∑
k

ζ (2k)(
ED− h̄2k2

m

)2

(
1 − v

∑
k

ζ (2k)

ED− h̄2k2
m

)2

⎤
⎥⎥⎦

−1

. (19)

The inspection of the previous equation reveals that at uni-
tarity, where ED = 0 and Z = 0 [27,43]. Departing from
unitarity, the Z parameter is bounded to a maximum value of
1, which corresponds to the dimer fully in the closed-channel
subspace. In Sec. II C 2, the definition of the Z parameter is
extended to include many-body effects of the background gas.

B. The many-body problem

We now proceed to model a uniform gas of identical bosons
interacting via the separable cutoff potential interactions as
introduced in Sec. II A. Using second quantization, the two-
channel many-body Hamiltonian corresponds to

Ĥ =
∑

k

h̄2k2

2m
â†

kâk +
∑

k

(
h̄2k2

4m
+ ν

)
b̂†

kb̂k

+ v

2

∑
k,k′,q

ζ (k − k′ + 2q)ζ ∗(k − k′)â†
k+qâ†

k′−qâk′ âk

+ g

2

∑
k,q

[ζ ∗(2k)b̂†
2qâq+kâq−k + H.c.], (20)

where we have neglected the interactions among closed-
channel molecules [32,44–47]. We have introduced the
open-channel atomic operators âk and the closed-channel
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molecular operators b̂k, which can be expressed as [16,48]

b̂†
q =

∑
k

φ(k)√
2

ĉ†
−k+q/2ĉ†

k+q/2, (21)

where φ(k) is the wave-number projection of the closed-
channel bound state |φ〉 as introduced in Eq. (4) and where
ĉ†

k is a closed-channel atomic operator. We note that we are
working in the limit where φ(k) is localized with respect to
the density scales, such that b̂†

q is a true bosonic molecular
operator, contrary to the composite pair operator introduced
in Ref. [26].

We apply the Bogoliubov decomposition to the op-
erators such that 〈a0〉 = ψa (〈b0〉 = ψm) and 〈ak �=0 = 0〉
(〈bk �=0 = 0〉). Here ψa (ψm) is the atomic (molecular) wave
function. We neglect excitations of the molecular condensate
[32,44–47].

To model correlations in the many-body system, we
perform a cumulant expansion [16,17,49]. This expansion
separates clusters of correlated atoms and molecules within
the many-body model. We truncate the cumulant expansion
at the second order, such that we obtain the doublet model
where only single- and two-particle correlations are consid-
ered. These correlations (or clusters) consist of the singlets
ψa and ψm, which represent the atomic and molecular con-
densates, respectively, and the doublets ρk ≡ 〈â†

kâk〉 and κk ≡
〈â−kâk〉, which are the one-body density and pairing matrices
for k �= 0, respectively [50].

We limit the evolution of the initially pure atomic conden-
sate to a time up to t = 2tn. At longer times, ρk begins to
exceed unity and the exclusion of strongly driven higher-order
cumulants can no longer be justified [16,17,25].

Applying the cumulant model up to the doublet level and
implementing the Heisenberg equation of motion ih̄dÔ/dt =
[Ô, Ĥ ], we obtain the following two-channel Hartree-Fock-
Bogoliubov (HFB) equations of motion [50]:

ih̄ψ̇a = v

(
|ζ (0)|2|ψa|2 + 2

∑
k �=0

|ζ (k)|2ρk

)
ψa

+ vψ∗
a

∑
k �=0

ζ (0)ζ ∗(2k)κk + gζ (0)ψmψ∗
a , (22)

ih̄ψ̇m = νψm + g

2
ψ2

a ζ ∗(0) + g

2

∑
k �=0

ζ ∗(2k)κk, (23)

h̄ρ̇k = 2Im[�kκ
∗
k ], (24)

ih̄κ̇k = 2hkκk + (1 + 2ρk )�k, (25)

where

hk = h̄2k2

2m
+ 2v

(
|ζ (k)|2|ψa|2 +

∑
q �=0

|ζ (k − q)|2ρq

)
(26)

and

�k = vζ (2k)

(
ζ ∗(0)ψ2

a +
∑
q �=0

ζ ∗(2q)κq

)
+ gζ (2k)ψm

(27)
are the Hartree-Fock Hamiltonian and the pairing field, re-
spectively. The HFB equations of motion conserve the total

number of atoms N = Nop + Ncl, where Nop consists of Na =
V |ψa|2 condensate atoms, with system volume V = N/n and
Nexc = V

∑
k ρk excitations, and where Ncl consists of 2Nm

atoms, with Nm being the number of closed-channel molecules
Nm = V |ψm|2.

1. Many-body classification of the resonance width

As previously outlined in Sec. I, the density can be used
to derive a set of Fermi scales that quantify the properties of
the unitary Bose gas. Exploiting the Fermi energy, we can
then obtain the many-body analog of the resonance width
classification in terms of knR∗ [15]. Similarly to the two-body
classification scheme discussed in Sec. II A 1, the effective
many-body energy width �En = h̄2kn/mR∗ on the Fermi mo-
mentum scale kn quantifies how fast the phase shift varies as a
function of the typical many-body energy. We observe that for
knR∗ � 1, the phase shift varies slowly over a large range of
energies, such that we can neglect the energy-dependent term
in Eq. (13). This corresponds to the case of a broad resonance.
Instead, for a rapid variation, where knR∗ � 1, we cannot
neglect the energy-dependent term in Eq. (13) and we quantify
the resonance to be narrow [15]. In addition to examining the
energy width, we can define the lifetime of the closed-channel
molecules τ relative to the Fermi timescale tn as

τ

tn
= En

�En
= knR∗, (28)

where the linear scaling with knR∗ implies longer lifetimes for
narrower resonances in the many-body classification scheme.

As pointed out in Ref. [15], the vacuum and many-body
classifications of the resonance width are not equivalent for
all values of abg and kn. We can still satisfy the vacuum
classification |R∗/abg| � 1 of a broad resonance as introduced
in Sec. II A 1 whilst observing the narrow-resonance behavior
quantified by knR∗ � 1 for sufficiently large gas densities.

2. Pair condensation

Extending the analysis performed in Ref. [26] to the two-
channel model, the closed-channel molecular fraction ψm and
the presence of the nonzero pairing matrix κk introduced in
Sec. II B signal off-diagonal long-range ordering (ODLRO)
and pair condensation. Interestingly, these pairs could be
investigated experimentally by using a rapid quenching pro-
cedure towards the weakly interacting regime along the lines
of Refs. [16,51], which maps the condensed pairs onto true
molecules. Isolating the atomic condensate from the fluctua-
tions in order to omit the ODLRO that arises trivially due to
the presence of the atomic condensate [52,53], we define the
following two-body density matrix:

ρ (2)(r′
1, r′

2, r1, r2) = 〈
δψ̂

†
(r′

1)δψ̂
†
(r′

2)δψ̂ (r1)δψ̂ (r2)
〉
, (29)

where δψ̂ is the two-channel vector containing the open- and
closed-channel fluctuations [54]. Generalizing Refs. [26,53]
we spectrally decompose Eq. (29), such that

ρ (2)(r′
1, r′

2, r1, r2; t )

=
∑

ν

N (2)
ν (t )ϕ(2)

ν
(r′

1, r′
2, t )ϕ(2)∗

ν
(r1, r2, t ), (30)
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where ϕ(2)
ν

represents a two-component orthonormal
eigenvector with eigenvalue N (2)

ν . In the case of ODLRO,
we expect ρ (2)(r′

1, r′
2, r1, r2; t ) to be zero in the long-range

(LR) limit where |∑2
i=1 ri − r′

i|/2 → ∞. Applying the
second-order cumulant expansion as presented in Sec. II B
to the LR limit of Eq. (29), only the eigenstates with the
anomalous contractions 〈δψ̂†

(r′
1)δψ̂

†
(r′

2)〉〈δψ̂ (r1)δψ̂ (r2)〉
remain, since the Hartree and the Fock terms,
defined as 〈δψ̂†

(r′
1)δψ̂ (r1)〉〈δψ̂†

(r′
2)δψ̂ (r2)〉 and

〈δψ̂†
(r′

1)δψ̂ (r2)〉〈δψ̂†
(r′

2)δψ̂ (r1)〉, respectively, typically
vanish for separations that exceed a few Fermi lengths [55].
Consequently, we find that

ρ (2)(r′
1, r′

2, r1, r2; t )

=
long range

N (2)
0 (t )ϕ(2)

0
(r′

1, r′
2, t )ϕ(2)∗

0
(r1, r2, t ), (31)

with the macroscopic eigenvalue

N (2)
0 (t ) =

∑
k

|κk|2 + 2|ψm|2 (32)

and the associated-pair wave function

ϕ(2)
0

(r, t ) = 1√
N (2)

0 (t )

[∑
k eik·rκk√

2φ(r)ψm

]
, (33)

where we have transformed to the center-of-mass frame with
r = r1 − r2 and we have integrated out the translationally
invariant center-of-mass component. Contrary to the atomic
condensate fraction that can be derived from the one-body
density matrix, the eigenvalue N (2)

0 cannot be directly related
to the pair condensate fraction. This is a consequence of the
background gas of excitations that Bose-enhance interactions
and thereby violate the bosonic commutation relations as
discussed in Ref. [26]. As a result, we need to renormalize
the eigenvalue N (2)

0 in order to avoid over counting the pair
condensate fraction. Following the renormalization procedure
as presented in Appendix B, we find that the pair condensate
fraction n(2)

0 can be expressed as

n(2)
0 (t ) = N (2)

0 (t )

1 + [
2/N (2)

0 (t )
]∑

k �=0 |κ2
k |ρk

. (34)

We note that the renormalization factor in the denominator of
Eq. (34) is identical to the renormalization factor presented
in Ref. [26], where a similar analysis is performed for the
single-channel Bose gas. This is due to the presence of the
background gas in the open channel. The evolution of the pair
fraction for various values of knR∗ is discussed in Sec. III A.

3. The dynamical two-body contact

When two bosons in a quantum gas separated by a dis-
tance r12 = |r1 − r2| approach each other, such that 
−1 �
r12 � {n−1/3, |a|, λdB, etc.}, the many-body wave function
�MB(r1σ1, r2σ2, . . . , rNσN ) can be factorized as [56]

�MB(r1σ1, . . . , rNσN ) ≈ φ2B(r12)A(R12σP, . . . , rNσN ),
(35)

with center-of-mass coordinate R12 = m1r1+m2r2
m1+m2

and channel
index σi. The above factorization is a starting point in the
derivation of a set of universal relations related to the two-
body, or Tan, contact [20,57–60] C2, defined as [61]

C2 ≡ k4ρk, (36)

in the limit 
 � k � kn, a−1, λ−1
db , etc. Since the two-body

contact effectively measures the probability for pairs of atoms
to be close together, it is a valuable parameter in the analysis
of the unitary Bose gas. In our doublet model, the asymptotic
scaling behavior described by Eq. (36) emerges for momenta k
in the universal regime compared to the system-specific length
scales a, kn, and Reff . The set of HFB equations presented
in Sec. II B then allows us to study the time evolution of ρk
and hence to compute the two-body contact. Alternatively,
by integration over the regularized part of the wave function
A(R12σP, . . . , rNσN ) introduced in Eq. (35), it is possible
to express the contact in terms of the open-open channel
component of the two-body correlation function g(2)

PP(r, r′) =
〈ψ̂†

P(r)ψ̂†
P(r′)ψ̂P(r)ψ̂P(r′)〉, such that

g(2)
PP(r, r′) ≈ |φ2B(r → 0)|2 C2

(4π )2
, (37)

in the limit 
−1 � r12 � n−1/3, |a|, λdB, etc. Relating the
two-body wave function to the open-channel wave function as
φ2B(r) = −a−1 limE→0 �P(r) [62], it is possible to compute
the well-defined zero range (
 → ∞) and the zero-energy
limit of the two-body wave function [63]. Using T̂ |k〉 =
V̂eff |�P〉 with the effective potential as defined in Eq. (6), we
obtain (

v − g2

2ν

)
φ2B(r → 0) ≈

E→0

→∞

−4π h̄2

m
, (38)

such that the two-body contact can be expressed as

C2 = m2

h̄4

〈(
v − g2

2ν

)2

ψ̂
†
Pψ̂

†
Pψ̂Pψ̂P(r → 0)

〉
. (39)

As derived in Appendix C, Eq. (39) is the bosonic version of
the generalized Tan relation introduced in Ref. [64]. Contrary
to its single-channel analog, which is retrieved by replacing
v − g2/2ν with the renormalized single-channel interaction
strength v1ch as introduced in Eq. (A2) and only holds in
the broad-resonance limit, the expression for the generalized
contact is valid for all considered values of knR∗. In addition,
as outlined in Appendix C, the zero-range limit of Eq. (39)
can be directly related to the set of cumulants as presented
in Sec. II B. This facilitates the analysis of the contact as
extracted from the tail of the momentum distribution as well
as computed using the generalized Tan relation. The dynamics
of this quantity are the subject of Sec. III B.

C. Embedded two-body interactions

Having discussed the two-body as well as the many-body
problem in terms of a two-channel model, we now proceed
to study the resonance-width-dependent physics of two-body
interactions embedded in a many-body environment. This
allows us to probe the effect of the medium on two-body inter-
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actions and relate these effects to the observation of nonzero
values of the Z parameter in the unitary Fermi gas [27,65].

1. The embedded two-body transition matrix

Following Ref. [17], we start our analysis of the embedded
two-body interactions by extending the two-body transition
matrix in vacuum to its embedded analog. To this end, we
decompose κk and ψm in terms of a complete basis set with
open- and closed-channel wave functions �R

P,μ(k) and �Q,μ,
respectively, such that we find

[
κk
ψm

]
=

∑
μ

cμ(t )

[
�R

P,μ(k)
�Q,μ

]
, (40)

with cμ(t ) = cμe−iEμt/h̄ and �Q,μ = 〈φ|�Q,μ〉/√2, analogous
to the definition of the amplitude �Q in Sec. II A. In this model
we treat the density effects as quasistationary [17,49,66]. The
subscript R introduced in the open-channel wave function
�R

P,μ(k) indicates the usage of right eigenvectors. The origin
of the asymmetry is discussed shortly. Using Eq. (21), we
recognize that ψm can be interpreted as the closed-channel
analog of the pairing matrix. The coefficients cμ then tell us
how much of the total pairing matrix, consisting of open- and
closed-channel contributions, is contained in a dimer-basis
state μ.

Applying the quasistationary approximation and neglect-
ing the source terms related to the presence of the atomic
condensate, we use Eq. (40) to obtain the following set of
two-channel eigenvalue equations:

Eμ�R
P,μ(k) = 2hk�

R
P,μ(k) + (1 + 2ρk )ζ (2k)

×
(

v
∑

q

�R
P,μ(q)ζ ∗(2q) + g�Q,μ

)
, (41a)

Eμ�Q,μ = ν�Q,μ + g

2

∑
k

�R
P,μ(k)ζ ∗(2k). (41b)

Equations (41a) and (41b) should be compared to the two-
body eigenvalue equations as presented in Eqs. (9a) and
(9b). Here the effective interaction potential operator V̂eff

that has been introduced in Eq. (6) is replaced by the in-
teraction potential operator V̂eff , where V̂eff = B̂V̂eff , with B̂
being the Bose-enhancement operator 〈k, k′|B̂ = (1 + ρk +
ρk′ )〈k, k′| [17]. The Bose-enhancement of open-channel exci-
tations causes the asymmetry of the open-channel eigenvalue
equation.

Additionally, the kinetic energy term in Eq. (9a) is rep-
resented by the Hartree-Fock term h(k) ≈ h̄2k2/2m + 2vnop

in Eq. (41a), meaning that the energy in the open channel
is mean-field shifted. Therefore, analogously to Ref. [17],
we quantify the binding energy and the detuning relative to
the mean-field-energy-shifted threshold, such that Eμ ≡ Eμ −
4vnop and v ≡ ν − 4vnop, respectively.

By using the effective potential interaction operator V̂eff ,
we can straightforwardly introduce the embedded transition
operator as T̂ |k〉 = V̂eff |�R

P,μ〉 and, for the separable potential

introduction, obtain the embedded transition matrix

T = 〈k|B̂v|ζ 〉PP
〈
ζ
∣∣ψR,+

P,μ

〉
+

g2

2

〈
ψR,−

P,μ

∣∣B̂|ζ 〉PP
〈
ζ
∣∣ψR,+

P,μ

〉
Eμ − v − g2

2 P〈ζ |ĜP(Eμ)B̂|ζ 〉P

, (42)

where ĜP is the embedded open-channel Green’s operator
ĜP(Eμ) = (Eμ − B̂v|ζ 〉〈ζ |)−1. Equation (42) is related to the
many-body transition operator T̂ MB [67] according to T̂ =
B̂T̂ MB.

One of the dimer-basis states μ = D corresponds to the
embedded dimer. The energy of this dimer ED can be ex-
tracted from the pole of Eq. (42). Through the analysis of the
zero-energy limit of the embedded transition matrix, we can
extract an embedded analog of the scattering length a and the
effective range R eff , such that [68]

TE→0 ≈ 4π h̄2a
m

(
1 − ika + aR eff − 2a2

2
k2 + O(k3)

)
. (43)

The evolution of these quantities as a function of the reso-
nance width (or equivalently knR∗) is investigated in more
detail in Sec. III C.

2. The embedded dimer wave-function normalization factor

As mentioned in Sec. II A 2, the Z parameter is zero at
unitarity for the two-body model. However, a finite value
of the Z parameter was previously predicted and observed
in the unitary Fermi gas [27,65]. This motivates us to analyze
the embedded version of the Z parameter. This parameter
quantifies the division of the embedded dimer with energy ED

amongst the open- and closed-channel subspaces. Analogous
to Eq. (19), we define the Z parameter as[∣∣�R

P,D

〉∣∣�Q,D
〉] =

√
Z

[
ĜP(ED)B̂β|ζ 〉PQ〈ζ |φ〉

|φ〉
]
, (44)

such that 〈�D|�D〉 = 1 and we find that

Z =

⎡
⎢⎣1 +

g2

2

∑
k ζ (2k) (1+2ρk )

(ED− h̄2k2
m )

2(
1 − v

∑
k ζ (2k) (1+2ρk )

ED− h̄2k2
m

)2

⎤
⎥⎦

−1

. (45)

As the Z parameter can be linked to the change in δμ [43,69]
as well as to the observed atom-loss in molecular probe exper-
iments as investigated in Ref. [27]. The relation between the
Z parameter and experimental observables makes it a valuable
quantity to connect the theory of embedded dimers to exper-
iments. As such, we analyze its resonance-width-dependent
evolution in Sec. III D.

3. The relative dimer state occupation

In addition to analyzing how the dimer is distributed
amongst the two subspaces, we also wish to quantify the
relative importance of this dimer state to the total pairing field.
Therefore, we introduce the relative dimer state occupation
FD [49], defined as

FD = |cD|2∑
μ |cμ|2 , (46)
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FIG. 2. Population fractions at unitarity: (a) atomic condensate fraction na, (b) excited state fraction nexc, (c) molecular condensate fraction
nm, and (d) pair condensate fraction n(2)

0 with contributions from nexc and nm as a function of the time t/tn for various values of the dimensionless
resonance width parameter knR∗. As dictated by the conservation of particle number, the curves in panels (a)–(c) add to 1 at all times. The inset
in panel (c) represents the molecular condensate fraction as a function of the time, with the time axis rescaled with the embedded transition
time t∗ = √

tnτ . The legend in the inset indicates the resonance width in multiples of knR∗. The dashed black line in panel (d) represents the
single-channel data as presented in Ref. [26]. Our results are consistent with this calculation.

in terms of the coefficients cμ of the dimer basis in Eq. (3).
In order to compute the numerator of Eq. (46), we multiply
Eq. (40) from the left side by [[�L

P,D(k)]∗, 2[�Q,D]∗/
√

V ],
sum over all k and compute the square of the absolute value,
such that we find

|cD|2 =
∣∣∣∣∣
∑

k

κk

[
�R

P,D(k)
]∗

1 + 2ρk
+

√
2Zψm

∣∣∣∣∣
2

, (47)

where we have used the normalization condition∑
k[�L

P,λ(k)]∗�R
P,μ(k) + 2[�Q,λ]∗�Q,μ = δλ,μ and the

relation between the right and the left eigenvectors of
the open-channel subspace �R

P,μ(k) = (1 + 2ρk )�L
P,μ(k), and

where we have applied Eq. (44).
Applying a similar strategy, we next compute the denom-

inator of Eq. (46) by multiplying Eq. (40) from the left side
by [[cλ�

L
P,λ(k)]∗ 2[cλ�Q,λ]∗], summing over all values of k

and computing the square of the absolute value. Once more
we exploit the normalization condition and find

|cμ|2 =
∑

k

[cμ�P,μ(k)]∗

1 + 2ρk
κk + 2[cμ�Q,μ]∗ψm. (48)

Summing the previous expression over all basis states μ and
using Eq. (40) in order to rewrite the dimer-basis states in
terms of cumulants, we obtain the following expression for
the denominator of FD:∑

μ

|cμ|2 =
∑

k

|κk|2
1 + 2ρk

+ 2|ψm|2. (49)

The expression for FD as derived here is normalized at ev-
ery time step and can be applied to two-channel systems.
Consequently, we can analyze how the relative dimer state
occupation evolves as a function of the time for various values
of the resonance width. We present our results in Sec. III E.

III. RESULTS

Having outlined our model, we now analyze the results for
the dynamics of the quenched unitary Bose gas over a range
of knR∗. In this study, we follow the procedure as outlined
in Refs. [16,17], starting with a noninteracting pure atomic
condensate and performing an effectively sudden quench to
unitarity [70]. Whereas we vary the value of knR∗, we keep
the value of abg fixed in order to satisfy the diluteness criterion
na3

bg � 1. This means that our results can be universally ex-
tended to different atomic species in the dilute regime with the
same values of knR∗. In the following sections, we express all
our results in terms of Fermi units unless mentioned otherwise
and indicate the dimensionless resonance widths in terms of
the many-body classification knR∗.

A. Population fractions

Figure 2 illustrates the (normalized) population dynamics
as the time spent at unitarity progresses. In particular Fig. 2(a)
shows how the atomic condensate is quantum depleted. The
atoms that leave the condensate can form either excitations
[Fig. 2(b)] or closed-channel molecules [Fig. 2(c)]. Since the
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formed closed-channel molecules have a shorter lifetime for
broader resonances (knR∗ � 1), more excitations are formed
at early times with respect to resonances with larger knR∗.
Additionally, the presence of background excitations Bose-
enhances the production of extra excitations. Consequently,
the excited state fraction as presented in Fig. 2(b) grows more
rapidly for small knR∗ at early times.

Aiming to analyze the early-time dynamics of the molec-
ular condensate on a more quantitative level, we consider the
narrow-resonance (knR∗ � 1) and early-time limit (t � tn) of
Eq. (23). Since all atoms start out in the atomic condensate and
Fig. 2(b) reveals that the excited state fraction remains limited
at early times for resonances with large knR∗, we approximate
the atomic wave function as ψa ≈ √

n and neglect the terms
scaling with ψm and κk in Eq. (23). Under these approxima-
tions, we can integrate Eq. (23) with respect to the time and
obtain

2|ψm|2 ∝ (t/t∗)2, (50)

where t∗ = √
tnτ is the geometric mean of two relevant

timescales. Here, τ = 2mR∗/kn h̄ is the lifetime associated
with a molecule on the Fermi scale as discussed in Sec. II A.
Physically t∗ represents the density-averaged time for open-
channel atoms to transition to closed-channel molecules.
Hence, we refer to t∗ as the mean transition time. The scaling
of the early-time dynamics of resonances in terms of the mean
transition time t∗ is supported by the inset of Fig. 2(c), where
the rescaling of the time axis with t∗ results in the collapse of
the molecular condensate fraction curves for sufficiently large
values of knR∗.

Following the stage of rapid initial growth, Fig. 2(c) shows
the saturation of the molecular condensate fraction at later
times. The time it takes to reach the saturated value increases
as a function of knR∗. We interpret the delay in the observed
saturation time to be a result of the increased mean transition
time of closed-channel molecules for narrower resonances.

Once the molecular condensate fraction has saturated, the
depletion of the atomic condensate fraction effectively solely
results in the formation of new excitations. This process can
be observed in Fig. 2(b), where we recognize that, at later
times, the excited state fraction grows more rapidly for narrow
resonances with respect to broader resonances. Furthermore,
Fig. 2(a) shows how the difference between the atomic con-
densate fraction for broad and narrow resonances starts to
decrease at later times.

The dynamical evolution of the excited state fraction and
the molecular condensate is echoed by the pair condensate
fraction as presented in Fig. 2(d). We recognize that, for all
considered resonance widths, a considerable fraction of the
gas contributes to the pair condensate within the simulated
time-frame. In addition, this fraction is relatively insensitive
to knR∗ compared to the other fractions in Fig. 2 and reflects
the early-time scaling law change observed in the molecular
condensate fraction.

B. Two-body contact

By applying Eqs. (36) and (C4) to the doublet model we
can compute the two-body contact, which encodes the prob-

FIG. 3. Two-body contact rescaled with the density n−4/3 fitted
from the tail of the momentum distribution (solid lines) and com-
puted using the generalized Tan relation (points) as a function of the
time for various values of the dimensionless resonance width knR∗.
The black line indicates the linear fit as presented in Eq. (51). In the
inset, the halfway time τc to reach the maximum value of the contact
is plotted as a function of knR∗.

ability of finding clustered particles at short distances, for
different values of knR∗.

Figure 3 reveals that the contact obtained using the gen-
eralized Tan relation agrees with the contact obtained using
the tail of the momentum distribution over the whole range
of considered resonance widths. Furthermore, Fig. 3 shows
that the contact for a broad-resonance interaction initially
grows linearly and follows the analytic expression derived in
Ref. [20] according to

n−4/3C2(t ) = 128π

(6π2)2/3

t

tn
. (51)

In addition, consistent with the derivation presented in
Appendix A, the contact is observed to be proportional to
the molecular condensate fraction in the broad-resonance
limit [56].

Considering resonances with large knR∗ on the other hand,
we recognize that the initial growth of the contact is gradually
becoming less rapid as knR∗ increases. In order to quantify the
time it takes for the contact to evolve, we have computed the
halfway time τc. This timescale is defined as the time it takes
to reach half the maximum value of the contact. The inset of
Fig. 3 reveals how τc increases as a function of the resonance
width. Similarly to the initial growth of the molecular lifetime,
we observe the initial growth of the contact to evolve from
linear to quadratic. In addition, the saturation time increases
for larger values of knR∗. We relate this to the increase in the
mean transition time t∗ of the closed-channel molecules. The
increase in t∗ slows down the formation of excitations from
closed-channel molecules. Equation (36) then reveals how a
delay in the saturation of the large momentum modes of the
excited state fraction delays the saturation of the contact. As
the large momentum modes of the excited state fraction satu-
rate more rapidly than the smaller momentum modes [3,18],
we expect the contact in Fig. 3 to saturate before the excited
state fraction in Fig. 2(b).
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FIG. 4. Dimer binding energy rescaled with the Fermi energy as
a function of the time spent at unitarity for three different values of
the dimensionless resonance width knR∗. The dimer shrinks progres-
sively with increasing time at unitarity, as schematically illustrated
by the cartoon. The dashed orange line is consistent with the single-
channel result (orange circles) as presented in Ref. [17].

C. Dimer

In this section we focus on how the evolution of the em-
bedded dimer energy ED as investigated in the single-channel
limit in Refs. [16,17] is affected by the gradual increase of
knR∗. This allows us to investigate how the size of the dimer
and the universal scaling of the dimer energy with the scatter-
ing length is affected by the medium as well as the resonance
width. The results of this analysis are presented in Figs. 4
and 5.

We observe that, contrary to vacuum two-body interac-
tions, the dimer energy decreases towards more deeply bound
values as the time spent at unitarity progresses. We relate this
to the reduction of the magnitude of the embedded scattering
length as presented in Fig. 5(a), which indicates a decrease in
the size of the embedded dimers as illustrated by the sketch in
Fig. 4.

The sketch indicates that the localization is more rapid
for increasing knR∗, consistent with the production of more
excitations for broader resonances, as discussed in Sec. III A.
Since these atoms Bose-enhance open-channel interactions,
the change in the effectively experienced open-channel po-
tential V̂eff is more drastic for broad resonances, such that
the system is effectively pushed away from resonance more
rapidly, corresponding to a more swift localization of the
dimer. Besides commenting on the size of the embedded
dimer, we notice that Fig. 5(a) shows that, before the comple-
tion of the quench, the scattering length has already assumed
finite values. This is a result of the, albeit limited, depletion of
the initial state during the quench [17].

Similarly to two-body physics, we expect that the uni-
versal relation between the embedded scattering length and
the dimer energy |ED| ≈ h̄2/(ma2) only holds for sufficiently
large values of the scattering length. Furthermore, the cor-
rection to the universal quadratic relation becomes more
important at larger values of the scattering length for increas-
ingly narrow resonances. Therefore, in addition to analyzing
the embedded scattering length, we present the evolution

FIG. 5. The effective scattering length a (5a) and the effective
range Reff (5b) as a function of the time spent at unitarity for various
values of the dimensionless resonance width knR∗. The inset in panel
(a) presents the inverse of the scattering lengths a and a(k) as a
function of the dimer wave number rescaled with the Fermi wave
number. Dashed black lines have been added to panel (b) in order to
indicate the vacuum limit of the effective range as computed using
Eq. (17).

of the effective range Reff as a function of the time spent
at unitarity in Fig. 5(b). Initially, the embedded effective
range correctly reduces to the expected vacuum result as ex-
tracted from Eq. (17). However, as the time spent at unitarity
progresses, the value of the embedded effective range starts to
increase.

Especially interesting is the observation that, at later times,
the effective range assumes non-negligible values even for
broad resonances and cannot be ignored. This effect is visual-
ized in the inset of Fig. 5, where the inverse scattering length
a−1 and the function a(k)−1 = a−1 + 1

2 Reffk2 are plotted ver-
sus the rescaled dimer wave number kD/kn = √

ED/2En and
the curves are observed to differ for larger values of kD/kn.

D. Z parameter

We now aim to analyze how the embedded dimer is dis-
tributed amongst the closed- and open-channel subspaces
through the computation of the dynamical Z parameter. Con-
sistent with Eq. (19) for a two-body system, our analysis of
the Z parameter as presented in Fig. 6 reveals that initially
Z = 0 at unitarity. We interpret this as being a result of the
dimer extending over an infinite length scale at unitarity, such
that the overlap of this infinite quantity with the localized
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FIG. 6. The Z parameter [Eq. (45)] as a function of the time
spent at unitarity for various values of the dimensionless resonance
width knR∗.

closed-channel molecule vanishes. However, in agreement
with the picture of the localization of the dimer as elaborated
in Sec. III C and as predicted in Ref. [65], the Z param-
eter assumes nonzero values as the time spent at unitarity
increases. Figure 6 shows that the finite value of the Z pa-
rameter increases as a function of knR∗, consistent with the
dimer becoming progressively less open-channel-dominated
for narrow resonances.

E. Relative dimer state occupation

In the past two subsections, we have focused on the char-
acteristics of the embedded dimer state. However, we are yet
to quantify the relative importance of this dimer state with
respect to the total pairing matrix. As outlined in Sec. II C 3,
this importance is gauged by the quantity FD as presented in
Eq. (46). The evolution of this parameter for various values
of the resonance width is presented Fig. 7. Consistent with
the results found in Ref. [49], the embedded dimer state
dominates the quantum depletion in the case of relatively
broad resonances, displaying the evolution of an initially fast
growth followed by a slower relaxation towards a finite value.
Furthermore, Fig. 7 reveals that this complicated dynamics is
affected by the resonance width. In the simulated time-frame,
the relatively broad-resonance case presents an upper bound
to the value of FD. This means that the embedded dimer

FIG. 7. The relative dimer state occupation [Eq. (46)] for various
values of the dimensionless resonance width knR∗ as a function of
the time spent at unitarity.

state is comparatively less relevant for pair correlations in
narrow-resonance systems.

In order to gain an intuitive picture of this observation, we
refer back to Fig. 4, where we observe that dimers formed
using narrow-resonance interactions are less deeply bound
compared to dimers formed using broad-resonance interac-
tions. Consequently, narrow-resonance interactions result in
comparatively large dimers, which do not localize to sizes
comparable to the Fermi scale during the considered time-
frame. As the pair correlation physics occurs on the level
of the Fermi scales, the relatively extended dimers extend
over a larger range than the typical two-body pairing physics.
Hence, the observation that the dimer state is less rele-
vant for narrower resonances, corresponding to lower values
of the FD.

IV. CONCLUSION

In this work, we employ a two-channel model with finite-
range pairwise interactions in order to study the effect of the
resonance width on the dynamics of quenched unitary Bose
gases. Using a two-channel model we vary the value of knR∗,
effectively changing the width of the resonance. This allows
us to analyze the onset of nonuniversal effects. For increasing
knR∗ the lifetime of the closed-channel molecules is increased
relative to the Fermi scale, and the pairwise production of
excitations in the open channel is decreased. Consequently
the early-time growth of the dynamical two-body contact be-
comes more gradual, transitioning from linear to quadratic
behaviors. In the limit knR∗ � 1, the early-time growth of
the molecular condensate fraction also shifts from linear to
quadratic and is set by the mean molecular lifetime t∗ = √

tnτ .
Here the system scales as combinations of resonance parame-
ters and the density. Within the embedded few-body problem,
we study the localization of dressed embedded dimers that are
bound purely by many-body effects and are dressed by mul-
tichannel couplings. This analysis reveals their dominant role
in the quantum depletion and how they become increasingly
closed-channel-dominated as knR∗ is increased.

Our analysis of the closed-channel contribution to the
dressed embedded dimers and the pair condensate fraction
opens up additional experimental probes in the unitary regime
[16,27,51]. Furthermore, including third-order cumulants in
the two-channel model along the lines of Refs. [17,25,26]
represents an interesting prospect for future research, allowing
for the investigation of Efimov physics, the triple-condensate
fraction and atom-molecule interactions in the unitary Bose
gas for various values of the resonance width.
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APPENDIX A: BROAD-RESONANCE LIMIT

In the vacuum broad-resonance limit, the two-body inter-
actions can be described by a single-channel model, since
the number of closed-channel molecules remains small. In
the many-body environment, the broad-resonance limit of
Eqs. (22)–(25) can be obtained by eliminating the molecular
wave function ψm from this set of equations, meaning that
∂tψm ≈ 0, such that

ψm = − g

2ν
ψ2

a ζ ∗(0) − g

2ν

∑
k �=0

ζ ∗(2k)κk. (A1)

The reduced set of equations then corresponds to the single-
channel HFB equations as presented in Refs. [16,17], with

v1ch = v − |g|2
2ν

, (A2)

where v1ch is the renormalized single-channel potential in-
teraction strength [32,35]. Additionally, in a single-channel
model, the two-body transition matrix can be expressed as

T1ch = v1chζ (2k)P〈ζ |ψ+
P 〉, (A3)

Apart from the difference in the potential strength, the pre-
vious expression corresponds to the uncoupled open-channel
part of the transition matrix as presented in Eq. (12). In the
broad-resonance limit, Eq. (A3) must match the expression
for the two-channel transition matrix as given in Eq. (12), such
that

v1chζ (2k)P〈ζ |ψ+
P,1ch〉 = vζ (2k) P〈ζ |ψ+

P 〉

+
g2

2 |P〈ζ |ψ+
P 〉|2

E − ν − g2

2 P〈ζ |ĜP(E )|ζ 〉P

, (A4)

where 〈ζ |ψ+
P 〉 can be expressed as

〈ζ |ψ+
P 〉 = ζ (2k)∗

(
1 + vξ (E )

1 + 4πvξ (E )

)
, (A5)

with

ξ (E ) = 1

(2π )3

∫
|ζ (2k′)|2 k′2

E − h̄2k′2/m
dk′. (A6)

Furthermore, we can write the term 〈ζ |ĜP(E )|ζ 〉 that appears
in the denominator of Eq. (A4) as

〈ζ |ĜP(E )|ζ 〉 = 4πξ (E )

(
1 + vξ (E )

1 + 4πvξ (E )

)
. (A7)

Substituting the expression for the potential strength v as
presented in Eq. (10) into Eq. (A4), defining v1ch analogously
to v, and considering the low-energy limit, we can express the
single-channel scattering length a1ch as

a1ch = abg − m

4π h̄2

g2
0

2ν0
. (A8)

Comparing Eq. (A8) to the definition of aeff in Ref. [36],
we recognize that the correction factor gc used in that work
has been replaced by a factor of 2 in our definition of a1ch.
There, the correction factor gc was set to a value of 1.816
in order to match the binding energy of the contact potential
model as closely as possible. A similar parametrization and

FIG. 8. The unrenormalized pair fraction N (2)
0 added to the

atomic condensate fraction as a function of the time t/tn spent at
unitarity.

correction factor was found in Ref. [35]. We recognize that,
using the separable potential model, our analytically obtained
factor of 2 is in relatively close agreement with the calibrated
correction factors used in these works.

Extending the broad-resonance limit analysis to the two-
body contact, we realize that this limit allows for the
computation of the contact using the adiabatic sweep theorem
[56,58]:

C2 = 4πm

h̄2

dE

d (−1/a)
. (A9)

Applying the dispersive relation between the scattering length
and the magnetic field as presented in Eq. (1), the previous
expression can be rewritten into the form

C2 = 4πm

δμR∗(1 − abg/a)2

dE

dB
. (A10)

Since only the bare bound-state energy of the closed-channel
molecule depends on the magnetic field, the application of
the Helmann-Feynmann theorem [56,64] reveals that the two-
body contact can be expressed as [10,56]

C2 = 4π |ψm|2
R∗

(
1 − abg

a

)−2
. (A11)

The previous expression implies that the two-body contact
scales linearly with the molecular condensate fraction in the
broad-resonance limit.

APPENDIX B: RENORMALIZATION
OF THE PAIR CONDENSATE

As outlined in Sec. II B 2, we cannot directly relate the
eigenvalue N (2)

0 as presented in Eq. (32) to the number of
condensed pairs due to the Bose enhancement that alters the
bosonic commutation relation and results in an overcounting
of the number of pairs. As presented in Fig. 8, the unrenormal-
ized number of pairs exceeds the number of particles available
for pairing N-Na, such that N (2)

0 + Na > N . The overcounting
of bosons at early times is larger for broader resonances due to
the increased value of the open-channel pairing matrix κk. In
order to retrieve the number of condensed pairs and the correct
bosonic commutation relations, the eigenvalue N (2)

0 has to be
renormalized. To this end, we define the following momentum

013315-11
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space composite operator that annihilates a condensed pair:

d̂0 = 1√
2

∑
k �=0

[
âk â−kϕP,0(k)√
2φ(k)b̂0ϕQ,0(k)

]
, (B1)

such that 〈d†
0 d0〉 = N (2)

0 /2. By calculating the expectation
value of the commutator [d̂0, d̂†

0 ], we can compute the
overcounting factor required for the renormalization. Using
Eq. (B1) we find that

[d̂0, d̂†
0 ] = 1

2

∑
k,k′ �=0

(ϕP,0(k)ϕP,0(k′)[âk â−k, â†
k′ â

†
−k′ ]

+2ϕQ,0(k)ϕQ,0(k′)φ(k)φ(k′)[b̂0, b̂†
0]), (B2)

where we have used that the open- and closed-channel op-
erators commute. Since both operators satisfy the bosonic
commutation relation and using the orthonormality of the
bare closed-channel wave function, the expectation value of
Eq. (B2) can be expressed as

〈[d̂0, d̂†
0 ]〉 =

∑
k �=0

|〈âk â−k〉|2
N (2)

0

(1 + 2â†
k âk ) + 2

|〈b̂0〉|2
N (2)

0

, (B3)

where we have used the momentum space analog of the pair
wave-function presented in Eq. (33) in order to express the
eigenvector components in terms of the expectation value of
the cumulants introduced in Sec. II B. Recognizing the factor
N (2)

0 as defined in Eq. (32), we can rewrite Eq. (B4) as

〈[d̂0, d̂†
0 ]〉 = 1 + 2

N (2)
0

∑
k �=0

|〈âk â−k〉|2â†
k âk . (B4)

Since we neglect the presence of background molecules in
the closed channel, Eq. (B4) is identical to its single-channel
analog presented in Ref. [26], despite the presence of the
closed-channel molecular fraction in the definition of N (2)

0

presented in Eq. (32). In order to retrieve the desired bosonic
commutation for the pair condensate, Eq. (B4) inspires us to
define the following renormalized analog of the pair operator
presented in Eq. (B1):

D̂0 = d̂0√
1 + [

2/N (2)
0

]∑
k �=0 |〈aka−k〉|2a†

kak

. (B5)

Using this renormalized operator, we can now compute the
number of condensed pairs using 〈D†

0D0〉 for various values
of the resonance width (which in the many-body system can
be parametrized in terms of knR∗).

APPENDIX C: RELATING THE CONTACT
TO CUMULANTS

In order to relate Eq. (39) to the set of cumulants introduced
in Sec. II B such that we can compute its value as a function of
the time spent at unitarity, we consider the zero-energy limit
of Eq. (23), finding that

φ̂Q = − g2

2ν
ψ̂Pψ̂P, (C1)

where we have used 〈ψ̂P〉 = ζ (0)ψ2
a + ∑

k ζ (2k)κk and
〈φ̂Q〉 = ψm. Analogous to Ref. [64], we can then define the
following compound operator �̂:

�̂ = vψ̂Pψ̂P + gφ̂Q, (C2)

such that we can obtain the following expression for the gen-
eralized Tan contact:

C2 = 〈�̂†�̂〉. (C3)

In terms of our set of cumulants the previous expression shows
that the two-channel contact can be computed as

C2(t ) = m2v2

h̄4

(
|ψa|4|ζ (0)|2 + 4|ψa|2

∑
k

|ζ (k)|2ρk + 2
∑
k,k′

|ζ (k − k′)|2ρkρk′ +
∑

k

[
ζ (2k)ζ ∗(0)κ∗

kψ2
a + H.c.

]

+
∣∣∣∣∣
∑

k

ζ ∗(k)κk

∣∣∣∣∣
2

+ 1√
2πa2

bgR∗

[
(ψ†

a )2ψmζ (0) +
∑

k

ζ (2k)κ∗
kψm + H.c.

]
+ 1

2πa2
bgR∗ |ψm|2

)
. (C4)

Equation (C4) is used to obtain the results as presented in Sec. III B.
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