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Saturation of superradiant light scattering from an atomic grating with a large number of atoms
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Superradiance has drawn increasing interest, motivated by the development of quantum technology. In general,
a large number of atoms are favored for inducing a strong superradiance. However, our analytical and numerical
calculations of light scattering from an atomic grating longitudinally pumped by a laser show that when the atom
number is small, superradiant light scattering (SLS) is induced, that is, the reflected light intensity is proportional
to the square of the atom number, whereas the SLS is saturated with the increase in the atom number. In our
calculation, using the coupled-wave theory, we treat the atomic grating as a dynamical photonic crystal and find
rich time-dependent optical properties due to collective atomic recoil motion, which is available within research
under current experimental condition. Thus, our paper could also spark an investigation of the optical features of
tunable photonic crystals in the time domain.
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I. INTRODUCTION

Superradiant light scattering (SLS) is a collectively en-
hanced light-scattering phenomenon which follows the well-
known square law that the scattered light intensity has a
square relation to the interfering atom number [1,2]. This
phenomenon is analogous to Dicke’s superradiance which
radiates a field whose intensity becomes proportional to the
square of the number of coherent radiators [3]. Now, super-
radiance is playing an important role in developing quantum
technologies, such as quantum communication [4], quantum
amplification [5], quantum memory [6–8], quantum informa-
tion [9,10], quantum entanglement [11,12], as well as the
optical atomic clock [13,14].

In the original Dicke model [15], superradiance is facil-
itated by a light-induced dipole-dipole interaction which is
strong for a very short separation between atoms, therefore,
a very high atom density is required. However, for the dilute
atomic Bose-Einstein condensate (BEC), a series of seminal
experiments in 1999 demonstrated a new mechanism that
could realize the SLS [16–18]: when an elongated BEC is
pumped by a laser, an optical lattice formed by lights at end-
fire modes produces an atomic density grating which, in turn,
increases the depth of the optical lattice, and the cooperation
of the optical lattice and the atomic grating will induce a
superradiance. This new mechanism is irrelevant to the quan-
tum statistics of the atoms [19] and could also be realized
in thermal gases [20]. So far, this mechanism has sparked
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active investigation for amplification of light and a matter
wave [21], quantum phase transition [22,23], entanglement of
matter waves [24], quantum imaging of atomic gases [25], as
well as quantum swap of photons and matter waves [26].

An electromagnetically induced atomic grating, whose
formation is a key to inducing SLS from a dilute atomic
gas, has also been pursued in other fields, such as slowing
light [27–29], nonlinear light diffractions [30], engineering
a single photon [31], coherently enhancing backscatter-
ing [32,33], and Talbot self-imaging of an atomic gas [34,35].
However, the SLS is investigated here.

There have been intensive theoretical investigations of the
superradiance of an atomic gas. One approach, first developed
in coherent atom recoil lasing [36], is ray atom optics, which
treats atoms as classical particles [37,38]. This classical ap-
proach is not favored for ultracold atomic gases with a rather
large matter wavelength. To take account of the wave feature
of ultracold atoms, the matter-wave optics approach has been
developed [39–41]. This approach is successful in explaining
the early stage of superradiance, matter-wave amplification,
and patterns of scattered atoms. However, the relationship
between the SLS and the dynamical matter-wave grating with
different atom numbers has not been fully discussed.

In this paper, we treat the light scattering from an atomic
grating as the Bragg reflection of light from a photonic crystal
and find a saturation phenomenon of SLS with a large atom
number. Previous intensive investigation of atomic photonic
crystals [42–45] has not linked the Bragg reflection to SLS.
Now, our analytical and numerical solutions show that when
the atom number is low, a SLS could be induced, that is, the
reflectance of the atomic Bragg grating is proportional to the
square of the atom number. However, when the atom number
increases, the SLS is saturated, in other words, the square law
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is violated. This surprising result may shed light on under-
standing the scaling law for the cooperative optical effect of
atomic gases. Also, our paper could inspire investigation of
tunable photonic crystals within the time domain.

We organize this paper as follows. The physical model of
the interaction between light and an atomic grating is pre-
sented in Sec. II. An analytical solution of the reflectance
of the atomic grating is given in Sec. III, and saturation
of the SLS is discussed. In Sec. IV, we analyze the light
field by the modified coupled-wave theory (MCWT) [46],
and then numerically calculate the reflectance of the atomic
grating with different atom numbers and momentum distribu-
tions. A comparison between the numerical and the analytical
solutions is given. In Sec. V, we discuss the validity of
our one-dimensional semiclassical model. We conclude in
Sec. VI by briefly summarizing our results and providing
an outlook.

II. PHYSICAL MODEL

We start our analysis from the equation for the wave-
function �(r, t ) of a two-level atomic BEC driven by a far-off
resonant optical field under the Gross-Pitaevskii mean-field
approximation [47],

ih̄
∂

∂t
�(r, t ) =

[
− h̄2∇2

2M
+ |d · E(r, t )|2

h̄�

]
�(r, t )

+ [Vtrap(r) + g|�(r, t )|2]�(r, t ), (1)

where �(r, t ) is subjected to the normalization condition:∫ +∞
−∞ dr|�(r, t )|2 = 1. Vtrap(r) is an extra trapping potential

confining the BEC. g is the effective s-wave atom-atom in-
teraction strength. � = ωL − ωa is the detuning of the laser
frequency ωL from the atomic resonance frequency ωa. d is
the dipole matrix element between the ground and the excited
states. E(r, t ) describes the slowly varying amplitude of the
optical field interacting with the condensate which satisfies
the Helmholtz equation [48],

∇2E(r, t ) + k2
Ln2(r, t )E(r, t ) = 0, (2)

where kL = ωL/c is the wave number of the optical field in
vacuum. The refractive index n(r, t ) in Eq. (2) of the conden-
sate is given by [49]

n(r, t ) =
√

1 + χ, (3)

where χ = −d2N/(ε0 h̄�)|�(r, t )|2 is the susceptibility of
the BEC, N is the atom number, and ε0 is the vacuum
permittivity.

In order to study the reflection of light by an atomic
grating, we first reduce the atom-field system to a quasi-one-
dimensional (1D) one. We assume a cigar-shaped BEC with
length L and effective cross-section area Z whose transverse
freedom is frozen by a tightly bounded trapping potential
Vtrap(r) = Vtrap(y, z), whereas Vtrap(x) = 0. Moreover, we con-
sider the transverse width of the optical fields is much larger
than

√
Z such that the transverse dispersion of the optical field

and the matter wave could be neglected in our further analysis.
Furthermore, the optical field is assumed to be linearly polar-
ized along the z direction. Then the BEC wave function and
the optical field could be expressed as �(r, t ) = ψ (x, t )/

√
Z

FIG. 1. (a) Two counterpropagating lights E1 and E2 are used to
produce an atomic density grating in a BEC. Outside the condensate,
E3 and E4 are scattered optical fields. (b) Bragg reflection of the
incident light Ein from the prepared atomic density grating. Er (Et)
is the reflected (transmitted) light. (c) The time-sequence diagram of
light.

and E(r, t ) = E (x, t )êz. To focus on the interaction between
atoms and light, the collisions between atoms are neglected
which can be realized by means of the Feshbach resonance
technique [50]. Consequently, the coupled Eqs. (1) and (2)
could be reduced to

ih̄
∂

∂t
ψ (x, t ) =

[
− h̄2

2M

∂2

∂x2
+ d2

h̄�
|E (x, t )|2

]
ψ (x, t ), (4)

∂2

∂x2
E (x, t ) + k2

Ln2E (x, t ) = 0. (5)

In the 1D Helmholtz equation (5), the refractive index be-
comes

n =
√

1 + βN |ψ (x, t )|2, (6)

where β = −d2/(Zε0h̄�).
The physical mechanism of the SLS in experiment of a

cigar-shaped BEC end pumped by a single light field is that
an atomic grating in the BEC accumulates continuously due
to seeding by spontaneous photon emission in the direction
opposite to the pump beam. However, here we do not directly
study the atomic grating generated by spontaneous emission
in the experiment but use the atomic grating prepared by an
optical lattice as a substitute. The reason for this substitution
is that the preparation and the reflectance of the atomic grating
are easy to manipulate and calculate. It should be noted that
this substitution does not affect our study of the physical
mechanism of the SLS.

For creating an atomic grating, we are concerned with the
cigar-shaped BEC longitudinally irradiated by two counter-
propagating coherent optical fields E1 and E2 for a duration td
as shown in Fig. 1(a), the atomic grating is obtained by Bragg
diffraction of the condensate in the optical lattice formed
by E1 and E2. When E1 and E2 are switched off, a third
light field Ein is incident on the created atomic grating as
shown in Fig. 1(b). Then, the reflectance R can be calculated
by

R =
∣∣∣∣E (0, t ) − Ein

Ein

∣∣∣∣
2

. (7)
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III. ANALYTICAL CALCULATION OF THE
REFLECTANCE

In view of the fact that an atomic grating is similar to a pho-
tonic crystal, the standard coupled-wave theory (SCWT) [46]
can be used to study the optical properties of the atomic
grating. In order to describe the main optical properties, the
wave function of the BEC at time t � td can be expanded onto
plane waves which correspond to different Bragg diffraction
orders as

ψ (x, τ ) = 1√
L

∑
m

cm(τ ) exp (2imk̄x), (8)

where τ = t − td, k̄ = kLn0 is the effective wave number of
the optical field in the atomic grating, n0 = √

1 + βN/L is
defined as the average refractive index of the atomic grating.
For τ � 0, we assume the incident light Ein is so weak that
the wave function (8) evolves almost freely, i.e., the momen-
tum components of the atomic grating evolve as cm(τ ) =
cm(0) exp(−4im2ω̄rτ ), where ω̄r = h̄k̄2/(2M ) is the effective
recoil frequency and cm(0) is determined by the duration td.
Substituting Eq. (8) into Eq. (6), the square of refractive index
of the atomic grating can be expressed as

n2(x) = n2
0 + βN

∑
l (l �=0)

bl exp(2il k̄x), (9)

where bl = ∑
m c∗

m(τ )cm+l (τ )/L. Equation (9) shows the
periodicity of the refractive index of the atomic grating. Ex-
pressing the solution of Eq. (5) in the form of a superposition
of two counterpropagating waves as

E (x) = A+(x) exp(ik̄x) + A−(x) exp(−ik̄x), (10)

and substituting Eqs. (9) and (10) into Eq. (5), we obtain
the approximate set of coupled equations for the forward and
backward wave amplitudes A+ and A− by the SCWT,

d

dx
A±(x) = ±iηb±1A∓(x), (11)

where η = k2
LβN/2. The general solution of Eq. (11) is

A+(x) = C1 exp(−η|b1|x) + C2 exp(η|b1|x),

A−(x) = i[C1 exp(−η|b1|x) − C2 exp(η|b1|x)] exp(−iθ ),

(12)

where b1 = |b1| exp(iθ ), b−1 = b∗
1 = |b1| exp(−iθ ). Consid-

ering the boundary conditions A+(0) = Ein and A−(L) = 0,
we obtain the following expression for the first-order Bragg
reflectance of the atomic grating:

R = tanh2(η|b1|L) = tanh2

(
γ N

∣∣∣∣∣
∑

m

c∗
m(τ )cm+1(τ )

∣∣∣∣∣
)

,

(13)

where γ = kLβ/(2n0). Equation (13) shows that the re-
flectance is independent of the length of the atomic grating.
We further note that γ ∼ 10−7 under the current experimental
conditions which are used in Part IV for the numerical sim-
ulation. Therefore, when the atom number is small R ∝ N2,

which means that there is SLS from the atomic grating. How-
ever, the superradiance is saturated when the atom number is
large.

The results of reflectance for the atomic grating above
is reasonable because physically, reflectance cannot increase
with the atom number unlimitedly due to the constraint R � 1.
Consequently, the N2 law is an approximate of Eq. (13) when
N is small.

If |E1| = |E2| and the atoms of the grating are almost all
distributed in the momentum components with m = 0,±1,
the summation in Eq. (13) can be simplified to c∗

−1(τ )c0(τ ) +
c∗

0(τ )c1(τ ). In view of the symmetry of the atomic grating, we
let c±1(0) = |c1(0)| exp(iθ±1) and c0(0) = |c0(0)| exp(iθ0),
we obtain∣∣∣∣∣
∑

m

c∗
m(τ )cm+1(τ )

∣∣∣∣∣ ≈ |c0(0)||c1(0)|
√

2 + 2 cos(8ω̄rτ + �),

(14)
where � = 2θ0 − θ1 − θ−1 is a constant phase. Equation (14)
together with Eq. (13) shows that the reflectance R oscillates
periodically with time. When the atom number is small, R ∝
cos(8ω̄rτ + �) and the oscillation period of the reflectance is
2π/(8ω̄r ).

IV. NUMERICAL SIMULATION

A. Relationship between the reflectance and the atom number

For the numerical investigation of light reflection by the
atomic grating, using the MCWT, we first substitute in Eq. (5)
the solution for E (x) in the form of counterpropagating waves
with variable amplitudes A+ and A−,

E (x) = 1√
n(x)

[A+(x)eiϕ(x) + A−(x)e−iϕ(x)], (15)

where ϕ(x) ≡ kL
∫ x

0 n(u)du. The amplitudes A+ and A− of the
forward and backward propagating waves in the condensate
satisfy the equations,

d

dx
A±(x) = S∓(x)A∓(x), (16)

where S±(x) = 1/(2n)(dn/dx) exp[±2iϕ(x)]. It is important
to note that E (x) is redefined in Eq. (15) for the purposes
of numerical modeling and, thus, differs from Eq. (10). This
also leads to a change in the equation for the amplitudes,
i.e., Eq. (16) replaces Eq. (11). Moreover, the derivation of
Eq. (16) from Eq. (5) involved no approximation.

In the numerical simulation, we assume the BEC is formed
by Rb87 atoms with a Gaussian initial wave function,

�(r, 0) =
√

1

Z
√

πwx
exp

[
− (x − L/2)2

2w2
x

]
, (17)

where Z ≡ πw2
⊥, the parameters wx = 50 μm and w⊥ =

10 μm. The transition between 52S1/2 and 52P3/2 is used.
We assume the wave-number kL = 8.055 × 106 m−1 and the
detuning � = 2π × (−1.5) GHz so that the parameter β =
7.74 × 10−14 m. For creating the atomic grating, the light
intensity of E1 and E2 is Id = 3 mW/cm2, the duration td =
10 μs. The finite difference method and operator splitting
method are used to solve Eqs. (4), (15), and (16).
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FIG. 2. Time evolution of reflectance R for different atom num-
bers N in the case that Iin = 0.1 mW/cm2.

Figure 2 shows the reflectance of the atomic density grating
for the incident light intensity Iin = 0.1 mW/cm2, which is
much less than Id. The reason for using weak light incidence
here is that the atomic grating is hardly changed by the in-
cident light field when the reflectance is detected within the
considered timescale, which will be discussed in detail in part
C of this Section.

As shown in Fig. 2, the reflectance varies periodically with
time as predicted in Eq. (14) due to the atom recoil motion
in the atomic grating and the period is independent from
the atom number. More interestingly, the reflectance peak
increases greatly when the atom number is doubled. Thus, in
Fig. 3 we study the relation of the first reflectance peak RP

to the atom number N (black dots). We find that the points for
the reflectance peak versus the atom number is very well fitted
by the function,

RP = tanh2(ξN/105), (18)

with ξ = 1.93 × 10−2 as shown by the red solid line in Fig. 3,
which is approximately proportional to N2 when the atom
number is small (N � 2 × 106), implying SLS. However,
when the atom number increases further, the SLS is gradually
saturated, which is more clearly shown in the inset of Fig. 3
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R P

10
-5 N

ln
(R
P
)

ln(N /105)

ln(R
P
)

2ln(N/10
5
)-7.9

FIG. 3. The relation of the first reflectance peak RP in Fig. 2 to
the atom number N (black dots). The red solid line is a fitting line.
The inset is a logarithmic plot of the reflectance peak to the atom
number (black dots). The slope of the red line for comparison is 2.
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t (μs)
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FIG. 4. Analytical (red solid line) and numerical (black circle)
time evolution of the reflectance R of the atomic grating with atom
number N = 2 × 105 in the case that Iin = 0.1 mW/cm2.

that in the double logarithmic coordinate, the slope of the
relationship between RP and N gradually decreases from 2 to
0 (black dots). It should be noted that the form of Eq. (18) is
the same as that of Eq. (13), and the parameter ξ in Eq. (18)
is consistent with the value that can be obtained by directly
applying Eq. (13).

Figure 4 shows that the analytical oscillation curve of
the reflectance (red solid line) calculated by Eq. (13) is in
good agreement with the numerical one (black circle). Before
analytically calculating the reflectance, the generation of the
atomic grating is performed by numerical simulation. Then
the red solid line in Fig. 4 is obtained by substituting the
momentum distribution of the atomic grating into Eq. (13).
The red solid line and the black circles in Fig. 4 deviated
slightly with the evolution of time. It is mainly because in
the numerical simulation, the momentum distribution of the
atomic gas has a slight change over time due to the weak
incident light, whereas the analytical reflectance is obtained
under the condition of free evolution of the atomic gas.

B. Relationship between the reflectance and the atomic
momentum distribution

The reflectance of the atomic grating depends not only
on the atom number, but also on the momentum distribu-
tion φ(p, t ) = ∫ +∞

−∞ ψ (x, t ) exp(ipt/h̄)dx/
√

2π of the atomic
grating which is controlled by the duration td of E1 and E2.
Therefore, we study the relation of the reflectance peak and
atomic momentum components to the duration td, respec-
tively, in Figs. 5(a) and 5(b) under the condition that N = 2 ×
105, Id = 3 mW/cm2, and Iin = 0.1 mW/cm2. Because the
momentum distribution of the atomic gas is symmetrical and
concentrated at ±2mh̄k̄, only nonnegative momentum compo-
nents with m = 0–2 are given in Fig. 5(b). This figure implies
that in the considered duration (td < 80 μs), the atoms are
mainly distributed in the momentum components with m =
0,±1. Moreover, Fig. 5 shows that the reflectance is very
small when the self-imaging of the matter wave [51] appears
at td ≈ 40, 80 μs because almost all atoms are distributed on
the zero momentum component and there is almost no atomic
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FIG. 5. (a) The relation of the first reflectance peak to the dura-
tion td. (b) The relation of the momentum distribution of the atomic
gas to the duration td, only three momentum components 0, 2h̄k̄, and
4h̄k̄ are shown.

grating in the BEC. However, when the atom number of the
momentum components with m = 0,±1 is almost equal (td ≈
20, 60 μs), the matter-wave interference is strong, and the
reflectance of the atomic grating reaches the maximum. Here,
the incident light together with the momentum component
mh̄k̄ of the atomic gas, the momentum component (m + 1)h̄k̄,
and the reflected light from the atomic grating, respectively,
correspond to the excited state, the ground state, and the
cooperative radiation of the molecule system in Dicke’s super-
radiance model where the largest spontaneous radiation rate
will be achieved when the number of molecules in the excited
state is equal to that in the ground state.

C. Discussion on the atomic grating

In order to show the importance of an atomic grating for
efficient light scattering, we study the light reflection of a
BEC with the Gaussian wave function given by Eq. (17)
end pumped by a single light field with an intensity of Iin =
0.1 mW/cm2. First, as a theoretical idealization, under the
assumption that there is no seeding by spontaneous photon
emission as shown in Fig. 6(a), the reflectance of the Gaussian
atomic gas is negligible. Second, as a numerical simulation
of the experiment of SLS caused by spontaneous emission,
we seed the dynamics by making a nonzero first-order mo-
mentum component equal to �(r, 0)/

√
N , corresponding to a

single delocalized atom in the first side mode [2]. As shown
in Fig. 6(b), spontaneous photon emission greatly improves
the reflectance due to the accumulation of an atomic grating
in the dilute atomic gas. However, within the timescale tr =
2π/ω̄r ∼ 10−4 s, the reflectance in Fig. 6(b) is much smaller
than that of the atomic grating built by the optical lattice
as shown in Fig. 2. This is because that Iin is so weak that
the corresponding single-photon scattering rate is Rsc ∼ 3 s−1,
which is much smaller than the recoil frequency ω̄r. The
single-photon scattering rate can be calculated by [2]

Rsc =
(

�

2

)
Iin/Is

1 + 4(�/�)2 + (Iin/Is)
, (19)

0.0

1.0

2.0

3.0

4.0

0 50 100 150 200
7.6

7.8

8.0

8.2

1
0
8
R

1
0
2
0
R

(a)

(b)

t (μs)

FIG. 6. Time evolution of the reflectance of an atomic gas with
8 × 105 atoms and a Gaussian initial distribution end pumped by
a single light field with an intensity of Iin = 0.1 mW/cm2. (a) No
seeding by spontaneous photon emission; (b) seeding the dynamics
by spontaneous photon emission.

where � is the natural decay rate and Is is the satura-
tion intensity of the optical transition. For the transition
used in the present paper, � = 2π × 6.07 MHz, and Is =
2.504 mW/cm2. Such a small Rsc means that the timescale
for that the SLS seeded by the spontaneous emission can
significantly affect the atom momentum distribution is much
longer than the timescale we considered (∼tr). Consequently,
we neglect the spontaneous photon emission in the calculation
of Figs. 2–5. By the same token, the SLS seeded by the
spontaneous photon emission is neglected in the process of
creating the atomic grating by the optical lattice because the
timescale it can significantly affect atom momentum distribu-
tion is much longer than the duration td.

V. VALIDITY OF THE SEMICLASSICAL MODEL

The relationship between the present paper and [2,41] can
be established by calculating the experimental and theoretical
results in Ref. [2] via numerical simulation on Eqs. (4), (15),
and (16) with the seeding method of driving the SLS as
mentioned in Part IV C. Figure 7 shows that the backscat-
tered photon flux of our calculations with the experimental
parameters in Ref. [2] are consistent with Fig. 4 in Ref. [2]
regarding the first reflected pulse signal which is supported
by the experimental data. In this numerical simulation, the
initial wave function of the BEC containing 1.36 × 106 Rb87

atoms is also Eq. (17) where the parameters wx = 100 and
w⊥ = 10 μm. The transition between 52S1/2 and 52P1/2 is
used. We assume the wave-number kL = 7.90 × 106 m−1 and
the detuning � = 2π × (−2.6) GHz so that the parameter
β = 6.72 × 10−14 m. For Fig. 7, Eq. (19) is used, where � =
2π × 5.75 MHz, and Is = 4.4876 mW/cm2.

Moreover, as shown in Fig. 8, a numerical study on the
atom number dependence of the peak value of the first su-
perradiant pulse for the experimental situation of Ref. [2]
would give a result similar to that depicted in Fig. 3, however,
without an initially prepared atomic grating. The superradiant
pulse amplitude has quadratic dependence on atom number
N when N is relatively small, which is consistent with that
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FIG. 7. Simulation of the time trace of the backscattered photon
flux (measured by the left vertical axis) with the experimental pa-
rameters in Ref. [2] for different single-particle scattering rates Rsc.
The right vertical axis shows the corresponding reflectance. (a) Rsc =
0.447 × 103 s−1, i.e., Iin = 90.8 mW/cm2; (b) Rsc = 2.15 × 103 s−1,
i.e., Iin = 436.85 mW/cm2.

reported in Ref. [2], and will be saturated with the increase in
N .

Indeed, the one-dimensional semiclassical model we
used has similar defects to the one-dimensional Maxwell-
Schödinger equation used in Refs. [2,41], e.g., the decoher-
ence mechanism in the system and the different speeds of
the dynamics for different radial layers of the BEC caused
by inhomogeneous transverse density distribution are not
considered, which will increase the difference between the
theoretical calculation and the experimental data in the long-
time run. However, within the timescale concerned in this
paper (∼tr), especially within the time of the first reflected
pulse, these defects will not have a strong affection on the
main results in this paper as supported by Fig. 7.

It should also be noted that SLS seeded by spontaneous
emission will take effect in the long-time run, especially by
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FIG. 8. The relation of the first reflectance peak RP to the atom
number N of the experimental situation of Ref. [2] with the parame-
ters of Fig. 7(a) (blue dots). A fitting function RP = tanh2(ζN/105),
where ζ = 6.3 × 10−3 is plotted by the solid line.

considering that spontaneous emission takes place occasion-
ally, thus, making Fig. 2 less regular and deforming Fig. 5 at
times where reflectance is currently predicted to be close to
zero. Such random processes cannot be properly accounted
within the present theoretical framework.

VI. CONCLUSION AND OUTLOOK

To summarize, we have studied the SLS from an atomic
grating longitudinally pumped by a laser and treated the
atomic grating as a photonic crystal. Both the analytical and
the numerical calculations show that the intensity peak of
the reflected light increases with a quadric hyperbolic tangent
function of the atom number. When the atom number is small,
the intensity peak is quadratically proportional to the atom
number, showing SLS. However, when the atom number in-
creases further, this square law is violated, that is, the SLS
is saturated. Moreover, this light scattering is controllable
by manipulating the momentum components of the atomic
grating. Our theoretical results are obtained under current
experimental conditions.

Previously, suppression of superradiance was found in col-
lective cavity cooling of molecules when the molecule number
is large due to defect of molecule distribution [52–54]. Now,
we demonstrate a mechanism for the suppression of super-
radiance for an atomic gas with a large number of atoms,
resulting from that the SLS will be saturated with the increase
in the atom number. This saturation is due to the fact that
superradiant light intensity cannot be greater than the pump-
ing light intensity. Thus, our results are independent of the
model and would cast light on understanding the scaling laws
in cooperative optical effect of atomic or molecular gases.
For example, we could explore whether collective atom recoil
lasing could violate the scaling law of N4/3 [55] when the
atom number is very large.

Our analysis also shows that atomic gratings have rich
time-dependent optical properties due to the atom recoil
motion. According to our paper, the oscillation of the re-
flected light intensity as implied by Eq. (14), could be used
in precision measurement experiments with matter waves,
and an approach to controlling the reflectance of light from
the atomic grating by manipulating the duration td may be
proposed based on Fig. 5. Our paper could also spark the
investigation of tunable solid photonic crystals in the time
domain.
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