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Site-resolved observables in the doped spin-imbalanced triangular Hubbard model
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The suppression of antiferromagnetic ordering in geometrically frustrated Hubbard models leads to a variety
of exotic quantum phases including quantum spin liquids and chiral states. Here, we focus on the Hubbard model
on one of the simplest frustrated lattice geometries, a triangular lattice. Motivated by the recent realization of
ultracold fermionic atoms in triangular optical lattices, we study the properties of the triangular-lattice Hubbard
model through a numerical linked-cluster expansion algorithm. We investigate the Mott insulator transition
finding a critical interaction Uc/t = 7.0(2) and use spatial two- and three-point correlation functions to explore
doped and imbalanced systems. Our results demonstrate that many interesting features occur at temperatures
previously obtained for ultracold fermions in optical lattices and are accessible by upcoming experiments. Our
calculations will be helpful for thermometry in ultracold atom quantum simulators and can guide experimental
searches for exotic quantum phases in atomic triangular Hubbard quantum simulators.
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I. INTRODUCTION

Geometric frustration prevents a unique ground state in
quantum many-body systems and thereby leads to a rich
ground-state phase diagram. One of the paradigm models of
frustration are fermions with antiferromagnetic interactions
on triangular lattice structures which were predicted to host
exotic resonating valence bond states [1]. In the focus of
current research are quantum spin liquids [2], which show
no conventional long-range magnetic ordering down to zero
temperature and can possibly be observed in a triangular Hub-
bard system [3]. Recent progress in numerical techniques and
computing technology has revived the study of such frustrated
systems [4]. In condensed-matter experiments, signatures for
such spin liquids have been recently found in materials with
triangular and kagome lattice structure [2]. The investigation
of frustrated structures has been pushed forward using spin
systems realized by Rydberg atoms in optical tweezers [5].
Such states have not been realized in Hubbard quantum sim-
ulators [6] and the ground-state properties of the triangular
Hubbard model remain controversial due to limitations of the
accessible system sizes in numerical calculations [3,7–11].

Recently, quantum gas microscopy of bosons [12] and
fermions [13] in triangular-optical lattices has been demon-
strated, clearing the path for the experimental investigation
of triangular-lattice atomic Hubbard models on the single-
site and single-atom level. These microscopes are suited to
detecting nontrivial ordering via spatial correlation functions.
Motivated by this recent progress in quantum simulation of
triangular Hubbard models, we investigate this system in the
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temperature regime relevant to ultracold atom experiments
using numerical linked-cluster expansion (NLCE). NLCE has
been checked successfully against exactly solvable models
and established numerical techniques [14–18] and has shown
great agreement with data from ultracold atom lattice ex-
periments [19–23]. Here we focus on the study of spatial
correlations which are directly accessible in quantum gas
microscope experiments and verify our method using deter-
minantal quantum Monte Carlo (DQMC) results based on the
QUESTQMC package [24].

The Hubbard Hamiltonian on a two-dimensional triangular
lattice with equal tunneling along all three lattice directions is
given by

H = −t
∑

〈i j〉
(ĉ†

i,σ ĉ j,σ + ĉ†
j,σ ĉi,σ ) + U

∑

i

n̂i,↑n̂i,↓

−
∑

i

[μ(n̂i,↑ + n̂i,↓) + h(n̂i,↑ − n̂i,↓)], (1)

where ĉ†
i,σ (ĉi,σ ) is the creation (annihilation) operator for a

fermion with spin σ on site i, and n̂i,σ = ĉ†
i,σ ĉi,σ is the particle

number operator. The first term describes the kinetic energy
given by the creation and annihilation operators to all sites
with tunneling parameter t . U is the on-site interaction and
determines the interaction energy when a spin-up and spin-
down fermion occupy the same site. These two terms are the
core of the model and allow for the following occupancies at
each site: no fermion, a spin-up fermion, a spin-down fermion,
or two fermions with opposite spins [25]. The parameters
μ and h together control the total particle density and spin
imbalance. Importantly, these last two terms commute with
the first two terms allowing the calculation of properties for
any combination of T , μ, and h from a single exact diagonal-
ization of H [17].

The basis size of the Hubbard Hamiltonian scales as 4N

with the number of sites N and, therefore, exact diagonal-
ization of lattices is typically limited to 20 sites for ground
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states. For such lattices, finite-size effects are still large and
other techniques need to be employed. Although calcula-
tions based on matrix-product states have recently allowed
the calculation of ground-state properties of larger lattices
[3,26]. Alternatively, DQMC techniques are challenging due
to severe sign problems in the triangular Hubbard model
[27,28], and high-temperature series expansions are often lim-
ited to temperatures T/t � 1. This is why we employ NLCE
[14–18] which enhances the capabilities of traditional series
expansions at the cost of large numerical efforts of exact
diagonalization of many clusters embedded in an infinite lat-
tice. Our approach relies on the Hubbard Hamiltonian without
additional approximations, and the NLCE expansion provides
the thermodynamic limit of the expectation value of any mea-
surement operator.

II. NUMERICAL LINKED-CLUSTER EXPANSION
IMPLEMENTATION

NLCE allows for the calculation of any extensive property
P, a quantity dependent on system size, in the thermodynamic
limit by summing over the weighted contributions of every
cluster up to order m,

P(L)/N =
m∑

n=1

Sn, (2)

Sn =
∑

cn

L(cn)WP(cn), (3)

where L(cn) is the number of times a cluster of order n, cn,
can be embedded in lattice L. The weighted property of cn,
WP(cn), is given by the equation,

WP(c) = P(c) −
∑

s⊂c

Lc(s)WP(s), (4)

here s denotes the subclusters of cluster c and Lc(s) gives the
number of times s can be embedded in c. Due to this formu-
lation, one only needs to consider connected clusters which
can be naturally generated by progressively adding a chosen
building block (site, triangle, square, etc.) depending on the
periodic lattice geometry [14–18]. Although, in general, it is
easiest to expand by sites.

When diagonalizing the Hubbard Hamiltonian of a cluster
we exploit atom number conservation to diagonalize the vari-
ous atom number sectors separately. This reduces the memory
required allowing higher orders to be reached on standard
computer nodes. From the eigenenergies and eigenvectors of a
subsector, the expectation value of any chosen extensive prop-
erty can be calculated. These measurements are then thermally
averaged using the sector’s partition function and recombined
to obtain the desired property of the cluster P(c). This general
approach is easily applicable to other lattice Hamiltonians and
can be adapted to different lattice structures.

A. Expansion by sites

Starting from a single site, in every step one site is added
to an available edge of a cluster which creates a cluster of
the next order. This process is repeated for all edges of all
clusters of the same size. Since there are six edges per site
for a triangular lattice, the number of clusters grows rapidly

Order
Connected
Clusters

Top. Dist.
Clusters

Order
Connected
Clusters

Top. Dist.
Clusters

1 1 1 6 814 22
2 3 1 7 3652 54
3 11 2 8 16689 156
4 44 4 9 77359 457
5 186 8 10 362671 1424

Number of Clusters for Site Expansion on Triangular Lattice

FIG. 1. Triangular clusters. Top, first few clusters obtained
through site expansion on an infinite triangular lattice. Bottom, num-
ber of connected and topologically distinct clusters on this lattice for
orders (number of sites) up to order ten of an expansion by sites [15].

with the number of sites. However, many of these clusters are
translations of each other and due to the formulation of NLCE
can be discarded reducing the overall cluster count [14–18].
If a different expansion scheme is used, the convergence
behavior of a property, especially at low temperature, can
differ.

As shown in Fig. 1, the number of connected clusters
remains significantly large for higher orders, increasing the
computational effort tremendously. For this reason, it can
be useful to consider alternative expansion schemes, such as
an expansion by triangles (see the Appendix) which require
fewer clusters in the higher orders.

B. Reduction of cluster number and identifying subclusters

Since exact diagonalization and thermal averages are time
consuming and have to be performed for every cluster in the
expansion, a critical optimization is reducing the number of
required clusters in the expansion. Isomorphic clusters, that is
clusters with the same graphical structure, have the same Hub-
bard Hamiltonian. The multiplicity, L(c), of a unique cluster
c is then given by the number of isomorphisms [14–18].
Another approach is to first identify symmetric clusters.
However, we found it easier and more efficient to leverage
optimized isomorphism algorithms to reduce directly to topo-
logically distinct clusters. The downside to this approach is
that the proper cluster weighting needed for long-range prop-
erties beyond nearest-neighbor is not preserved.

The subcluster multiplicities of every cluster that are re-
quired to apply Eq. (4) can be found in a similar manner.
Keeping track of all the unique clusters that lead to the
current cluster during the expansion phase, we iterate over this
list counting the number of subgraph isomorphisms Lc(s) for
each subcluster. With this information, the Hamiltonians of all
clusters up to order m can be constructed from their adjacency
matrices and then diagonalized.
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C. Resummation

Once the orders of a property have been determined, a
resummation algorithm is used to improve convergence at
lower temperatures. We found that Wynn’s epsilon method led
to the best results, although other resummations, such as the
Euler transformation, can be suitable for particular properties
[15,18]. The error on such a resummation, can be estimated
by the difference between subsequent orders or the difference
between different resummation techniques.

The Wynn resummation algorithm is defined by the
equation,

ε (k)
n = ε

(k−2)
n+1 + 1

ε
(k−1)
n+1 − ε

(k−1)
n

, (5)

with base cases,

ε (−1)
n = 0, ε (0)

n = Pn. (6)

Only the even terms ε2l
n , where l is the number of cycles

of improvement, are considered as they are the only terms
expected to converge.

Euler’s transformation is specific to alternating series. The
partial sums Sn become un = (−1)nSn such that the summa-
tion is

P(L)/N = u0 − u1 + · · · − un−1 +
m−n∑

l=0

(−1)l

2l+1
�l un. (7)

Here � denotes the forward difference operator,

�l un = �l−1un+1 − �l−1un, (8)

and n − 1 is the term after which Euler’s transformation is
applied [15,18]. The absolute difference between the maxi-
mum order Wynn resummation and the maximum order Euler
resummation is used as the default error estimate.

III. NLCE OF TRIANGULAR-LATTICE HUBBARD
SYSTEMS

Here we apply the NLCE expansion approach to the
triangular-lattice Hubbard model without any additional ap-
proximations. At small U and at large U approximations
allow a detailed study of the triangular-lattice Hubbard model.
Therefore, we focus on intermediate interactions where the
situation is less clear. Using NLCE we can reach similar tem-
peratures as the DQMC calculations and, in particular, we can
cover temperatures T/t ∼ 0.3 · · · 1 close to the Mott regime
which is the most relevant regime for current ultracold atom
experiments. In this temperature range, we focused on prop-
erties corresponding to experimentally measurable quantities
in quantum gas microscopes [29]. Starting with a comparison
to the DQMC calculation, we discuss the Mott insulator (MI)
transition in the triangular Hubbard system and study various
spatial correlation functions, including spin-density correla-
tions and three-point correlations. All of these correlations are
accessible with currently available quantum gas microscopy
technology [30,31].

A. Comparison to determinantal quantum Monte Carlo

To cross-check the accuracy of our NLCE implementation
we performed DQMC calculations. DQMC is an efficient
technique to simulate the properties of fermions in lattices
[32,33]. For the DQMC calculations, we rely on a FORTRAN

90/95 package, QUANTUM ELECTRON SIMULATION TOOLBOX

[24].
For triangular lattices, the calculations suffer from a severe

sign problem when approaching low temperatures [27] and we
rely on extended averaging for low temperatures. Calculations
are stopped when the sign is approximately zero within error
bars. Although the sign problem is severe, reliable results
were obtained down to similar temperatures as NLCE over
wide parameter regimes at a cost of dramatically increased
computation times.

Simulations rely on a homogeneous 8 × 8 lattice with
periodic boundary conditions. We confirmed that for the prop-
erties discussed in this paper, finite-size errors are smaller
than the combined Trotter and statistical error. The inverse
temperature β = L dτ was split into L = 200 imaginary time
slices. To obtain higher statistics, the simulations were aver-
aged over ten or more runs 50 000 passes each. This allows
us to control imaginary time correlations and sampling errors
by comparing the variance from each individual run with the
variance of all runs.

The comparison of DQMC and NLCE calculations with
very different error sources allows for more conclusive
results at lower temperatures where each of the individ-
ual techniques alone becomes questionable. For short-range
properties, NLCE was found to be simultaneously more
manageable and faster when performing calculations for
large parameter ranges. This is because NLCE as previously
mentioned allows for calculation of properties at multiple
temperatures, μ values, and h values without rediagonaliza-
tion, and the needed cluster diagonalizations can be easily
run in parallel. Conversely, a DQMC requires a separate run
for every parameter combination. It is also worth noting that
with NLCE, a low-order scan of parameters and properties can
be performed with little time and resources to narrow down
regimes and measurements of interest without worry of the
sign problem.

An illustrated comparison of these two techniques for the
energy per site is depicted in Fig. 2. By going up to order
nine and then performing a cycle of Wynn’s method, NLCE
achieved lower temperatures with significantly lower error
than DQMC for this property in less time and with less com-
puting resources. We find very good agreement between our
NLCE and the DQMC results. For temperatures T � 1 the
high-temperature series expansion is an excellent approxima-
tion. NLCE convergence using calculations up to order nine is
sufficient here to reach temperatures down to the lowest that
have been reached in experiments with ultracold fermions in
optical lattices of T/t ∼ 0.25 [34].

B. Compressibility near the Mott regime

The MI transition is of particular interest because of its
relation to high-temperature superconductivity [35]. It oc-
curs for strong interactions (U/t � 1) and low-temperature
(kBT 	 U ) where double occupancy is suppressed [36]. The
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FIG. 2. Energy per site in the triangular Hubbard model. Ninth-
order NLCE expansion by sites (with one cycle of Wynn resumma-
tion) of a spin-balanced triangular system at U/t = 8.0 and μ/t = 4
as compared to DQMC and a high-temperature series expansion
(HTE) [51]. The HTE curve shows small deviations at temperatures
T/t � 1. DQMC results for T/t � 0.3 are unreliable due to a severe
sign problem. DQMC and NLCE agree within error bars over the
complete range. The NLCE converges down to lower temperatures
than the DQMC here.

Mott insulating phase is characterized by a vanishing com-
pressibility. We calculate the compressibility κ = ∂n

∂μ
over a

wide parameter range at half-filling (density n = 1). Note, that
the triangular-lattice Hubbard model does not show particle-
hole symmetry requiring the chemical potential μ where n =
1 to be found for each temperature (see the Appendix).

The sharp drop in compressibility shown in Fig. 3 is in-
dicative of the MI transition and allows us to approximate
the region in which the lattice is in this insulating phase. By
calculating the compressibility versus interaction U/t we find
a sharpening transition upon lowering the temperature [see
Fig. 3(b)]. To determine the approximate value of U/t for the
MI transition in the triangular Hubbard model, we perform
an extrapolation using a gap model [37]. We find a linear
closing of the gap �c and a zero-temperature transition point
Uc/t = 7.0(2) [see Fig. 3(d)]. This is consistent with Uc/t ∼ 7
found in Refs. [37–39] which are based on FTLM, exact
diagonalization, and continuous-time quantum Monte Carlo,
respectively. We find a deviation from results based on DMFT
methods [40,41] which rely on the density of states. Other
techniques found critical interactions at finite temperature for
U/t ∼ 8 at T/t = 0.1 using dynamical cluster approxima-
tion [42] and for U/t ∼ 8.7 at T/t = 0.025 using minimally
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FIG. 3. Compressibility and MI transition. (a) Compressibility versus doping, n̂ = n̂↑ + n̂↓ at T/t = 0.5. (b) Compressibility versus
interaction U/t . Only data that are sufficiently convergent is shown. (c) Compressibility versus temperature for interaction U/t = 8 to 12.
Fits are κ (T ) = a exp(−�c/T ) [37]. (d) Scaling of �c from (c) to determine the Mott transition for T/t = 0. An error-weighted fit yields
Uc/t = 7.0(2). The fourth-order Wynn resummation of the compressibility was used (error with respect to ninth-order Euler resummation).
Panels (b)–(d) are at half-filling n = 1.
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FIG. 4. Spin-spin correlations. (a) Spin-spin correlator versus temperature at U/t = 8, μ/t = 4, and h/t = 0. The fourth-order Wynn
resummation (Wynn 4) and the ninth-order Euler resummation (Euler 9) do not agree at low temperatures, and we use their difference
to estimate the uncertainty. (b) Spin-spin correlator versus interaction at T/t = 0.6, μ = U/2, and h/t = 0. Nearest-neighbor spin-spin
correlation are maximally anticorrelated near U/t ∼ 10 for the triangular (Tri) geometry. This is in contrast to the 2D square (Sqr) Hubbard
model where a maximum occurs closer to U/t ∼ 8 [20]. NLCE does not converge well for U/t � 6. (c) Spin-spin correlations on the μ/U -h/U
plane at U/t = 8 and T/t = 0.355 with four cycles of Wynn resummation. Dotted, dashed, and line contours enclose areas with 10−4, 10−3,
and 10−2 uncertainty (relative to ninth-order Euler resummation), respectively.

entangled thermal typical states [9]. The deviation of differ-
ent results may be caused by the temperature dependence of
the MI transition and the more complicated phase diagram
due to the geometric frustration on a triangular lattice. We
note that the Mott transition discussed here is at a different
U/t than the transition to 120◦ order which occurs at higher
U/t .

C. Thermometry of triangular Hubbard systems

Thermometry of ultracold atomic systems in optical
lattices in the Hubbard regime is challenging. Previous ex-
periments mostly relied on comparison of measured spin-spin
correlation functions to calculations to determine the temper-
ature of the system [21,43]. Here, we demonstrate that such
an approach is also possible for a triangular-lattice Hubbard
model although the presence of sufficiently strong spin cor-
relation is less obvious due to the geometric frustration. In
ultracold atom lattice experiments, the spin operator Sz is
defined by

Ŝz,i = 1
2 (n̂i,↑ − n̂i,↓), (9)

with n̂i,σ = ĉ†
i,σ ĉi,σ . Whereas the spin-spin correlations are

isotropic at h = 0, the Sz basis is selected by the atom num-
ber measurement in the experiment. The spin-imbalance h is
typically introduced in the atom-number sector and, therefore,
along the same dimension. We consider nearest-neighbor two-
point correlators given by the relation,

C1(r1, r2) = 〈Â1B̂2〉 − 〈Â1〉〈B̂2〉, (10)

where Â1 and B̂2 are arbitrary quantum operators at sites r1

and r2.
We calculate the Ŝz-Ŝz spin correlation versus temperature

T at U = 8 and find a dependence on temperature which is
useful for thermometry. Our NLCE results match the DQMC
results within error bars down to about T/t ≈ 0.4 where the
sign problem starts to make DQMC calculations intractable
[see Fig. 4(a)].

The interaction dependence of antiferromagnetic correla-
tions in a triangular lattice follows a similar behavior as in
a square lattice but antiferromagnetic correlations become
maximal around U ≈ 10 for a triangular lattice compared to
U ≈ 8 in the square lattice [20,43] (Fig. 4). In addition, we
find that the magnitude of correlations in a triangular lattice
is only about half compared to the square lattice case at
temperatures around T/t = 0.6. Within the range of NLCE
calculations U/t > 6 we find very good agreement between
DQMC and NLCE results.

Although the system is frustrated, spin-spin correlations
are sufficient to provide a useful thermometer. We find gen-
erally antiferromagnetic correlations at nearest-neighbor sites
and observe that all three pairs of spins on a triangular pla-
quette are anticorrelated. This is consistent with expectations
for 120◦ ordering, but we cannot make predictions about long-
range ordering with our current approach.

IV. SPIN-DENSITY CORRELATIONS

Spin and density typically decouple to a large degree
in many Hubbard systems. In one-dimensional systems,
the decoupling is perfect and leads to the phenomenon
of spin-charge separation [44]. As an example of spin-
charge coupling, we study the correlation 〈Ŝz

i ĥ j〉c = 〈Ŝz
iĥ j〉 −

〈Ŝz
i 〉〈ĥ j〉 where ĥ j = 1 − n̂ j .
Due to spin-inversion symmetry, this correlator vanishes in

spin-balanced systems. However, for doped spin-imbalanced
μ, h �= 0 systems we find nonzero correlations even at den-
sities �1 where few holes are expected (Fig. 5). Around
half-filling (μ/U ≈ 0.5) we find negative correlations extend-
ing into the spin-imbalanced regime (h > 0). We interpret
this as signatures for repulsive pairing effects between the
minority (|↓〉) and the holes as discussed in Refs. [45,46].
This spin-hole relationship can also be probed experimentally.
Measurements require spin- and density-resolved imaging in
a quantum gas microscope which has been demonstrated for
square lattices already [30,31]. These experimental techniques
are also applicable to triangular optical lattices.
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FIG. 5. (a) Nearest-neighbor spin-hole correlator versus temper-
ature at U/t = 8 with the doping n̂ and spin imbalance m̂ = n̂↑ − n̂↓
selected for. Ninth-order Euler resummation is plotted with error cal-
culated with respect to the fourth-order Wynn resummation. (b) On
the μ/U -h/U plane at U/t = 8 and T = 0.5 and with four cycles
of Wynn resummation. Dotted and dashed contours enclose areas
with 10−4 and 10−3 uncertainty (relative to ninth-order Euler resum-
mation), respectively. We note that at half-filling (μ/U ≈ 0.5), the
correlations are negative.

A. Three-point correlations

To demonstrate the power and flexibility of NLCE cal-
culations, we go beyond two-point correlators and calculate
three-point correlators. Those are naturally appearing in the
triangular Hubbard system due to the three sites in each
plaquette of the lattice. In general, a connected three-point
correlator is given by

C3(r3, r2, r1) = 〈Ẑ3Ŷ2X̂1〉 − 〈Ẑ3〉〈Ŷ2X̂1〉
− 〈Ŷ2〉〈Ẑ3X̂1〉 − 〈X̂1〉〈Ẑ3Ŷ2〉 + 2〈Ẑ3〉〈Ŷ2〉〈X̂1〉,

(11)

where X̂1, Ŷ2, and Ẑ3 are arbitrary quantum operators at
nearest-neighbor sites r1, r2, and r3, respectively [29,47]. With
this correlator we can examine the spin-spin-hole correlation
on a triangle, 〈Ŝz, Ŝz, ĥ〉C , which averages the three-point cor-
relators of the three orderings of Ŝz, Ŝz, and ĥ. In particular,
this correlation measures the perturbation of the antiferro-
magnetic correlations due to the presence of a hole (Fig. 6).
In contrast to the square-lattice case [47], we find negative
three-point correlations for all dopings and spin imbalances
studied. We interpret this as enhancement of antiferromag-
netic correlations due to the reduction of frustration caused
by the absence of the third spin on a triangular plaquette.
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FIG. 6. (a) Spin-spin-hole correlator on a triangular plaquette
versus temperature with four cycles of Wynn resummation for differ-
ent dopings, U/t = 8, and spin balanced. (b) On the μ/U -h/U plane
at U/t = 8 and T = 0.5 and with four cycles of Wynn resummation.
Dotted and dashed contours correspond to 10−4 and 10−3 uncertainty
(relative to ninth-order Euler resummation), respectively.

V. CONCLUSION AND OUTLOOK

Using NLCE on a triangular lattice proved to be a pow-
erful computational approach without the sign problem and
will be a useful tool for comparison to future experimental
data in quantum gas microscopes. In particular, we found it
to perform favorably in the strong interaction regime U/t �
7. We used it to study a variety of properties of the tri-
angular Hubbard model in regimes that are accessible via
quantum simulation in recently established ultracold atom
experiments [13]. To benchmark our NLCE algorithm, we
compared NLCE calculations with DQMC simulations and
found very good agreement in the regimes where both tech-
niques converge.

Using a large dataset for temperature-dependent compress-
ibility we found the critical interaction for the Mott transition.
Nearest-neighbor spin correlation functions were examined
for both triangular and square Hubbard models. Although,
there were similarities between their spin correlation func-
tions the correlations in the triangular Hubbard model are
suppressed compared to the square Hubbard model. Lastly, we
investigated spin-density correlations and demonstrated the
calculation of short-ranged multipoint correlations on triangu-
lar plaquettes using NLCE. It is possible to calculate beyond
nearest-neighbor correlations, but we expect that higher orders
of the triangular-lattice expansion would be necessary for
reliable results which are probably reachable with more ad-
vanced or approximate diagonalization techniques [48]. Our
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calculations demonstrate the possibilities of quantum simula-
tions of triangular Hubbard systems in experiments and many
of the discussed features are within experimental reach. Future
NLCE studies on triangular lattices may be able to give access
to transport properties [49] and chiral ordering [3,50].
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APPENDIX

1. Alternative expansion by triangles

Instead of expanding by sites, an infinite triangular lattice
can also be constructed via an expansion using triangles. Only
upwards or downwards facing triangles in addition to a single
site are considered. This is because each edge is either a part
of a unique upwards or downwards facing triangle to maintain
consistency. The choice of orientation is arbitrary, but one
must have a way of differentiating the triangle orientation.
Note that the multiplicity, L(c) should be weighted by 1/3
for all orders >0 [15].

The results obtained through an expansion by triangles
(Fig. 7) converge to those of an expansion by sites at high
temperatures. Although the convergence properties at low
temperatures will vary. For specific properties, it was observed
that the convergence at low temperatures was better for a trian-
gular expansion than for a site expansion. On the other hand,
when resumming the results, sharp discontinuities tend to be

Order
Connected
Clusters

Top. Dist.
Clusters

Order
Connected
Clusters

Top. Dist.
Clusters

1 1 1 4 44 5
2 1 1 5 186 12
3 3 1 6 814 35

Number of Clusters for Triangle Expansion on Triangular Lattice

FIG. 7. Clusters via triangle expansion. Top, the first few clusters
obtained through a triangle expansion on an infinite triangular lattice.
Bottom, the number of connected and topologically distinct clusters
on this lattice for orders (number of triangles) up to order six [15].

6 7 8 9 10 11
3

4

5

U/t

μ
/t T/t

0.5
0.63
0.79
1.0

−2 −1 0 1 2
0

0.5

1

1.5

2

μ/U

h
/U

0
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1
m

(a)

(b)

FIG. 8. (a) Deviation of μ at half-filling from U/2. For lower
temperatures and smaller interactions there is a clear deviation from
the μ = U/2 line. We find that the deviation from particle-hole
symmetry increases with lower interaction and lower temperature.
(b) Spin imbalance and density on the μ/U − h/U plane. From left
to right, the drawn contours represent 0.1, 0.5, 0.9, 1.1, 1.5, and 1.9
filling. T/t = 0.5 and U/t = 8.0.

introduced more often. Consequently, we use the expansion
by sites as the default expansion scheme as it was, in general,
more reliable for most properties.

2. Absence of particle-hole symmetry

In contrast to Hubbard models with particle-hole symme-
try, where half-filling (density n = 1) is always obtained at
μ = U/2, for a Hubbard model on a triangular lattice the
μ for half-filling has a more complicated dependence on
the model parameters [Fig. 8(a)]. For any figure with speci-
fied density, the density data were interpolated to determine
the μ value corresponding to half-filling. This value is then
used with another interpolation of the property being exam-
ined to determine its value at half-filling. Additionally, when
h �= 0, density becomes interconnected with spin imbalance.
This density-imbalance relationship is shown for temperature
(T/t = 0.5) in Fig. 8(b).

3. Spin-hole correlations in the square Hubbard model

On a square lattice the spin-hole correlator goes to zero
at half-filling (Fig. 9). This is in contrast to a triangular lattice
where we instead see a negative correlator in the region around
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FIG. 9. (a) Spin-hole correlator on a square lattice versus tem-
perature at U/t = 8 with the doping and spin imbalance selected
for. Ninth-order Euler resummation is plotted (error with respect
to fourth-order Wynn resummation). (b) Fourth-order Wynn resum-
mation on the μ/U -h/U plane at U/t = 8 and T = 0.5. Dotted
and dashed contours enclose areas with 10−4 and 10−3 uncertainty
(relative to ninth-order Euler resummation), respectively.

half-filling. Elsewhere, the correlators follow the same overall
pattern on the same order of magnitude. Consequently, this
region about half-filling would seem the most promising for
looking for spin-hole pairing that emerges on a frustrated
lattice.

4. Extrapolation of doublon density to T = 0

In previous studies, steps in the T = 0 doublon density
versus interaction have been observed [7,8]. Therefore, we
extrapolate the doublon density calculated from NLCE to zero
temperature (Fig. 10). We use an empiric scaling function that

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T/t

2n
↑n

↓

U/t 8 9 10 11 12

8 8.5 9 9.5 10 10.5 11 11.5 12
0.05

0.1

0.15

U/t

2n
↑n

↓

(a)

(b)

FIG. 10. Doublon density. (a) We extrapolate the doublon den-
sity to T/t = 0 from a model fit using NLCE calculations for U/t =
8−12 in the temperature range T/t = 0.2−2.5. We do not show
all NLCE data to avoid overlapping points. (b) We find a smooth
dependence of the zero-temperature doublon density with U/t within
error bars. Convergence for U/t < 8 is not sufficient to explore
the doublon density over the Mott insulator phase transition around
U/t ≈ 7.

is inspired by a gap model: a1e−b/T − a2e−bc/T 2 + d . Here,
a1, a2, b, and d are fit variables for each U whereas c is a
global fit variable. The variable d yields the doublon fraction
at zero temperature. We do not see steps when extrapolat-
ing the doublon density to zero temperature. The step size
previously observed was rather small and may be below the
resolution of our extrapolation.
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