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Competing insulating phases in a dimerized extended Bose-Hubbard model
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We study the ground-state properties of the extended Bose-Hubbard model in a one-dimensional dimerized
optical lattice. In the limit of strong on-site repulsion, i.e., hardcore bosons, and strong nearest-neighbor
interaction, a stable density-wave (DW) phase is obtained at half-filling as a function of lattice dimerization.
Interestingly, at quarter-filling we obtain the signatures of an insulating phase which has the character of both the
bond order (BO) and the DW insulators, which we call a bond-order density-wave (BODW) phase. Moreover,
we show that for a fixed hopping dimerization there occurs a BO-DW phase crossover as a function of the
nearest-neighbor interaction and the BODW phase is more robust when the hopping dimerization is stronger. We
further examine the stability of the BODW phase in the limit of finite on-site interactions.
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I. INTRODUCTION

The systems of ultracold atoms in optical lattices have been
the most versatile quantum simulators enabling to achieve
various novel phenomena of nature. Since the seminal obser-
vation of the superfluid (SF) to the Mott insulator (MI) phase
transition [1] of neutral bosonic atoms in optical lattices, enor-
mous progress has been made in the past two decades leading
to the observation of a multitude of physical phenomena.
The precise control over the system parameters achieved by
suitable manipulation of lattice pontentials and/or the power-
ful technique of Feshbach resonance has made these systems
capable of accessing limits which are difficult to achieve in
conventional solid-state systems [2]. This has led to a rapid
surge in exploring physics both theoretically, most specifically
in the context of the Bose-Hubbard model and its variants, and
experimentally [3–6].

One of the most important variants of the Bose-Hubbard
(BH) model is the extended Bose-Hubbard (EBH) model
which explains the physics of dipolar bosons, which can arise
in polar atoms and molecules, and Rydberg excited atoms
in optical lattices [7–9] with only nearest-neighbor (NN) in-
teraction. This simple model has been the topic of immense
importance in the past [10] and has attracted a renewed inter-
est recently due to its experimental observation [11] in optical
lattices using erbium atoms. It has been well established al-
ready that the quantum phase diagram corresponding to the
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EBH model exhibits the gapped density-wave (DW) phases
at commensurate densities characterized by the crystalline
order [12–15] and the Haldane insulator which exhibits a finite
string order parameter [16–18]. Interestingly, the supersolid
phases appear at incommensurate densities which possess
both the SF and the DW orders as a result of competing on-site
and NN interactions [7,10].

On the other hand, optical superlattices which are formed
by superimposing two optical lattices of different wave-
lengths have been shown to reveal a wealth of physical
phenomena recently [19–32]. The modified periodicity of
the overall lattice in the process favors interesting ground-
state phenomena such as the onset of gapped phases at
incommensurate densities associated with the primary lattice
[23,24,27,28,32–35], symmetry-protected topological phase
transition [36–40], frustrated magnetism [41,42], disorder-
induced phase transition [43–47], and recently in the context
of quantum computation [48]. One of the many variants
of the superlattices is the double-well optical lattice which
can be formed by superimposing a secondary lattice with a
wavelength twice that of the primary lattice. This particular
superlattice, which is also known as the dimerized lattice,
ensures that the hopping strengths of the particles alternate
between the NN bonds. The physics of the double-well lattice
(hereafter called the dimerized lattice) is extremely important
in the context of condensed-matter physics [49].

For the case of noninteracting fermions and hard-
core bosons, the dimerized lattice manifests the interesting
symmetry-protected topological phase transition which has
been widely discussed in the framework of the celebrated
Su-Schrieffer-Heeger (SSH) model [49]. Depending on the
hopping dimerization, the system exhibits a gapped bulk spec-
trum and polarized zero-energy edge modes characterized by
the Zak phase [50,51]. The bulk state exhibits finite oscillation
in the bond kinetic energy and the system is known to be
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FIG. 1. Double-well lattice structure with dimerized hopping
t1 > t2. V represents the NN interaction between the particles.

in the dimer or BO phase [42,52–55]. Recently, the role of
interaction has been investigated in the context the dimerized
BH model [35–37,40,56–58] predicting the bulk and edge
properties of interacting bosons in optical lattices. A system of
three-body constrained (TBC) bosons (allowing a maximum
of two bosons per site) on a one-dimensional dimerized lattice
was investigated by some of us in Ref. [35]. It was shown
that an attractive on-site interaction leads to a BO phase of
bound bosonic pairs known as the pair-bond-order (PBO)
phase at unit filling which crosses over to an MI phase in the
limit of repulsive interaction. However, at half-filling, only a
gapped BO phase is stabilized in the repulsive regime. On the
other hand, the effect of dimerized NN interaction has been
studied extensively for systems of spin-polarized fermions
or hardcore bosons [59]. It has been shown that the system
goes from the BO phase to a DW phase (phase separation)
through an SF phase for repulsive (attractive) NN interaction
at half-filling. However, the combined effect of uniform NN
interaction, finite on-site interaction, and dimerized hopping
at other densities has not been explored in detail.

In this paper we aim to fill the gap by studying the
physics of hardcore NN interacting bosons loaded onto a
one-dimensional dimerized optical lattice in the framework of
the EBH model as depicted in Fig. 1. We analyze the interplay
between the hopping dimerization and the NN interactions to
explore the emergence of different insulating phases in the
ground state of the system. Before going to the details of
the results, we briefly highlight the important finding of our
analysis. By considering a strong NN interaction, a change
in the dimerization results in an insulating phase at quarter-
filling which exhibits both the BO and the DW orders. This
insulating phase is found to be very sensitive to the change
in dimerization strength for fixed NN interactions. Apart from
this we obtain the signatures of the BO and DW phases at half-
filling and transitions between them. In the end we examine
the stability of the nontrivial insulating phase at quarter-filling
in the limit of finite on-site interactions.

The remaining part of the paper is organized as follows.
In Sec. II we discuss the model which is considered in our
studies and the method adopted. We present the results and
discussion in Sec. III followed by the conclusions in Sec. IV.

II. MODEL AND APPROACH

The EBH model for dimerized lattice bosons is given by

H = − t1
∑
i∈odd

(a†
i ai+1 + H.c.) − t2

∑
i∈even

(a†
i ai+1 + H.c.)

+ U

2

∑
i

ni(ni − 1) + V
∑

i

nini+1, (1)

where ai and ni are the bosonic annihilation and number
operator, respectively, at sites i; t1 and t2 are intra- and intercell
hopping strengths; and U and V are the on-site and nearest-
neighbor interaction energies. The hopping dimerization is
introduced by defining δ = t2/t1 and setting t1 > t2. In the
entire simulation we set t1 = 1, which makes all the physical
quantities dimensionless.

In our studies, we impose hardcore constraint on bosons
by assuming a†2

i = 0, which can be achieved in the limit
of U → ∞. The physics of the model shown in Eq. (1) in
some limiting situations are well known at half-filling. After a
Jordan-Wigner transformation to free fermions, Eq. (1) maps
to the interacting SSH model. As highlighted before, in the
limit V = 0 (the SSH model), the model (1) exhibits a BO
phase for any δ �= 1 at half-filling [35]. On the other hand, it
is well known that in the absence of any dimerization (i.e.,
δ = 1), the model (1) can be suitably mapped to the XXZ
model that exhibits a gapless SF to insulating DW phase tran-
sition at a critical NN interaction of V = 2t at half-filling. In
this work, our aim to explore the emergence of the insulating
phases and their nature that may result from the interplay of
both δ and V .

To explore the ground-state properties of the many-body
Hamiltonian given in Eq. (1) we employ the matrix-product-
state-based density matrix renormalization group (DMRG)
method [60–63] with a maximum bond dimension of D = 500
and an open boundary condition (OBC). We consider system
sizes up to L = 240 and explore the physics at different den-
sities ρ = N/L of interest, where N is the total number of
bosons in the system. We calculate all the physical quantities
in the thermodynamic limit (L = ∞) using appropriate finite-
size extrapolation, unless otherwise mentioned.

III. RESULTS

This section is divided into three parts. To understand the
role of interaction, in the first part, we consider a fixed inter-
action V and explore the existence of the insulating phases as
a function of δ at different densities. In the second part, we
explore the effect of V by fixing δ. In the end we study the
effect of finite on-site interaction for some exemplary values
of δ and V .

A. Fixed interaction

In this subsection, we study the combined effect of both
hopping dimerization (i.e., δ �= 1) and NN interaction (i.e.,
V �= 0) to explore the possibilities of insulating phases in the
system without restricting ourselves to half-filling. For this
purpose, we consider a very strong NN interaction, i.e., V =
10, and obtain the ground-state phase diagram of the model
[Eq. (1)], which is shown in Fig. 2. Interestingly, the phase
diagram of Fig. 2 shows three gapped phases corresponding
to ρ = 1/4, 1/2, and 3/4. To properly visualize the phases
at ρ = 1/4 and 3/4 we split the phase diagram along the μ

axis. The gapped phases are extracted from the behavior of
the single-particle excitation gap,

�L = μ+
L − μ−

L , (2)
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FIG. 2. The phase diagram depicting the insulating phases in
the μ-δ plane (t1 = 1) for the hardcore bosons with V = 10. The
gapped phases at ρ = 1/4 and 3/4 are the BODW phases bounded
by the blue dashed lines, whereas at ρ = 1/2, the phase is the DW
phase, bounded by red lines with circles. The empty (ρ = 0) and full
(ρ = 1) states are separated by the black solid lines.

where μ+
L = EL(N + 1) − EL(N ) and μ−

L = EL(N ) −
EL(N − 1) are the chemical potentials. Here, E (N ) denotes
the ground-state energy of the system with N particles. It can
be seen from Fig. 2 that the gap remains finite at ρ = 1/2 for
all values of δ considered (region bounded by the red circles),
which is a consequence of large V compared to t1 and t2.
However, for ρ = 1/4 and 3/4 there is a phase transition to a
gapless region as indicated by the smooth closing of the gap
�L as a function of δ (region bounded by the blue dashed
curves). The solid black lines at the bottom and top in the
phase diagram of Fig. 2 correspond to the empty and full
states. The gapped and gapless phases can be confirmed by
computing the single-particle correlation function, which is
given by

�i j = 〈a†
i a j〉. (3)

In Fig. 3 we plot �i j against the distance |i − j| in the log-log
scale for δ = 0.1 and δ = 0.9, which are within the gapped
and gapless regions, respectively, at ρ = 1/4 in the phase
diagram of Fig. 2. The exponential (power-law) decay of �i j

for δ = 0.1 (0.9) indicates the gapped (gapless) phase. Note
that we calculate �i j around the central site of the lattice by
considering i = L/4 and varying j from j = L/4 + 1 to 3L/4
in order to avoid the edge effects of the finite system with an
OBC.

Although �i j provides insights about the nature of the
phases, it is hard to obtain the phase transition critical points
in a situation where the gap or the correlation function varies
rather smoothly. This kind of signature at ρ = 1/4 and 3/4 in
this case is typical for one-dimensional systems which indi-
cate a Berezinskii-Kosterlitz-Thouless (BKT) type transition
[64]. We perform finite-size scaling of the gap �L to accu-
rately quantify the critical δ of transition following Ref. [52].

1 10 100
|i-j|

1×10-16

1×10-12

1×10-08

0.0001

1

Γ i j

t
2
 = 0.1

t
2
 = 0.9

FIG. 3. The correlation function �i j is plotted with distance
|i − j| in log-log scale for strong dimerization (δ = 0.1) and weak
dimerization (δ = 0.9) at ρ = 1/4 of a finite system of size L = 240.
The exponential decay of the curve (δ = 0.1) signifies the gapped
phase and a power-law decay (δ = 0.9) indicates a gapless phase.

According to the scaling theory, the quantity

L�∗
L = L�L

(
1 + 1

2lnL + C

)
(4)

must be length invariant at a critical value of δ and at the
same time exhibit a perfect data collapse as a function of
xL = lnL − a√|δ−δc| near the critical point (δc) for suitable val-
ues of C and a. As shown in Fig. 4, for ρ = 1/4, the perfect
crossing of all the curves [Fig. 4(a)] at δ ∼ 0.506 and collapse
of all the data for different L near the critical point [Fig. 4(b)]
indicate a BKT-type phase transition to the gapped phase at a
critical point of δc ∼ 0.506.
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FIG. 4. The finite-size scaling of �L is shown to find the BKT
transition point. (a) A perfect crossing of all the curves for different
L at δ ∼ 0.506 represents the critical point. (b) The collapse of all
the data for different L near the critical point (xL = ∞) confirms
the BKT transition with δc ∼ 0.506. Here we display the data points
within the gapped phase only. The inset of panel (a) shows �L as a
function of δ for different L indicating the gap minimum at δ ∼ 0.5.
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FIG. 5. The values of 〈ni〉 and 〈Bi〉 are plotted in panels (a) and
(b), respectively, as a function of the site index i at ρ = 1/4 for a
system of length L = 200 and V = 10. The finite oscillations in both
〈ni〉 and 〈Bi〉 for δ = 0.1 (black circles) represent the simultaneous
existence of both DW and BO orders, respectively. The oscillations
die out for δ = 0.9 (red squares), which indicates the vanishing of
the DW and BO orders.

After separating the insulating phases at different densities,
we now focus on how to identify the nature of these phases.
We find that the gapped phase at ρ = 1/2 is a DW phase
characterized by a finite oscillation in the real-space density
〈ni〉. The DW nature can be well understood by using the
density structure factor which is given by

S(k) = 1

L2

∑
i, j

eikr (〈nin j〉 − 〈ni〉〈n j〉), (5)

where r = |i − j| and k is the crystal momentum. In our
simulation we find finite peaks at k = ±π in the structure
factor for all values of δ considered, indicating a DW phase
where the wave function is a product state with one particle in
every other site, i.e.,

|ψ〉DW = | . . . 1 0 1 0 1 0 1 . . .〉. (6)

However, we notice that the insulating phases at ρ = 1/4 and
3/4 are of different natures. Interestingly, they exhibit both
BO and DW orders in their character. To characterize this we
calculate the expectation values of ni and the bond energy
Bi = a†

i ai+1 + H.c., which are plotted in Figs. 5(a) and 5(b),
respectively, for δ = 0.1 and 0.9. The strong oscillations for
δ = 0.1 in both 〈ni〉 and 〈Bi〉 indicate the signatures of both
BO and DW orders, respectively. The envelop structure in the
density distribution [Fig. 5(a)] is a macroscopic edge effect
which appears in a DW ground state due to the presence of
the domain wall at the center of the system with a commen-
surate number of unit cells and an OBC [14,65]. For the same
reason the oscillation in Bi also gets modulated [Fig. 5(b)]. In
contrast, the oscillations tend to die out for δ = 0.9, although
they remain finite due to the finite-size effect. The signatures
of DW and BO orders can be well understood from the finite

0
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0.2 0.4 0.6 0.8 1
δ
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0.003
S (k = π/2)
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(b)

FIG. 6. The extrapolated values of SBO(k = π/2) and S(k =
π/2) are plotted in panels (a) and (b), respectively, with δ at ρ = 1/4.

peak in the density structure factor S(k) [Eq. (5)] as well as
the BO structure factor SBO(k), which is defined as

SBO(k) = 1

L2

∑
i, j

eikr〈BiBj〉 (7)

at finite values of k. For ρ = 1/4, we obtain a sharp peak at
k = π/2 for all values of δ within the gapped region of Fig. 2.
This behavior suggests that within the gapped region at ρ =
1/4, the particles are located at every alternate double well in
the lattice, which helps to minimize the energy due to strong
repulsive V , and within each occupied double well there is
a finite bond energy Bi. We call this insulating phase the
bond-order density-wave phase or the BODW phase. As
the value of δ becomes larger or the dimerization becomes
weaker, the bosons can no more be trapped in the double well.
In this limit the bosons can freely move throughout the lattice
owing to their incommensurate density turning the system into
a gapless SF phase. The BODW to SF phase transition can
further be quantified by looking at the behavior of the BO and
DW structure factors for different values of δ. In Figs. 6(a)
and 6(b) we plot the finite-size extrapolated values of peak
heights of SBO(k = π/2) and S(k = π/2) as a function of δ.
The extrapolation is done by using systems of different sizes
where the maximum system size is L = 240. The vanishing
of both SBO(k = π/2) and S(k = π/2) roughly at δ ∼ 0.5
indicates a BODW-SF transition that matches well with the
critical point obtained using the gap scaling (see Fig. 4). Note
that similar to the ρ = 1/4 case, the gapped phase at ρ = 3/4
is also found to be a BODW phase.

B. Fixed dimerization

After obtaining the behavior of the system by varying δ

for a fixed large V , we explore the physics for a fixed δ and
varying V . In this regard, we consider a case of strong dimer-
ization such as δ = 0.1, where the half-filled and quarter-filled
sectors belong to the gapped phases (see Fig. 2) and vary V .
As already discussed above, in the absence of V and δ = 0.1,
there exists only an insulating BO phase at half-filling. On
the other hand, for large V , at quarter-filling (half-filling), the
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FIG. 7. The phase diagram showing the insulating phases for the
hardcore bosons in the μ-V plane (t1 = 1) for δ = 0.1. The insulating
phases at ρ = 1/4 and 3/4 are the BODW phases (bounded by the
dashed blue lines). At ρ = 1/2, the BO-DW transition is marked by
the dotted line.

system is in the BODW (DW) phase. Our analysis reveals
how these two limits interpolate as a function of V , resulting
in a phase diagram as shown in Fig. 7 in the V -μ plane. As
the value of V increases, two BODW phases start to appear
(opening of the gap) at ρ = 1/4 and 3/4 and the lobes become
bigger as a function of V . The phase transitions from the
SF to the BODW phase at ρ = 1/4 and 3/4 are found to
be of the BKT type. The critical points are calculated from
the finite-size scaling of �L following the method discussed
before. As the gap variation here is with respect to V , we
replace xL by wL as

wL = ln L − a√|V − Vc|
. (8)

In Fig. 8 we portray the gap scaling for ρ = 1/4 and δ = 0.1.
A crossing of all the curves at V ∼ 0.42 in Fig. 8(a) and a
complete collapse of data for different L in Fig. 8(b) yield
the BKT transition point at Vc ∼ 0.42. Similar analysis for
ρ = 3/4 with δ = 0.1 shows the critical transition point at
Vc ∼ 0.43 as indicated in the phase diagram of Fig. 7. On
the other hand, the BO phase at ρ = 1/2 becomes a DW
phase with increasing V as the NN interaction dominates over
the dimerization strength. As both the BO and DW phases are
insulating phases, the BO-DW transition can be inferred from
a kink in the gap � as a function of V . This feature is reflected
as the kinks in the μ+ and μ− curves (red circles in Fig. 7)
at V ∼ 4. The BO-DW transition point can be quantified by
analyzing the corresponding structure factors S(k) and SBO(k).
In Figs. 9(a) and 9(b) we plot the extrapolated values of S(π )
and SBO(π ) as a function of V for δ = 0.1. The vanishing S(π )
(solid circles) and finite SBO(π ) (solid squares) in the regime
of small V in Figs. 9(a) and 9(b), respectively, clearly indicate
the signature of the BO phase. However, after a critical Vc,
the S(π ) becomes finite, which corresponds to the transition
to the DW phase. In order to obtain the critical point for this
BO-DW transition we use the derivative of S(π ) with respect
to V . The plot of dS(π )/dV as a function of V exhibits a sharp
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FIG. 8. The finite-size scaling of �L is shown to find the BKT
transition point. (a) A perfect crossing of all the curves for different
L at V ∼ 0.42 represents the critical point. The inset shows the
magnified plot near the critical point. (b) The collapse of all the data
for different L near the critical point (wL = ∞) confirms the BKT
transition with Vc ∼ 0.42. Here we display the data points within the
gapped phase only.

peak at V ∼ 4 as shown in Fig. 9(a) as empty circles. A similar
feature in the derivative of SBO(π ) (empty squares) in Fig. 9(b)
confirms the BO-DW transition which is indicated as a dotted
line in Fig. 7.

From the above analysis it is evident that the BODW
phases exhibit smaller gaps compared to those of the DW
and BO phases. We find that the BODW lobe is extremely
sensitive to dimerization δ. By considering a slightly weaker
dimerization, i.e., δ = 0.2, we obtain the phase diagram as
shown in Fig. 10. It can be seen that the gaps at ρ = 1/4

0 4 8
V

0

0.02

0.04

0.06
S(π)
dS(π)/dV

0 4 8
V

S
BO

(π)

-dS
BO

(π)/dV

(a) (b)

FIG. 9. (a) S(π ) with its derivative and (b) SBO(π ) with its
derivative are plotted with respect to V for δ = 0.1 and ρ = 1/2 cor-
responding to Fig. 7. The vertical dotted lines at V ∼ 4.0 correspond
to the dotted line shown in Fig. 7 which matches fairly well with the
peaks of the derivative functions.
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FIG. 10. The phase diagram showing the insulating phases of the
hardcore bosons in the μ-V plane (t1 = 1) for δ = 0.2. At ρ = 1/4
and 3/4 the insulating phases are the BODW phases (the region
bounded by the dashed blue lines). At ρ = 1/2, there exists a BO-
DW phase transition marked by the dotted line.

and 3/4 are reduced, thereby shrinking the BODW lobes.
However, the effects on the BO and DW phases at ρ = 1/2
are very small.

C. Finite on-site interaction

Finally, in this section, we examine the stability of the
BODW phase by relaxing the hardcore constraint. For this we
allow the finite on-site interaction U of bosons in Eq. (1).

Here, we only discuss the fate of the BODW phase at
ρ = 1/4. To this end we fix δ = 0.1 and calculate the ρ-μ
curves for different combinations of U and V as shown in
Fig. 11(a). The finite plateaus at ρ = 1/4 for V = 10 in the
limit of small and large U such as U = 0 (red solid curve)
and U = 10 (green plus) clearly indicate an insulating phase.
In order to confirm the nature of this phase, we plot the
structure factors S(π/2) and SBO(π/2) as a function of ρ in
Fig. 11(b) for both the combinations, such as (U = 0, V = 10)
and (U = 10, V = 10). The finite peaks at ρ = 1/4 in both the
structure factors confirms the stability of the BODW phase. In
the inset of Fig. 11(b), we plot 〈ni〉 at ρ = 1/4 for V = 10 and
U = 0 where each double well has one particle followed by
an empty double well, confirming the existence of the BODW
phase. The stability of the BODW phase in the vanishing U
limit can be described from the perspective of energy cost due
to interactions. If we start from the BODW phase at U = ∞
and decrease U below the hardcore limit, the particles are still
restricted to hop to the other double wells that are either empty
or filled with a dimer which costs an increase in energy due
to V . On the other hand, the ρ-μ curves for V = 0 do not
show any plateaus, which indicates that the system is in the
gapless SF phases [see Fig. 11(a)]. The inference that can
be drawn from the above analysis is that this BODW phase
appears due to the interplay between the long-range interac-
tion and hopping dimerization alone, and the role of U is not
significant.
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FIG. 11. (a) The variation of ρ with increasing μ is plotted for
different combinations of U and V using a finite system of size
L = 80 and δ = 0.1. The plateaus at ρ = 1/4 appear when V = 10,
indicating the gapped BODW phase. (b) The plots of S(π/2) and
SBO(π/2) as a function of ρ for (U = 0, V = 10) and (U = 10,
V = 10) confirm the stability of the BODW phase. The inset of panel
(a) shows the zoomed in ρ-μ plot of the main figure for U = 0 and
V = 0 for clarity. The inset of panel (b) shows the particle number
distribution along the lattice for ρ = 1/4 with V = 10 and U = 0.

IV. CONCLUSIONS

In conclusion, we have studied the physics of the ground
state of a system of interacting hardcore bosons in a one-
dimensional optical lattice with hopping dimerization. By
using the DMRG method, we have predicted the emergence
of various insulating phases and associated phase transitions.
We have shown that in the presence of large NN interaction,
the system exhibits a DW phase which remains stable for
all values of dimerization strengths. Interestingly, at quarter-
fillings, we have obtained the signatures of an insulating phase
that exhibits both the bond order and the density wave orders
which we call the BODW phase. Moreover, we have obtained
a SF-BODW phase transition as a function of the dimerization
strength which is of the BKT universality class. On the other
hand, by fixing the dimerization strength, there occurs a BO-
DW phase transition at half-filling as a function of the NN
interaction. In this case also, we have obtained a SF-BODW
phase transition at quarter-filling. It is found that the BODW
phase is extremely sensitive to the dimerization strength. In
the end we have predicted the stability of the BODW phase in
the limit of finite on-site interaction.

Our findings predict various insulating phases including
the BODW phase at quarter-filling which is a result of both
the hopping dimerization and the NN interaction. These pre-
dictions can, in principle, be realized in experiments involving
ultracold dipolar atoms in optical lattices. As already men-
tioned, the lattice model we have considered resembles a
double-well optical lattice which has been realized in recent
experiments by superimposing an optical lattice with another
lattice having a wavelength half that of the first one [51].
Moreover, by arranging the one-dimensional lattice in a zig-
zag structure and by aligning the dipoles in a suitable direction
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one can restrict the long-range dipole-dipole interaction to the
nearest neighbors only [66]. As a possible future direction,
it will be interesting to explore the topological properties
of the model considered at quarter-filling. As the system

exhibits a gap in this limit, it may favor a topological phase
transition which can be studied by changing the hopping
dimerization in the framework of the interacting SSH model
[37].

[1] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Nature (London) 415, 39 (2002).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[3] F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y.
Takahashi, Nat. Rev. Phys. 2, 411 (2020).

[4] C. Gross and I. Bloch, Science 357, 995 (2017).
[5] I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267

(2012).
[6] M. Lewenstein, A. Sanpera, and V. Ahufinger, Contemp. Phys.

54, 112 (2013).
[7] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau,

Rep. Prog. Phys. 72, 126401 (2009).
[8] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B.

Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S.
Jin, and J. Ye, Science 322, 231 (2008).

[9] T. F. Gallagher and P. Pillet, Advances in Atomic, Molecular,
and Optical Physics (Academic, San Diego, 2008), Vol. 56,
pp. 161–218.

[10] M. Baranov, Phys. Rep. 464, 71 (2008).
[11] S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai,

M. Baranov, P. Zoller, and F. Ferlaino, Science 352, 201 (2016).
[12] T. D. Kühner, S. R. White, and H. Monien, Phys. Rev. B 61,

12474 (2000).
[13] G. G. Batrouni, R. T. Scalettar, G. T. Zimanyi, and A. P. Kampf,

Phys. Rev. Lett. 74, 2527 (1995).
[14] T. Mishra, R. V. Pai, S. Ramanan, M. S. Luthra, and B. P. Das,

Phys. Rev. A 80, 043614 (2009).
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