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Local energy density functional for superfluid Fermi gases from effective field theory

Antoine Boulet ,1,* Gabriel Wlazłowski ,1,2,† and Piotr Magierski 1,2,‡

1Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
2Department of Physics, University of Washington, Seattle, Washington 98195–1560, USA

(Received 20 January 2022; accepted 1 June 2022; published 7 July 2022)

Over the past two decades, many studies in the density functional theory context revealed new aspects and
properties of strongly correlated superfluid quantum systems in numerous configurations that can be simulated
in experiments. This was made possible by the generalization of the local density approximation to superfluid
systems by Bulgac [Phys. Rev. C 65, 051305(R) (2002); Phys. Rev. A 76, 040502(R) (2007)]. In the present
work, we propose an extension of the superfluid local density approximation, systematically improvable and
applicable to a large range of many-body quantum problems getting rid of the fitting procedures of the functional
parameters. It turns out that only the knowledge of the density dependence of the quasiparticle properties,
namely, the chemical potential, the effective mass, and the pairing gap function, are enough to obtain an explicit
and accurate local functional of the densities without any adjustment a posteriori. This opens the way toward
an effective field theory formulation of the density functional theory in the sense that we obtain a universal
expansion of the functional parameters entering in the theory as a series in pairing gap function. Finally, we
discuss possible applications of the developed approach allowing precise analysis of experimental observations.
In that context, we focus our applications on the static structure properties of superfluid vortices.
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I. INTRODUCTION

The density functional theory (DFT) is a versatile method
describing with very good accuracy the static, dynamic, and
thermodynamic properties of many-body quantum systems in
a unified framework [1–8]. The success of this approach is due
to its relatively low numerical cost compared to the methods
that aim to solve under some well-controlled approximations
the many-body Schrödinger equation. The DFT is one of the
most popular methods in condensed matter physics, quantum
chemistry, atomic physics, and nuclear physics due to its
mathematical and conceptual simplicity. The essence of the
modern DFT relies on the Kohn-Sham (KS) equations [9],
derived from the Hohenberg-Kohn (HK) theorem [10], recast-
ing the Schrödinger equation into a problem of noninteracting
particles evolving in a density-dependent effective potential.
Although this procedure is exact, the form of the full effec-
tive potential remains unknown [11]. In the state of the art,
the unknown (exchange-correlation) part of the functional is
approximated [12–14], e.g., using the so-called local density
approximation (LDA) or the generalized gradient approxima-
tion (GGA) [15–24]. These procedures, guided by the Landau
theory of Fermi liquid [25–28] and its extension to finite sys-
tems by Migdal [29], require the empirical or semiempirical
adjustment of the parameters appearing in the expansions,
allowing an accurate description of the systems of interest.
The KS equations arise when densities are parametrized via
orbitals φn, which allow us to write the kinetic contribution in
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simple form ∼ ∑
n |∇φn|2. In condensed matter, these types

of functionals are typically referred to as meta-GGA [30].
Although very accurate for describing systems being in the
normal state, the standard KS approach is not able to deal
with states exhibiting spontaneous symmetry breaking of the
ground state [31]. For instance, the breaking of the U (1)
symmetry, associated with the particle number conservation,
allows us to capture most of the beyond-mean-field (BMF)
static correlations, such as superfluidity [32].

The challenging problem of the generalization of local
DFT to superfluid systems was achieved in Refs. [33,34] for
dilute (spin-symmetric and imbalanced) fermionic systems
at unitarity, i.e., when the s-wave scattering length of the
bare two-body interaction becomes large. This development
was guided by (i) the so-called Bogoliubov-de Gennes (BdG)
theory or Hartree-Fock-Bogoliubov (HFB) approximation
[35–39] for weakly interacting systems in Bardeen-Cooper-
Schrieffer (BCS) regime [40] and (ii) the absence of other
scales, except mean interparticle distance, at unitarity [41].
A regularization scheme has been introduced and extensively
discussed in Refs. [42–44] to remove UV divergences of the
pairing fields arising from the fact that local effective contact
pairing interaction is considered to build the functional. This
last point was an essential component to solve numerically
the generalized BdG equations, arising from the functional
minimization. From there, numerous studies of the properties
of quantum Fermi systems followed and revealed unexpected
collective phenomena while providing a better understanding
of experimental observations in ultracold atoms physics or
nuclear physics [41,45–58].

The purpose of this work is twofold. First, it consists
of a general strategy of constructing local DFT and getting
rid of fitting procedures strongly depending on the system
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considered, i.e., defining the functional parameters explicitly
in terms of the physical quantities of the systems such as
the quasiparticle properties. Second, we revisit the renor-
malization schemes of effective density-dependent (pairing)
contact interaction usually used which do not take into ac-
count the in-medium effects and the presence of the Fermi sea.
Finally, the constructed functional is applied to describe static
properties of superfluid quantum vortices which are crucial
for understanding the dynamical processes observed in recent
experiments [59].

II. LOCAL DFT FOR SUPERFLUID SYSTEMS

We consider an unpolarized system of interacting fermions
with equal masses m in natural units (m = h̄ = kB = 1)
labeled by their spin-projection number σ ∈ {a, b} on the
quantization axis. In the (local) DFT formalism, the ground-
state energy of the superfluid is given by

E =
ˆ

E[n(r), τ (r), ν(r)]dr. (1)

The (local) energy-density E is a function of the normal (n),
kinetic (τ ), and anomalous (ν) densities constructed from
the Bogoliubov quasiparticle wave functions expressed as a
doublet Nambu spinor ψ†

n = (u∗
n, v

∗
n ) that satisfy the gener-

alized BdG equations Hψn = Enψn for positive eigenvalues.
The effective density-dependent grand-canonical Hamiltonian
reads

H =
[

K + U − μ �

�∗ −K∗ − U ∗ + μ

]
, (2)

where μ denote the chemical potential. The densities are then
given in terms of the Bogoliubov amplitudes as follows:

n(r) = 2
∑
En>0

[|un(r)|2 f +
n + |vn(r)|2 f −

n ], (3a)

τ (r) = 2
∑
En>0

[|∇un(r)|2 f +
n + |∇vn(r)|2 f −

n ], (3b)

ν(r) =
∑
En>0

( f −
n − f +

n )un(r)v∗
n (r), (3c)

where the Fermi-Dirac distribution is noted as f ±
n = [1 +

exp(±βEn)]−1, with β = 1/T being inverse of temperature.
Here, we construct the functional for zero-temperature limit,
however one can extend the formalism beyond this limit by
introducing the thermal weights f ±

n to the densities. Note
that this extension of DFT concept to finite temperatures
is approximate. It is equivalent to the finite-temperature
HFB theory [60]. Also, finite and small temperature is fre-
quently introduced to the numerical scheme, to improve
converge properties of a self-consistent algorithms. The ki-
netic, potential, and pairing operators are given by varying the
functional with respect to the density fields, i.e., K (r) = −∇ ·
δE/δτ (r)∇, U (r) = δE/δn(r), and �∗(r) = −δE/δν(r), re-
spectively.

We introduce a typical momentum scale of the many-body
Fermi system that we identified as being the Fermi momen-
tum kF related to the total density as n ≡ k3

F/3π2 and the
associated Fermi energy εF ≡ k2

F/2. Then, we assume that the

energy-density is given by the following general form:

E = Aλ

τ

2
+ 3

5
BλnεF + Cλ

n1/3
|ν|2, (4)

where the functional parameters {Aλ, Bλ,Cλ} are functions of
the density-dependent coupling constant λ ∼ kF. The terms
have the following physical meaning: the first one describes
kinetic energy, the second one is related to the interaction
energy, and the last one models the pairing correlations re-
sponsible for the superfluid properties of the system. As
discussed later, this local form of functional (4) leads to di-
vergences of the kinetic (first term) and anomalous density
(third term) independently that require proper renormalization
scheme to cancel these UV divergences in the energy density
expression. In practice, we introduce a cutoff energy to the
sum appearing in Eqs. (3) and the coupling constant Cλ/n1/3

is renormalized according to the value of the cutoff. In the
following, we concentrate on dilute interacting systems for
which only the leading order of the two-body interaction
contributes and we set the dimensionless density-dependent
coupling constant λ = |askF| where as refers to the s-wave
scattering length of the bare Hamiltonian. Note that, in gen-
eral, the coupling constant is defined through local value of
Fermi momentum kF(r), and thus in general all functional
parameters are position dependent, through the coupling con-
stant dependence λ(r).

In context of diluted Fermi gas with attractive two-body
interaction (as < 0), we can mention that the so-called su-
perfluid local density approximation (SLDA) and the BdG
functionals are efficient respectively close to unitarity (λ �
1), and in the weak coupling regimes (λ � 1) [34]. Both
of them can be described by the functional (4) upon proper
choosing of the functional parameters, see also Table I. The
main motivation of this work is to extend both of these
functionals for a finite value of the s-wave scattering length,
i.e., obtain the correct density dependence of the functional
parameters keeping the limiting regimes valid. Naively, in
the simplest case, we can assume Padé approximations of
the functional parameters. Unfortunately, such approxima-
tions are inconsistent since the functional parameters are not
independent, i.e., linked to each other by physical constraints
as the Hugenholtz–van Hove theorem [61], for instance. To
overcome this difficulty, we present below the strategy we
adopt to obtain approximate expressions of the functional
parameters in terms of the quasiparticle properties, namely,
the effective mass, the chemical potential, and the pairing gap
function. However, it is important to notice that the proposed
theory can be extended to a larger class of many-body systems
with richer multibody interactions.

The popularity of the DFT method stems from the fact that
it is a general-purpose method. It means that it can be applied
to variety of setups, including confined systems by an exter-
nal potential Vext(r) or coupled to the external pairing field
�ext(r). The functional (1) describes only intrinsic energy of
the system. In the presence of external potentials, the total
energy has the form

E ′ =
ˆ

E[n(r), τ (r), ν(r)]dr +
ˆ

Vext(r)n(r)dr

−
ˆ

[�ext(r)ν∗(r) + H.c.]dr. (5)
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TABLE I. Summary of the notations and conventions used in this document. The last column provides the equation(s) used to estimate
the associated quantity/parameter with the proposed method. The ground-state energy is given in unit of the free gas energy per unit volume
EFG = 3nεF/5. For reference, we give the value of the parameters at unitarity and at zero-density limit obtained using the APS[x, y, z] functional
used in this work.

APS[x, y, z] λ → ∞ λ → 0

Ground-state energy [EFG] ξλ 0.36 1 Eq. (16)
Chemical potential [εF] ζλ 0.36 1
Effective mass [m] m� 1.19 1
Pairing gap function [εF ] ηλ 0.46 8

e2 exp(− π

2λ
) Eq. (17)

Functional parameters Aλ 0.84 1 =1/m�

Bλ −0.28 − 10
9π

λ Eq. (14)

Cλ −14.96 − 4π

(3π2 )1/3 λ

SLDA parameters αλ 0.84 1 =1/m�

βλ −0.28 − 4
3π

λ Eq. (9)

γλ −14.96 15π3/(1−7 ln 2)
(3π2 )1/3λ

HFB parameters bλ −0.62 −1 Eq. (13)
cλ −9.38 − 8

π
λ

Minimization of this functional introduces changes only to the
mean-field and the paring potentials: U (r) → U (r) + Vext(r)
and �(r) → �(r) + �ext(r). Moreover, in Eq. (1), we have
assumed implicitly that the solution has no currents, j(r) = 0,
where

j(r) = 2
∑
En>0

Im[u∗
n(r)∇un(r)] f +

n

− 2
∑
En>0

Im[v∗
n (r)∇vn(r)] f −

n . (6)

If the solution does not satisfy this requirement, for example,
solution representing a quantum vortex, then one should use
Galilean invariant expression for the kinetic density τ (r) →
τ (r) − j2(r)/n(r) and add also to the total energy contribu-
tion from the matter flow Eflow = ´ j2(r)

2n(r) dr, which accounts
for center-of-mass motion energy [34]. In summary, in the
presence of currents the functional Eq. (1) must be redefined
E → E + �E where

�E =
ˆ

(1 − Aλ)
j2(r)

2n(r)
dr. (7)

That induces a change in the definition of the kinetic and the
potential operator appearing in the Hamiltonian of Eq. (2) as

K (r) → K (r) − i

2

[
δ�E

δ j(r)
·∇ + ∇· δ�E

δ j(r)

]
, (8a)

U (r) → U (r) + δ�E

δn(r)
. (8b)

A. Constraints on quasiparticle properties

We first consider a homogeneous Fermi gas at zero-
temperature of density n, ground-state energy per unit volume
E ≡ 3nξλεF/5 and a chemical potential μ/εF = ζλ that verify
the thermodynamic relationship ζλ = ξλ + (λ/5)ξ ′

λ. More-
over, we assume that the pairing gap function can be expressed
as � ≡ −Cλν/n1/3 = ηλεF. Following the assumptions of the
SLDA approach relying on the BCS theory results, we define

the dispersion relation for the quasiparticle energies E2
k =

ε2
k + �2 with the quadratic approximate single-particle ener-

gies εk = k2/2m� + U − μ where k denote the momentum
of the quasiparticle considered. The effective mass m� and
the effective mean-field potential U are obtained by vary-
ing the energy functional according to the densities τ and
n, respectively. To maintain compatibility with notation of
the original SLDA functional [33], we define the SLDA pa-
rameters {αλ, βλ, γλ} as 1/m� ≡ αλ and U ≡ (τ/2)∂αλ/∂n +
βλεF − �2/(3n2/3γλ), with

αλ = Aλ, (9a)

βλ = Bλ + λ

5

∂

∂λ
Bλ, (9b)

1

γλ

= 1

Cλ

+ λ
∂

∂λ

1

Cλ

, (9c)

where we have use chain rules of derivatives 3n∂X/∂n =
λ∂X/∂λ. Note that the SLDA parameters are related to
the functional parameters Bλ, and Cλ defining the func-
tional in Eq. (4), but in general they differ from each
other except for the unitary point, where B∞ = β∞ and
C∞ = γ∞. The single-particle energies reads εk = αλk2/2 +
bλεF with the shorthand notations bλ = (τ/2)∂αλ/∂n + (βλ −
ζλ) − (3π2)2/3η2

λ/6γλ, and we introduce cλ = 6Cλ/(3π2)2/3

that will be used below, defining the HFB parameters. As it
will be shown later, these parameters have compact represen-
tation in terms of quantities that are accessible for quantum
Monte Carlo calculations, Eqs. (13). Here, there are used to
shorten the notation. For the reader, we provide in Table I a
summary of the notations and conventions for the parameters
used throughout the document.

The BCS theory stands that the following integral equa-
tions are fulfilled [33,34]:

n ≡ k3
F

3π2
= 1

2π2

ˆ
k2dk

(
1 − εk

Ek

)
, (10a)

2

π2

kF

cλ

≡ n1/3

Cλ

= 1

2π2

ˆ
k2dk

(
1

αλk2
− 1

2Ek

)
. (10b)
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The meaning of these equations is following: the first one is
zero temperature expression for the particle density, Eq. (3a),
with explicit BCS formulas for uk and vk , while the second
one corresponds to the gap equation where a counterterm was
added to regularize integral as usually done in effective field
theory (EFT) formulation of BCS-like theory [62]. We remark
that Eq. (10a) is independent of cλ and allows us to determine
bλ as a function of αλ for fixed value of ηλ. Consequently,
the effective mass parameter should be known to finally fix
the value of cλ with Eq. (10b). From this fitting strategy, the
result for η∞ = 0.493(12) corresponding to unitary regime
has been obtained in Refs. [33,34] with α∞ = 1.094(17) and
ξ∞ = 0.40(1).

From Refs. [62–64], we can evaluate these integrals an-
alytically in dimensional regularization (DR) with minimal
subtraction (MS) scheme, for instance, by defining

Il (s, t ) ≡ −
 ∞

0

zldz√
(z + s)2 + t2

= π

sin π l
(s2 + t2)l/2Pl (s/

√
s2 + t2), (11)

where Pl denote the Legendre functions of the first kind and
the sign

ffl
denote the integration in DR + MS scheme. Note

that in MS scheme, integrations of powers of z are assumed
to give zero contribution to the final results, i.e.,

ffl
zldz → 0.

After a change of variables and assuming αλ > 0, Eqs. (10)
can be rewritten as

1 = 3

4

[
I3/2

(
bλ

αλ

,
ηλ

αλ

)
+

(
bλ

αλ

)
I1/2

(
bλ

αλ

,
ηλ

αλ

)]
, (12a)

αλ

cλ

= 1

8
I1/2

(
bλ

αλ

,
ηλ

αλ

)
. (12b)

Note that these analytic results are independent from the reg-
ularization scheme used to calculate the integrals of Eq. (10).
We solve Eq. (12) perturbatively by expanding in power of
(ηλ/αλ)n as follows:1

bλ = αλ

∑
n

Bn(ln ηλ/αλ) ×
(ηλ

αλ

)n
, (13a)

1

cλ

= 1

αλ

∑
n

Cn(ln ηλ/αλ) ×
(ηλ

αλ

)n
, (13b)

where the first functions Bn and Cn, up to n = 8, are given in
Appendix A. We obtained prescription for inducing HFB pa-
rameters from the effective mass m� = 1/αλ and, the pairing
gap � = ηλεF. The chemical potential ζλ, and related to it the
equation of state ξλ, as well as the kinetic density are needed
to disentangle SLDA parameters from HFB parameters. More
precisely, the kinetic density is obtained in the same way as
the normal density Eq. (10a) leading to

τ

nεF
= 3

2

[
I5/2

(
bλ

αλ

,
ηλ

αλ

)
+

(
bλ

αλ

)
I3/2

(
bλ

αλ

,
ηλ

αλ

)]
.

1For stability reason, due to the fact that we simply use quadratic
approximation for the single-particle energies, we consider only the
case bλ < 0 [65–67].

In practice, the Il (s, t ) functions are approximated following
the Appendix A. The expansion defined by Eq. (13) allows us
to get rid of fitting procedures since the HFB parameters are
given by a systematically improvable series.

Equation (13) together with definition of SLDA param-
eters provides prescription for inducing {αλ, βλ, γλ} from
{m�, ζλ, ηλ}. In the last step we need to convert the SLDA
parameters into the functional parameters {Aλ, Bλ, Cλ}. While
for Aλ and Cλ it is trivial, for Bλ we need to solve differential
Eq. (9b). Its general solution can be expressed, after succes-
sive integrations by parts, as

Bλ = 5

λ5

ˆ λ

0
βl l4dl =

∞∑
n=0

(−1)n 5!λn

(n + 5)!

∂nβλ

∂λn
.

Here we will consider the expansion only up to second order
in λ ∼ kF, i.e.,

Bλ � βλ − λβ ′
λ

6
+ λ2β ′′

λ

42
. (14)

As it will be shown, the truncated expansion is consistent with
the second-order constraint on the weak coupling regime, and
provides numerically accurate results.

Summarizing, to extract the λ dependence of the functional
parameters, we need:

(1) the total ground-state energy, or equivalently the chem-
ical potential, i.e., the generalized Bertsch parameter, for all
values of λ, e.g., those developed in Refs. [68,69];

(2) the λ-dependence of the associated effective mass,
e.g., discussed in Ref. [70] related to ab initio adjustments;

(3) the evolution of the pairing gap function as a function
of λ at zero-temperature obtained form ab initio calculations
and experiments.

Consequently, we argue that the proposed method is
applicable not only for diluted systems but also for general su-
perfluid many-body systems, providing we have access (from
either experiments or ab initio calculations) to the chemical
potential, the effective mass, and the pairing field without
further adjustment. Strictly speaking, the parametrization of
the induced functional is unique and universal, assuming that
the functional has SLDA-type form, Eq. (4). Although, the
functional has been constructed to reproduce properties of
the uniform system, it is expected to provide good quality
results also for nonuniform systems, as it was in the case of
the original SLDA functional [34]. In the next section, we
describe the methodology to impose the correct limits and
obtain these physical quantities.

B. Parameterization of physical quantities for homogeneous
dilute systems at zero-temperature

For the ground-state energy or the generalized Bertsch
parameter ξλ, we chose the APS functional [70] displayed in
Figs. 1(a) and 1(d) and the associated inverse effective mass
αλ [shown in Figs. 1(b) and 1(e)] is obtained through the
derivative at the Fermi surface of the associated single-particle
potential. To provide its explicit form, let us first introduce the
following parametric function [71]:

Sλ = (σ − 1) arctan

(
λu

1 + λv

)
, (15)
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FIG. 1. Dimentionless ground-state energy [first column (a), (d)], effective mass [second column (b), (e)], and pairing gap function [third
column (c), (f)] for spin-symmetric infinite dilute systems of identical fermions with negative s-wave scattering length at zero-temperature as
a function of λ [first row (a), (b), (c)] and λ−1 [second row (d), (e), (f)]. The blue solid line correspond to our parametrization of the functional
defined by Eq. (4): the ground-state energy and the effective mass correspond to the APS functional [70] by setting x � −0.75 adjusted to
reproduce the result of Ref. [72, green asterisks] at unitarity, and the paring gap function is given by Eq. (17). For reference, we display the
second-order MBPT results, known as the Lee-Yang [74–76] and Galitskii formula [77] for the ground-state energy and the effective mass,
respectively, and the BCS equation [62] (orange dashed lines) as well as the ladder resummation of the particle-particle [67,70] (green dotted
lines), particle-particle and hole-hole [67,70] (blue dotted lines), and particle-hole channels [78,79] (red dotted line). We show also various
experimental results from Ref. [80, triangles], Ref. [81, light green squares], Ref. [82, light blue circles], Ref. [57, gray area], QMC calculations
of Ref. [83, purple open diamonds], Ref. [84, brown open squares], Ref. [85, pink open up-triangles], Ref. [86, black open circles], Ref. [87, red
open down-triangles (Jastrow-Slater trial wave function) and purple open up-triangles (BCS trial wave function)], and Brueckner-Hartree-Fock
calculation [88, plus crosses].

where the spin degeneracy is denoted by σ (σ = 2 for spin
symmetric systems). The dimensionless ground-state energy,
the chemical potential, and the effective mass are then given
in terms of this parametric function and its first derivative as
follows:

ξλ = 1 − 16

3π
Sλ, (16a)

ζλ = 1 − 16

3π
Sλ − 16λ

15π
S ′

λ, (16b)

αλ = 1 + 5uw − 7xuv

9πu2
λ2S ′

λ + 2w + 7xv

9πu2
(1 + λv)λ2S ′

λ

2
,

(16c)

where the constants are given by u = 5/24, v = 6(11 −
2 ln 2)/35π , w = 24(1 − 7 ln 2)/35π . The free parameter of
the effective mass parametrization, x, is adjusted to reproduce
the result of Ref. [72] at unitarity, α−1

∞ = 1.19, leading to
x � −0.75.

The advantages of these parametrizations, discussed ex-
tensively in Ref. [71], reside in the fact that they provide a
proper reproduction of thermodynamical properties of dilute
Fermi gas at zero-temperature across the whole range as < 0
[73]. In particular, the low-density expansions up to second
order in the many-body perturbation theory (MBPT), for the
energy as well as the effective mass, are fulfilled while keep-
ing finite values at unitarity under a compact and explicit
form in terms of the density-dependent coupling constant λ.
Note in particular that the Bertsch parameter predicted by the
functional2 (ξ∞ � 0.36) is consistent with the Gorkov-Green
function results of Ref. [72]. The associated effective mass is
displayed in Figs. 1(b) and 1(e) and compared to experimental
data and theoretical results.

2The exact value reads:

ξ∞ = 1 − 16

3π
arctan

(
175π/144

11 − 2 ln 2

)
� 0.358.
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FIG. 2. Numerical error using perturbative solutions given by
Eq. (13) in Eq. (12) as a function of λ−1. The solid and the
dashed lines show the absolute difference of the right-hand side and
left-hand side of Eqs. (12a) and (12b), respectively. Note that the per-
turbative expansion becomes less accurate, but still very reasonable,
close to the unitary regime because η∞/α∞ ∼ 0.6.

The pairing gap function parametrization is then assumed
to be consistent with the result of Ref. [72] obtained at unitar-
ity (η∞ = 0.46) as well as the BCS theory results. In the limit
λ � 1 (BCS regime) we have ηλ ∼ (8/e2) exp(−π/2λ) ≡ η̄λ

[62–64]. Therefore, we use the following parametrization for
the paring gap function:

ηλ = 8

e2
exp

(
− π

2λ

)
× 1 + λy

1 + λyz
, (17)

where z ≡ η̄∞/η∞ and the free parameter y is set arbi-
trarily to y = 4/5 to reproduce ab initio calculations, see
Figs. 1(c) and 1(f). Note that this parametrization of the pair-
ing gap function under a Padé approximation is empirical (but
suggested by the parametrization of the ground-state energy)
and, as far as we know, remains to be validated from the
ground. The parametrization of the ground-state energy, the
effective mass and the pairing gap function as defined above
will be denoted by APS[x, y, z] and we chose the values
x � −0.75, y = 4/5, and z = (8/e2)/0.46 in this work.

We have obtained the λ-dependence of the physical quan-
tities: the ground-state energy ξλ or equivalently the chemical
potential ζλ, the associated effective mass αλ, and the pairing
gap function ηλ. Thus, it allows us to determine the HFB pa-
rameters bλ and cλ using the perturbative approximation given
by Eq. (13). In Fig. 2 we display relative error between results
provided by the expansion (13) and exact results of Eq. (12).
We observe that close to the unitary regime, the quality of
the approximation provided by Eq. (13) decreases. This is
due to the fact that, close to the unitary limit, the perturbative
parameter ηλ/αλ � 0.6 becomes large. However, we can add
more terms in the expansions to improve systematically the
results. From practical point of view, extraction of the HFB
parameters with the relative error below 1% is sufficient.

The results for the functional parameters obtained from
Eq. (14) and the expansions given by Eq. (13) are shown in
Fig. 3. Note that, numerically, we do not observe significant
differences due to the fact that we apply (i) the truncated
expansion given by Eq. (14) or (ii) the full integration of the
solution, using (a) the perturbative expansion of Eq. (13) or
(b) the exact numerical results. For reference, we provide in
Appendix B the weak limit coupling of the functional up to
second order in λ.

0.0 1.0 2.0 3.0 4.0 5.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

λ−1

X
λ
/X

∞

X
α
A
β
B
γ
C

FIG. 3. Normalized functional parameters Aλ [blue (upper) solid
line], Bλ [orange (middle) solid line], and Cλ [green (lower) solid
line] obtained with Eq. (14) and the approximation of Eq. (13) as
a function of λ−1. Note that the exact results obtained by solv-
ing Eq. (9) numerically provide indistinguishable results. The zero
order approximations Aλ ∼ αλ, Bλ ∼ βλ, and C−1

λ ∼ γ −1
λ are also

displayed by the dashed lines.

The systematically improvable expansion given by Eq. (13)
allows overcoming fitting procedure of numerical results ob-
tained by solving Eq. (10) or Eq. (12). Actually, the results
are strongly dependent on the ground-state energy, the effec-
tive mass, and the pairing gap function chosen to describe
the system. In other words, this work depends only on the
precision with which the physical quantities can be extracted
from experiment and/or theoretical calculations. Moreover,
in this work, we discuss only the ultracold atomic gas, but
the developed theory, as suggested by the quality of the DFT
approach to describe many-body systems, can be extended to
nuclear physics, condensed matter, quantum chemistry, etc.
For the systems of interest, the proposed method requires only
the knowledge of the quasiparticle properties as a function of
the density of the associated homogeneous infinite systems at
zero-temperature.

C. Toward an EFT formulation of the DFT?

The expansion of the functional parameters in terms of
microscopic quantities (and their derivatives with respect to
the density), can be considered as the first step toward an
EFT formulation [89] of the DFT [63,90–93]. Actually, start-
ing from a microscopic point of view, the knowledge of the
quasiparticle properties of the system can be used to obtain
a universal systematic expansion of the functional param-
eters, that is to say, the coupling constant of the effective
Hamiltonian. In other words, starting from a single-particle
picture, the coupling constant for the low-energy degrees of
freedom, i.e., the classical density fields, have been obtained
in a systematic improvable expansion and explicitly expressed
through quasiparticle properties.

Essentially, the local DFT discussed here treats the energy-
density at first order by neglecting cross-coupling between the
classical fields of the theory, e.g., terms in τ · ν, ν · n, etc. at
next-to-leading order. It could be interesting in future to con-
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sider such terms by using the standard perturbation techniques
of EFT (many-body diagrams, Feynman rules, power count-
ing, etc.) and/or introducing other collective fields allowing
for spontaneous symmetry breaking of the ground states. Be-
sides, we can enrich the resulting functional by considering
higher-order terms beyond the quadratic approximation of the
single-particle energies assumed in this work.

The EFT formulation that we have presented is valid for
uniform systems for which the DR associated to MS is suffi-
cient to remove the UV divergences from the theory. However,
while the regulated analytic form is very convenient, it does
not allow to grasp simply the subtleties of the renormaliza-
tion procedure. Besides, for finite systems, such regularization
leads to numerical instabilities. In the next section, we discuss
more precisely renormalizations in the case of nonuniform
and finite systems. That will provide a proper identification
of the low- and high-energy scales of the EFT expansion and
will shed light on the formal aspects of the presented theory.

III. REGULARIZATION OF PAIRING FIELDS

At the formal level, densities τ and ν as defined by
Eqs. (3b) and (3c) are divergent. For example, according BCS
theory we have ukv

∗
k = �

2
√

ε2
k +�2

, and then

ν =
ˆ

dk
(2π )3

ukv
∗
k = 1

2π2

ˆ ∞

0

k2�dk

2
√

ε2
k + �2

→ ∞, (18)

since εk ∼ k2/2. However, the energy of the system must be
finite, which means that in the combination Aλ

τ
2 + Cλ

n1/3 |ν|2
divergences cancel out (note that Cλ < 0). Thus, the theory
must be supplemented with prescription how to deal with the
divergences.

The regularization of the BdG equations relies on the
link between the coupling constant Cλ/n1/3 → g appearing in
Eq. (4) and the vacuum two-body s-wave scattering length as

through the spherical integral renormalization scheme

1

4πas
= 1

g
+ 1

4π2
P
ˆ

k2dk

ek
, (19)

where P denote the Cauchy principal value, ek = k2/2 are
the unshifted single-particle energies. Note that formally it is
not the regularization of the BdG equations but the regular-
ization of contact interaction, i.e., even in MBPT for dilute
Fermi system, this regularization is required due to the UV
divergence of the scattering particle-particle loop amplitude in
the vacuum, see also Appendix C. Thus, this regularization is
only valid in the vacuum due to the standard scattering theory
starting from the bare Lagrangian. The difficulty arises from
the fact that we start from an effective density-dependent or
HFB Lagrangian. Consequently, this renormalization scheme
becomes obsolete and the regularization must be performed
in-medium. The first attempt, and as far as we know, the
only approach used in that context, was developed by Bulgac
et al. [33,42–44]. Let us briefly present the strategy. Guided
by Eq. (19), it was suggested to replace the coupling con-
stant by a regularized one to define the pairing gap function
g−1 → n1/3/Creg.

λ , and to make the replacement: (4πas)−1 →

n1/3/Cλ using the density coupling constants defined above.
Consequently, replacing the free single-particle energies ek

of Eq. (19) by the density-dependent single-particle energies
ek → εk , we obtain the following renormalization scheme
(see Appendix C for explicit derivation in EFT picture):

n1/3

Cλ

= n1/3

Creg.

λ

+ 1

4π2
P
ˆ

k2dk

αλk2/2 + bλεF
, (20)

where Creg.

λ is the regularized density dependent coupling
constant used in numerical calculations. The integral is
then computed using spherical cutoff

´ → ´ kc

0 . Then, the
BdG densities must be computed with the consistent cut-
off, i.e., the summations in Eqs. (3) are performed over
the single-particle states with eigenvalues En < Ec � k2

c /2.
Consequently, the functional parameter Cλ obtained in the
previous section within DR + MS procedure is used during
the regularization process only. Namely, the renormalized
coupling constants are used when we solve the numerical BdG
equations that define in particular the pairing gap function as

� = −Creg.

λ

n1/3 νc where subscript c indicates that the density is
calculated with the energy cutoff, i.e.,

∑
En>0 → ∑

Ec>En>0.

A. Results and comparisons

The constructed functional has been implemented within
W-SLDA Toolkit [45,46]. The implementation is released as
open-source via web page [94]. We have solved numerically
the BdG equations using the methods proposed in this work
for spin symmetric homogeneous systems at zero-temperature
for several values of the density-dependent coupling con-
stant λ. The solver executes computation in three-dimensional
space, on a spatial grid of size N3, with lattice spacing dx,
which introduces natural energy cutoff scale Ec = π2

2mdx2 . The
resulting ground-state energy and pairing gap function are
shown in Fig. 4 [blue filled circle]. Note that numerical so-
lution provided by the derived functional and supplemented
with the regularization procedure reveals results in satisfac-
tory agreement with the initial APS parametrization. The
discrepancies of the pairing gap function (and the chemical
potential) close to the unitarity with respect to the analytic
results that we used for inducing the functional parameters
[black dashed line] can be seen. They reflect systematic errors
introduced by the computation process in discretaized space
as well as by truncations applied in Eqs. (13) and (14). The
comparison provides a stringent test for the presented method:
the functional parameters are generated by analytical formu-
las derived for continuum space and infinite cutoff energy,
while the opposite process finds the self-consistent solution of
Eqs. (2) for discrete space and for finite energy cutoff. Since
the ground-state energy is well reproduced within the whole
range from weak coupling to unitarity limit [see Figs. 4(a)
and 4(b)], the thermodynamic properties of the Fermi gas at
zero-temperature as well as the universal Tan’s contact pa-
rameter [41,95–97] are consequently in good agreement with
experimental observations (see Ref. [73] for more detailed
discussions).
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FIG. 4. Dimensionless ground-state energy [respectively, pairing gap function] as a function of λ (a) [respectively, (c)] and of λ−1 (b) [re-
spectively, (d)] obtained by solving numerically the BdG equations associated to the constructed functional together with the regularization
scheme defined by Eq. (20) [blue filled circle]. The computation was executed on a spatial mesh of size 803 with lattice spacing dx = 1, and
density was set to satisfy kF = 1. The dashed black line corresponds to the analytical parametrization of the APS[x, y, z] functional that was
used as the input for the induction procedure.

B. Identification of scales and discussion

Starting from Eq. (3), we can show that, for large kc � kF,
τ ∼ (�/Aλ)2kc/π

2, and ν ∼ (�/Aλ)kc/(2π2). The renormal-
ized pairing coupling constant is consistent with these results
since Cλ/n1/3 ∼ −2π2Aλ/kc. In particular, using the defini-
tion of the pairing gap function � = −Cλ/n1/3ν, we have

Cλ

Aλn1/3
|ν|2 = − �

ε�
F

ν∗εF, (21)

where we recognize the expansion parameter xλ ≡ ηλ/Aλ =
�/ε�

F with ε�
F ≡ AλεF used in Eq. (13). Thus, when looking

at the problem from EFT perspective we can identify � as
the low-energy scale and ε�

F as the high-energy scale. Con-
sequently, invoking only local pairing field in the description
is justified when �/ε�

F is small. This result is reminiscent of
the pioneering work of Furnstahl, Hammer and Puglia [63]
who used �/εF as an expansion parameter in their EFT for
weak/dilute interacting systems. Here, we have generalized
this approach by including quasiparticle properties. From this

EFT perspective, the leading order of the theory is equivalent
to the BdG functional

EBdG = Aλ

(τ

2
− xλν

∗εF

)
+ O(x2

λ). (22a)

However, in the strong limit coupling, the pairing gap func-
tion is finite so that xλ = O(1). In the SLDA functional the
higher-order corrections are modeled by terms related to Bλ

parameter

ESLDA = A∞
(τ

2
− x∞ν∗εF

)
+ 3

5
B∞nεF, (22b)

which implicitly depends on higher powers of x, i.e., B∞ ∼
O(xk

∞). It is clear that Bλ is the only remaining parameter
which should be expressed as a series in xλ to have a proper
EFT formulation. To fulfill this requirement, we make use
of the chain rule of derivatives, d/dλ = dxλ/dλ × d/dxλ, in
Eq. (14). Note also that the term proportional to Bλ quanti-
fies difference between the BdG functional (mean field) and
the full functional. Thus, it may be treated as an analog of
the so-called exchange-correlation term, widely discussed in
standard DFT. In general the Bλ does not vanish in the limit
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FIG. 5. Relative numerical error of the ground-state energy
[green filled circle], the pairing gap function [orange filled square],
and the chemical potential [red filled triangle] as a function of kF/kc

obtained by solving the BdG equations with the W-SLDA Toolkit and
constructed here functional at unitarity.

xλ → 0 (transition to normal state), and then it models inter-
action effects that are not related to the pairing.

Once the divergencies have been removed one may still
wonder if all the cutoff dependencies are eliminated from the
theory. Actually, in a proper EFT, the energy density, and con-
sequently the observables, must be independent of the cutoff
momentum kc introduced to regularize the pairing coupling
constant. We start by fixing the cutoff momentum and then
we evalute the density n with Eq. (10a) such that we can intro-
duce the Fermi momentum kF, the density-dependent coupling
constant λ, and the associated Fermi energy εF. Subsequently,
we define the energy density of the associated noninteracting
system E0 = 3nεF/5, and using the BCS results, we can show
that

Aλ

(τc

2
− xλν

∗
c εF

)
= [ξλ − BλE0], (22c)

where τc and νc are the cutoff-dependent renormalized den-
sities. Finally, we can conclude that the divergences have
been properly canceled. In Fig. 5 we display numerically
obtained the energy, the pairing gap and the chemical potential
dependence on the cutoff parameter kc. We find that indeed
the total energy does not exhibit significant cutoff depen-
dence. However, other two observables admit residual cutoff
dependence. This residual cutoff dependence is also present
in original SLDA functional and its origin requires further
investigation in future. We emphasize that the discrepancy
between obtained and expected result vanish at zero density
(kF → 0), which is formally equivalent to the infinite cutoff
limit.

To conclude, the formal development presented in this
article allows us to go further in the future studies by us-
ing EFT perturbative techniques, i.e., many-body Feynman
diagrams associated with the identification of a power count-
ing, to enrich the functional by including higher-order terms
in the energy-density, e.g., at the second order, we expect
terms as (�∗ν)2. Moreover, further development could in-
clude higher orders in the gradient expansion and the effective
range effects [68,73,85,98–102], i.e., beyond quadratic ap-
proximation of single-particle energies, generalize the BCS
quasiparticle dispersion relation, consider spin-imbalance
systems, etc. Despite the recent and impressive theoreti-
cal developments in self-consistent Green functions (SCGF)
techniques [72,103–110] or QMC approach of the many-
body problems [83–85,87,111] as well as experimental works
[80–82,112–114], precise constraints on the quasiparticle

properties are still limited. We still lack a general frame-
work that allow for systematically improvable form of such
quantities starting from the bare interaction. Among recent
attempts to obtain a DFT from first principle, one can refer
to the EFT for dilute Fermi gas [63,93,115–120], the bilo-
cal Legendre transforms techniques [90,121–123], the DFT
driven by ab initio calculations [70,124] which did not lead
to satisfying results [125,126]. However, the SLDA have
proven to provide the formidable precision in the description
of strongly correlated Fermi gases, despite its astonishing
simplicity. Nevertheless, the use of the standard SLDA so
far was limited to the unitary regime which makes it some-
times difficult to compare directly with the experiments.
As we will discuss in the next section, the DFT proposed
in this work has the potential to reconcile the theoreti-
cal simulations and experimental results in ultracold atomic
physics.

IV. APPLICATIONS

In the previous sections, we have introduced methodol-
ogy to construct systematically a SLDA-like functional from
the density-dependent quasiparticle properties (the chemical
potential, the effective mass, and the pairing gap func-
tion) only. We have focused on diluted Fermi systems for
which we have (i) introduced the APS[x, y, z] parametrization
of the functional in Sec. II B, (ii) truncated the expan-
sions defined by Eq. (13) up to n = 8, (iii) applied the
approximations of Eq. (14), and (iv) used the regulariza-
tion scheme for the pairing field in Sec. II. Altogether, this
DFT will be called SLDAE for SLDA Extended. To illus-
trate the possibilities that are offered by our approach, we
provide some applications of the SLDAE functional. The
implementation of SLDAE functional is publicly accessi-
ble via W-SLDA Toolkit [94]. In the Supplemental Material
[127] we provide detailed information about the computation
process.

A. Phase diagram and critical temperature

As a first application we provide the phase diagram pro-
duced by the SLDAE functional. Namely, the value of the
pairing gap within the (T/TF, λ) space (where TF = εF is
the Fermi temperature), has been shown in Fig. 6. In BCS
theory, we can show that the ratio of the pairing gap function
with the critical temperature is the universal number �(T =
0)/T BCS

c = π/eγ � 1.764 where γ is the Euler constant. The
calculations provide a superfluid critical temperature [white
solid line] above the BCS theory result [white dashed line].
The first one is defined as temperature at which � reaches
zero, while the T BCS

c we obtained through the formula but
using the value of the self-consistent paring gap obtained
numerically from our SLDAE functional. The result suggests
that the physical quantities can be expressed as an expan-
sion of the ratio �/ε�

F. The SLDAE functional predictions
follow the BCS-like self-consistent equations in such a way
that universal relationships in BCS theory are fulfilled up to
the first order in �/ε�

F. It is the case, in particular, for the
critical temperature. Thus, using our EFT correspondence,

013306-9



BOULET, WLAZŁOWSKI, AND MAGIERSKI PHYSICAL REVIEW A 106, 013306 (2022)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.10

0.20

0.30

0.40
λ = 5.0

T/TF

|Δ
|/ε

F

0.00 1.00 2.00 3.00 4.00 5.00
0.00

0.10

0.20

0.30

λ

T
/
T

F

FIG. 6. Phase diagram obtained using the SLDAE functional. On the left: projection of the dimensionless pairing gap function on
the (T/TF, λ) plane. The dashed white line corresponds to the BCS critical temperature formula valid in the weak coupling regime,
T BCS

c = (eγ /π )�(T = 0). We observe that the numerically extracted critical temperature is in very good agreement with Eq. (23a) [white
solid line]. On the right: dimensionless pairing gap function at λ = 5.0 as a function of the temperature. The black dotted line corresponds to
the parametrization defined by Eq. (23b) valid close to the critical temperature.

we expect that the critical temperature can be approximated
as

Tc

TF
≈ eγ

π

�(T = 0)

ε�
F

+ O
(

�(T = 0)

ε�
F

)2

, (23a)

where the higher-order terms are neglected in the expan-
sion. Indeed, we observe reasonable accuracy of this formula
when compared to numerical calculation for all values of the
density-dependent coupling constant [left panel of Fig. 6].
One may also note that, close to the critical temperature,
the pairing gap function is in a good agreement with the
BCS asymptotic universal relation along the whole range of
λ [dotted black line in the right panel of Fig. 6], i.e.,

�(T ∼ Tc)

ε�
F

∼ Tc

TF

√
8π2

7ζ (3)

(
1 − T

Tc

)
, (23b)

where ζ (s) is the Riemann zeta function.
Despite a systematic improvement of the physical quan-

tities obtained through the expansion in �/ε�
F, it is well

known that SLDA-like functionals overestimate the critical
temperature observed in experiments and obtained in ab ini-
tio calculations (see Tables VI and VII of Ref. [128] for
an extensive overview). The interpretation of this is that we
neglect BMF effects, i.e., we assume that the pairing gap
function is proportional to the anomalous density only. Thus,
as mentioned, using the EFT formulation of the SLDA, further
investigation could be made to go beyond finite-temperature
HFB approximation by the use of perturbative techniques.
Another strategy could be also to allow a temperature depen-
dence of the density-dependent coupling constants appearing
in the functional, in such a way that the critical temperature
is well reproduced. All of these considerations are out of the
scope of this work if we restrict our studies to systems at
low-temperature for which we expect good reproduction of
the physical properties. In the next section, as an example

of applications of our developments, we discuss the static
properties of superfluid vortices.

B. Single superfluid vortex state properties

Recent observations of gravitational waves during the
merger of neutron stars [129] have led to a resurgence of
interest during the last years on superfluid vortices. Accord-
ing to numerical simulations, during the fusion, one observes
that a shear interface develops and involves Kelvin-Helmholtz
instabilities forming a series of vortices [130–133] whose
dynamic processes are still poorly understood. Besides, super-
fluid vortices are at the core of the superfluid property of the
matter in general. To cite some selected examples of emergent
phenomenon involving quantum vortices, we can mention
the Abrikosov lattices [134,135], the Onsager-Kolmogorov
energy cascade in quantum turbulence [136–139], the vortex
reconnection process [140], the pulsar glitches [141,142], etc.
It turns out that experimental realizations of such systems in
dilute ultracold Fermi systems are currently investigated [59].
One of the observations is the dissipation occurring during
the collision of two vortices, even in purely superfluid state
at low-temperature. This offers new opportunities to compare
the theoretical understanding of the underlying processes with
the observations. The development presented in this article
can link easily with experiments in which the interaction can
be fine-tuned continuously. It is therefore appropriate and
timely to study the properties of such topological defects in
superfluid systems. Thus, we propose below to provide our
predictive results on the static structure of superfluid vortices
which constitute the first step toward fully large-scale dy-
namical simulations from BCS to unitary regimes to know if
SLDA-like functional can quantify properly dissipation pro-
cesses occurring in many-vortex systems.

To study the structural properties of such systems, we
have first generalized the functional to the nonuniform case
(see Appendix D for details). We also have added the cur-
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TABLE II. Properties of superfluid vortices at T = 0.05 TF for selected value of the s-wave scattering length obtained using the SLDAE
functional. The length scales of the vortex state (density at the center of the vortex core nv according to the bulk density n0 = k3

F/3π 2, the
coherence length lc obtained with Eq. (25), and the vortex core radius rv) are given by the first block, and the energy scales (the pairing gap
in the bulk �0, the mini-gap energy Em.g., and the critical temperature Tc) are provided by the second block. The error bars for the vortex core
radius rv are due to lattice spacing uncertainty.

λ 1.00 1.50 2.00 2.50 3.33 5.00 10.0 20.0 50.0 ∞
nv [n0] 0.963 0.849 0.718 0.623 0.524 0.427 0.337 0.296 0.274 0.262
lc [k−1

F ] 5.519 2.874 2.241 1.950 1.706 1.503 1.342 1.282 1.253 1.238
rv [k−1

F ] 9.4(1) 3.7(1) 2.5(1) 2.1(1) 1.7(1) 1.4(1) 1.2(1) 1.1(1) 1.0(1) 1.0(1)

|�0| [εF] 0.108 0.201 0.251 0.283 0.317 0.351 0.388 0.408 0.422 0.431
Em.g. [εF] 0.009 0.018 0.034 0.048 0.066 0.087 0.112 0.127 0.137 0.144
Tc [TF] 0.085 0.137 0.173 0.199 0.227 0.259 0.291 0.304 0.309 0.311

rent density terms enforcing the Galilean invariance of the
SLDAE functional (see discussion in Sec. II). Then, we had
considered imprinted superfluid vortex, as usually done in the
calculations made with the W-SLDA Toolkit , at the center of a
tubelike trapping potential, periodic along the vortex line axis
r = 0. Below we present our results on the typical scales of
the systems of interest which are summarized in Table II.

1. Energy scales of superfluid vortex

The temperature is a measure of the typical thermal
excitation energy of the systems. The temperature of the
quasiparticle states is set to T = 0.05 TF (typical temperature
accessible in experiments) such that superfluid component of
the gas vanish for λ � 1. In the following, the temperature
dependence of quantities will be implicit.

The pairing gap is the minimal energy of the quasiparticles
in absence of topological defects. The pairing gap at the center
of the vortex becomes zero. The finite temperature effect does
not affect this property as showed on Fig. 8(b) where |�(r =
0)/�0| � 1 with �0 denoting the bulk pairing gap function.

The mini-gap energy is the typical energy scale of Andreev
states, i.e., the energy carried by the vortex core structure
[35,141,143–147]. Localized states exist in the vortex core
due to the Andreev reflections with energies below the gap en-
ergy Em.g. < E < |�0|. Using our EFT correspondence with
the BCS theory, we can define the mini-gap energy as follows:

Em.g.

εF
= 1

2

∣∣∣∣�0

ε�
F

∣∣∣∣2

. (24)

The numerical results extracted from our simulations at var-
ious values of the density-dependent coupling constant [blue
circle] for the mini-gap energy displayed in Fig. 7(a) are in
good agreement with this definition [green solid line]. We
observe discrepancy close to unitarity that we interpreted as
due to the fact that (i) we neglected higher-order correction in
|�0|/ε�

F in Eq. (24), (ii) to the EFT truncation used to design
the SLDAE, and (iii) to the intrinsic errors induced by the
regularization scheme.

2. Length scales of superfluid vortex

The Fermi momentum is the characteristic length associated
to the variation of the density [see Fig. 8(a)]. We set our
calculations in such a way that, for various density-dependent

coupling constant λ, the Fermi momentum kF is obtained from
the bulk density n0 = k3

F/3π2. As shown in Fig. 8(a) and
Table II, the density at the center of the vortex line, nv , reaches
the bulk value in the weak coupling regime. In particular,
below λ � 1, that is to say close to the critical temperature,
the vortex vanish identically.

The coherence length is the characteristic length of the pair-
ing gap variation [see Fig. 8(b)]. As we have proved above,
our EFT correspondence provides a good parametrization of
the physical quantities. Following the same idea, we define the
coherence length of the system as

lc = 2ε�
F

πkF|�0| (25)

and compared to the BCS theory result in Fig. 7(b). Note that
the difference between our EFT correspondence and the BCS
results are due to the effective mass term. Strictly speaking,
considering m� > m leads to a smaller Cooper pair size char-
acterized by the coherence length.

The vortex core radius is the characteristic length scale
for the superflow variation [see Fig. 8(c)]. Finally, we define
the vortex core radius when the current density reaches its
maximum, i.e., | j(rv )| ≡ max | j(r)|. Guided by the so-called
Ginzburg-Landau theory of phase transitions [148–153], we
argue that the ratio between the coherence length with the
radius of the vortex core (similar to the penetration depth
of superconductor in case of superfluid vortex) κ ≡ rv/lc,
known as the Ginzburg-Landau parameter, is temperature-
independent, i.e., the system is scale-invariant at the phase
transition. For instance, 0 < κ < 1/

√
2 corresponds to type

I superconductors while 1/
√

2 < κ corresponds to type II
superconductors. It turns out the equation

κ ≡ rv

lc
� 1

4

TF

Tc
(26)

provides an accurate approximation of the numerical results
[blue circle] when Em.g. � T as showed in Fig. 7(c) [green
solid line]. Further careful investigations are envisioned to
conclude about the validity of our approximation in a realistic
range of low-temperature.

The main conclusion that we can extract from our calcu-
lations is that typically the BCS-type formulas work well,
once the EFT correspondace is applied, i.e., �/εF → �/ε�

F.
The SLDAE functional aims to be accurate at quantitative
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FIG. 7. Mini-gap energy (a), coherence length (b), and vortex
core radius (c) for a single vortex obtained using the SLDAE
functional at temperature T = 0.05 TF as a function of λ−1 [blue
filled circle]. The error bars for the vortex core radius rv are due
to lattice spacing uncertainty. For comparison, the red dashed line
correspond to the BCS result and the green solid line correspond
to the associated one using our EFT correspondence defined by
Eqs. (24)–(26), respectively. We observe discrepancy according to
the EFT correspondence at λ−1 � 0.3 for the vortex core radius since
the temperature [represented by the dotted black line in panel (a)] is
above or close to the mini-gap energy.

FIG. 8. Density profiles of a single vortex at T = 0.05 TF for
several value of the density coupling constant λ: (a) normal density,
(b) pairing gap function, and (c) current density. The arrows show
length scales of the system at unitarity: the inverse Fermi momentum,
the coherence length, and the vortex core radius. For reference, the
superfluid velocity vs = 1/2r is displayed [dotted black line].

level for all values of λ (at low temperatures), and pro-
vided above results are the first step toward its validation.
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In particular we demonstrate that in experimentally realizable
BCS regime (λ−1 � 0.3 and T � 0.05 TF) we have Em.g. � T ,
which means that the impact of thermal effects cannot be ne-
glected when analyzing dynamics of the vortex. This implies
that in this regime, additional dissipation processes due to a
nonvanishing shear viscosity are at play [154] due to thermal
excitation of the Andreev’s states leading to an increasing
of the vortex core radius as observed in Fig. 7(c). On the
strong interacting side, thermal effects are negligible and we
expect to be able to study quantitatively dynamical processes
causing the observed dissipation in the future time-dependent
extension of the functional (work in progress).

V. CONCLUSION

In this work, we have developed a systematic extension of
the SLDA from EFT perspective, valid from the BCS regime
to the unitarity implying the bare density-dependent coupling
constant λ = |askF | only. Starting from the quasiparticle prop-
erties extracted from ab initio calculations and/or experiments
at zero-temperature for the associated homogeneous dilute
system, the general solution of the BCS equations are given
as an expansion in �/ε�

F allowing us to deduce the functional
parameters entering into the local DFT. The clear advan-
tage of this strategy consists to make the fitting procedure
of functional parameters unnecessary and rendering this ap-
proach applicable to a large range of systems under the same
parametrization relying on selected physical quantities. Also,
relying on a EFT picture, we have identified �/ε�

F as been the
proper parameter of the EFT expansion for SLDA-like DFT.

This success allowed one to use standard local density
approximation, i.e., admit a spatial dependence of the den-
sities, to study nonuniform systems. We have then applied our
SLDAE functional through the numerical resolution of local
generalized BdG equations. Calculations of static properties
of superfluid quantum vortices for several values of the s-wave
scattering length have been carried out to facilitate discus-
sions, for instance, with groups doing experiments aiming
to emphasize dissipation processes in many-vortex systems.
These results should help to interpret future simulations on dy-
namical processes involving vortices. Moreover, the ongoing
implementation of the SLDAE functional in time-dependent
variant promises to be a powerful tool to study the collective
behavior of superfluid systems (linear response, Higgs mode,
quantum quenches, etc.).

For possible future developments, we argue that our formu-
lation allows us to consider BMF effects into the functional
using the standard perturbation methods which will lead to
generalized self-consistent BdG equations. We would like to
finally address a message to the ab initio and EFT communi-
ties to improve further the approach presented in this article.
First of all, the developed method depends strongly on the
quality of the density-dependent quasiparticle properties of
the systems considered as, for example, the effective mass
and the pairing gap functions. Consequently, high accuracy
of such quantities is required to parametrize properly the func-
tional. Then, the lack of an EFT framework providing a proper
description of many-body systems from first principles, i.e.,
starting from the bare Hamiltonian only, limit opportunities
for further developments in both directions. Despite the recent

attempts in the developments toward an ab initio formulation
of the DFT mentioned above, such formulations did not reach
sufficient maturity in terms of predictive power to be reliable
guides. Recently, in paper [155] it was shown that an approach
to the functional design based on “constraint satisfaction” is a
necessary ingredient in the process of constructing a highly
accurate energy density functionals. In this respect maintain-
ing by new functionals close relation to underlying ab initio
approaches and analytical results is desirable.
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APPENDIX A: APPROXIMATION
OF LEGENDRE FUNCTIONS

In this Appendix, we provide accurate approximation of
Eq. (12) for 0 < t < |s| obtained form expansions of the Leg-
endre functions Pl (z) for l = n/2 with n ∈ N. First, we define
Īl (t/|s|) = Il (s < 0, t )/|s|l and up to O(t6/s6), i.e., around the
logarithmic singularity, we obtain the following:

Īl (u) =
[

2 − lu2

2
(l − 1) + lu4

32
(l − 3)(l − 2)(l − 1)

]
×

[
Hl + ln

(u

2

)]
− u2

2
(1 − l − l2) + u4

32

×
[

6 − 13l + 3l2

2
+ 5l3 − 3l4

2

]
,

where Hl denotes the harmonic numbers: H1/2 = 2 − 2 ln 2,
H3/2 = 8/3 − 2 ln 2, H5/2 = 46/15 − 2 ln 2, etc. Using this
approximation, we can solve Eq. (12) with the expansions
given in Eq. (13) leading to B2n+1(x) = C2n+1(x) = 0 and

B0(x) = − 1,

B2(x) = − x

4
+ 1

8
+ 3 ln 2

4
,

B4(x) = 3x2

64
+ 5x

128
− 9x ln 2

32
+ 7

512

+ 27 ln2 2

64
− 15 ln 2

128
,

B6(x) = − 7x3

384
+ 21x2 ln 2

128
− 37x2

1024
− 69x

4096

− 63x ln2 2

128
+ 111x ln 2

512
+ 209

24 576

+ 63 ln3 2

128
− 333 ln2 2

1024
+ 207 ln 2

4096
,
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B8(x) = 55x4

6144
+ 43x3

1536
− 55x3 ln 2

512
+ 1395x2

65 536

+ 495x2 ln2 2

1024
− 129x2 ln 2

512
− 2141x

393 216

− 495x ln3 2

512
+ 387x ln2 2

512
− 4185x ln 2

32 768

+ 8657

3 145 728
+ 1485 ln4 2

2048
− 387 ln3 2

512

+ 12 555 ln2 2

65 536
+ 2141 ln 2

131 072
,

C0(x) = x

4
+ 1

2
− 3 ln 2

4
,

C2(x) = x2

32
− 3x

16
ln 2 + 1

64
+ 9 ln2 2

32
,

C4(x) = − x3

128
+ 9x2 ln 2

128
− 13x2

1024
− 9x

1024

− 27x ln2 2

128
+ 39x ln 2

512
− 15

8192
+ 27 ln3 2

128

− 117 ln2 2

1024
+ 27 ln 2

1024
,

C6(x) = 5x4

1536
+ 29x3

3072
− 5x3 ln 2

128
+ 315x2

32 768

+ 45x2 ln2 2

256
− 87x2 ln 2

1024
+ 385x

196 608

− 45x ln3 2

128
+ 261x ln2 2

1024
− 945x ln 2

16 384

− 701

393 216
+ 135 ln4 2

512
− 261 ln3 2

1024

+ 2835 ln2 2

32 768
− 385 ln 2

65 536
,

C8(x) = − 27x5

16 384
− 111x4

16 384
+ 405x4 ln 2

16 384
− 1257x3

131 072

− 1215x3 ln2 2

8192
+ 333x3 ln 2

4096
− 3695x2

1 048 576

+ 3645x2 ln3 2

8192
− 2997x2 ln2 2

8192
+ 11 313x2 ln 2

131 072

+ 5251x

4 194 304
− 10 935x ln4 2

16 384
+ 2997x ln3 2

4096

− 33 939x ln2 2

131 072
+ 11 085x ln 2

524 288
− 6223

8 388 608

+ 6561 ln5 2

16 384
− 8991 ln4 2

16 384
+ 33 939 ln3 2

131 072

− 33 255 ln2 2

1 048 576
− 15 753 ln 2

4 194 304
.

APPENDIX B: IMPROVED BdG FUNCTIONAL

Following the strategy developed in this work, we propose
to introduce an improved version of the BdG functional de-
fined by Eq. (22a). For this, we start with the general local

functional form (4):

E = Āλ

τ

2
+ 3

5
B̄λnεF + C̄λ

n1/3
|ν|2, (B1)

where the HFB, SLDA, and functional parameters, denoted
with a bar, are defined using the weak coupling limit, i.e.,
MBPT for dilute Fermi systems, of the associated parameter
of the functional developed in the main text, i.e., ξλ → ξ̄λ ∼
1 + O(λ), ζλ → ζ̄λ ∼ 1 + O(λ), αλ = aλ → ᾱλ = āλ ∼ 1 +
O(λ), and ηλ → η̄λ = (8/e2) exp(−π/2λ).

Considering the first order of Eq. (13), the HFB parameters
are given by

b̄λ

āλ

= −1 + O
(
x̄2
λ

)
, (B2a)

āλ

c̄λ

= − π

8λ
− ln ᾱλ

4
+ O

(
x̄2
λ

)
, (B2b)

with x̄λ ≡ η̄λ/αλ. Then the associated functional parameters
are obtained using Eq. (14). For instance, up to second order
of MBPT for dilute Fermi gas, we have

ξ̄λ = 1 + p1λ + p2λ
2 + O(λ3), (B3a)

ᾱλ = 1 + q1λ + q2λ
2 + O(λ3), (B3b)

with p1 = −10/9π , p2 = 4(11 − 2 ln 2)/21π2, q1 = 0, and
q2 = 8(1 − 7 ln 2)/15π2. This leads using Eq. (14), up to
second order in λ, to the following functional parameters in
DR + MS:

B̄λ = (p1 − q1)λ + (p2 − q2)λ2, (B4a)

n1/3

C̄λ

= 1

4πas

[
1 + q1λ +

(
2

π
q1 + q2

1 − q2

)
λ2

]
. (B4b)

The functional obtained above corresponds to the weak
coupling regime, i.e., the limit λ → 0, of the main SLDAE
functional designed in this work.

APPENDIX C: REGULARIZATION OF THE CONTACT
INTERACTION IN EFT

In this Appendix, we propose a derivation of Eq. (20) in
the standard EFT framework. We first define the in-vacum
regularization of contact interaction leading to the Low En-
ergy Contsant (LEC) of the bare interaction. Then, we derive
similar renormalization for density dependent contact inter-
action leading to the in-medium scheme used in this work.
We will first recall generalities on the scattering theory and
the renormalization of the loop integrals in EFT. Then, we
present renormalization procedure by considering the in-
medium effects and the presence of the Fermi sea. Note that
our discussion will differs from others aspects of the regular-
ization close to the Fermi surface in the context of the Landau
theory of Fermi liquid as discussed in Refs. [116,156–158].

1. Generalities on scattering theory

We start with the leading order of a general nonrelativistic
local Lagrangian for a fermion field ψ0 (with mass m = 1),
invariant under Galilean, parity, and time-reversal transforma-
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(a) i〈k′|T0|k〉

K/2 + k

K/2 − k

K/2 + k′

K/2 − k′

= i〈k′|V0|k〉 + i〈q|V0|k〉 i〈k′|T0|q〉

iG−
0 (x+)

iG−
0 (x−)

(b) i〈k′|T |k〉

K/2 + k

K/2 − k

K/2 + k′

K/2 − k′

= i〈k′|Vλ|k〉 + i〈q|Vλ|k〉 i〈k′|T |q〉

iḠ(x̃+)

iḠ(x̃−)

FIG. 9. Diagrammatic for the in-vacuum (a) and in-medium (b) T -matrix. For convenience, we have introduced the shorthand notations
x± = (q± = ±k ± q, εk ± ω) and x̃± = (q±, ε̃k ± ω).

tion. Schematically, the Lagrangian reads

L0 = ψ
†
0 [i∂t − êk]ψ0 − 1

2ψ
†
0 ψ

†
0 V̂0 ψ0ψ0, (C1)

where êk = (−i∇)2/2 ∼ k2/2 is the Galilean invariant deriva-
tive. This Lagrangian is associated to the low-momentum
effective s-wave interaction given by V0(k, k′) = 〈k′|V̂0|k〉 =
g. To connect the coupling constant to the standard LEC of the
bare interaction, we introduce the (on-shell) S-matrix for the
s-wave scattering process, the associated (on-shell) T -matrix,
and the phase shift δ defined as follows:

S0(k) ≡ 1 − ikT0(k)

2π
≡ e2iδ(k) → T0(k) = 4π

ik − k cot δ0(k)
.

The low-momentum expansion of the phase shift is given
by k cot δ0(k) = −1/as + O(k2) that defines the s-wave scat-
tering length as and connects it to the constant g of the
bare Lagrangian. Considering all orders in momentum, the
T -matrix verifies the (on-shell) Lippmann-Schwinger Equa-
tion (LSE) derived as follows. We consider the scattering of
two particles interacting through the contact interaction V̂0 =
gδ(r − r′). Due to the fact that we consider the contact interac-
tion, local in time, the two particles have necessarily different
spins because of the Pauli exclusion principle. The states
|ψ±〉 are the incoming (−) and outgoing (+) particles states
solutions of [Ĥ0 + V̂0]|ψ±

k 〉 = ek|ψ±
k 〉. The initial and final

single-particle states are denoted by |φk〉, and they are plane
waves solutions of the Schrödinger equation Ĥ0|φk〉 = εk|φk〉.
Due to the energy-momentum conservation, we have ek →
εk = k2/2. Formally, the S-matrix is defined as S(k, k′) =
〈φk′ |Ŝ|φk〉 = 〈ψ−

k′ |ψ+
k 〉. We can show that

|ψ±
k 〉 = |φk〉 + Ĝ±

0 (ω = εk )V̂0|ψ±
k 〉, (C2)

where we have defined the free Green function or resolvent
operator as Ĝ±

0 (ω) = [ω − Ĥ0 ± iθ ]−1. Then, the T -matrix
is defined formally as T0(k, k′) = 〈φk′ |V̂0|ψ+

k 〉. Therefore, by
inserting a closure relation |φq〉〈φq| in Eq. (C2), we deduce
that the T -matrix verifies the LSE given by

T0(k′, k) = V0(k′, k) − 1

4π2

ˆ
q2dq

V0(k′, q)T0(q, k)

eq − εk − iθ
,

(C3)

where εk = k2/2 denote the energy of the scattered asymptotic
outgoing particle at infinity, i.e., a free particle or plane wave.
Diagrammatically, this equation3,4 can be written as displayed
in Fig. 9(a) where the propagator G±

0 (q, ω) = [ω − eq ± iθ ]−1

is represented by the solid lines.
For the contact interaction, V0(k′, k) = g, Eq. (C3) can be

solved analytically, and the solution reads

T0(k) = 1
1
g + �(k2)

, (C4)

where the explicit form of the loop integral � is given in next
section.

2. Regularization of loop integrals

In the last result, we have introduced the divergent loop
integral

�(q2) = 1

4π2

ˆ
k2dk

ek − εq − iθ

= i|q|
4π

+ 1

2π2
P
ˆ

k2dk
1

k2 − q2
, (C5a)

where we have used [X ± iθ ]−1 = P (1/X ) ∓ iπδ(X ) with P
denoting the Cauchy principal value. To regularize this loop
integral �(q2), a standard method is to insert a momentum
scale kc and a regulator function f (k/kc) such that the integral
converges. This regulator satisfies f (∞) = 0 and f (0) = 1.
This defines the momentum dependent loop integral [159]

�c(q2) = 1

2π2

ˆ
k2dk

k2 − q2 − iθ
× f (k/kc). (C5b)

3Due the Galilean invariance, we can consider the center of mass
frame in the loop calculations, i.e., K = 0.

4Note that we have to multiply the last diagrams by a factor i/2
accounting for the symmetry factor of the diagrams, and by a factor
2 accounting for spin summation, cf. Feynman rules in [93] for
instance.
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We use a sharp-spherical cutoff prescription, i.e.,
f (k/kc) = Θ (kc − k) is a Heaviside step function, and we
obtain

P�c(q2) = kc

2π2

[
1 − q

2kc
ln

kc + q

kc − q

]
. (C6)

Note that the loop integral still diverges with kc. Combining
it with Eq. (C4) and low momentum expansion of T0(k) we
obtain

1

gc
= 1

4πas
− P�c(q2 = 0), (C7)

where gc denotes regularized coupling constant, while
(4πas)−1 is LEC expressed in terms of the scattering length.
Here, we recognize the renormalization scheme introduced in
Eq. (19).

3. Regularization of pairing coupling constant

We consider now the following (grand-canonical) La-
grangian:

L = ψ†[i∂t − ε̂k]ψ − 1
2ψ†ψ† V̂λ ψψ, (C8)

where the in-medium interaction 〈k′|V̂λ|k〉 = Cλ/n1/3 can be
identified to the LEC and the single-particle energies are
εk ∼ αλek + bλεF in our case. We consider now the shifted
single-particle energies in the one-body part of the Lagrangian
due to the fact that we have introduced the chemical potential
(contained in the definition of the bλ parameter) to fix the
number of particles. In other words, that consists in measuring
the energies relative to the Fermi sea. In that case, the LSE
above must also be redefined using the change ±iθ → −μ ±
iθ . It is a consequence of the Pauli blocking: the scattering
occurs only above the Fermi sea since all the single-particle
states below Fermi surface are occupied. Note that similar
idea are encontered to derive the Cooperon or many-body
LSE at random phase approximation (RPA) level [160, chap.
9] or resummation of ladder in-medium many-body diagrams
[67,71,161].

More precisely, we consider the scattering of two particles
interacting through a density-dependent contact interaction
V̂λ = Cλ/n1/3δ(r − r′) with a many-body system of fermions
with single-particle energies εk associated to an Hamiltonian
Ĥ . The incoming (−) and outgoing (+) particle states are
now solutions of [Ĥ + V̂λ − μ]|ψ±

k 〉 = εk|ψ±
k 〉. The initial

and final states are solutions of [Ĥ − μ]|φk〉 = ε̃k|φk〉 and are
assumed as plane waves before and after the scattering. By
energy-momentum conservation, we have εk → ε̃k = (εk −
μ) + μ = ek , i.e., with energies higher than the chemical po-
tential of the many-body system.5

We define the many-body Green function (MBGF) as

G(k, ω) = nk

ω − εk − iθ
+ 1 − nk

ω − εk + iθ

= 1

ω − εk + iθ
+ 2iπnkδ(ω − εk ), (C9)

5Otherwise, the scattered particle cannot be differentiated from the
single-particle of the many-body system.

decomposed into free and in-medium components denoted, re-
spectively, Ḡ and δG and where nk denote occupation numbers
of the particles in the medium. The in-medium contribution,
depending on occupation number, will not contribute to the in-
medium T -matrix, i.e., we consider only the free propagation
in the medium during the scattering process. Therefore, as in
the vacuum case, we get [162]

T (k, k′) = Vλ(k, k′)

+ 1

4π2

ˆ
q2dqḠ(q, ω = ε̃k )Vλ(k, q)T (q, k′).

(C10)

A diagrammatic representation of this equation is given in
Fig. 9(b) where the thick arrowed solid lines correspond to
the free component of the MBGF defined by Eq. (C9) and
the thick dashed arrowed lines to a free particle with a single-
particle energy above the Fermi sea.

Finally, we can formulate our in-medium regularization
procedure6

n1/3

Creg.

λ

= C̃λ − P�̃c(q2 = 0), (C11a)

where

P�̃c(q2) = 1

4π2
P
ˆ

k2dk

εk − ε̃q
, (C11b)

by analogy to the result (C7). Thus, we recover the results of
Eq. (20).

APPENDIX D: NUMERICAL IMPLEMENTATION
OF THE SLDAE FUNCTIONAL

For simplicity of discussions, we keep in the main text the
equations valid for uniform systems. In the case of nonuni-
form systems, e.g., in an external potential, some modification
of the self-consistent mean-field equations occurs. We provide
in this Appendix details of our implementation of the general
functional Eq. (4) in the W-SLDA Toolkit.

1. Nonuniform solutions

Considering the systems of interest trapped by an external
static potential Vext(r), the kinetic, potential, and pairing oper-
ators reads, respectively [28]:

K (r) ≡ −∇· δE

δτ (r)
∇ = −1

2
∇·A(r)∇, (D1a)

U (r) ≡ δE

δn(r)
, (D1b)

�(r) ≡ − δE

δν∗(r)
= − C(r)

n(r)1/3
ν(r), (D1c)

6This result leads to the identity P�̃c ≡ P�̃c(q2 = 0) =
P�c(q2 = −2bλεF/αλ)/αλ. In the vacuum, i.e., at zero-density or
equivalently in the limit λ → 0, we have −bλεF/αλ ∼ k2

F → 0 and
αλ → 1, hence the continuity of the result since P�̃c → P�c.
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where we have introduced the shorthand notations X (r) ≡
Xλ(r) for the parameters which depend on the density de-
pendent coupling constant λ(r). In particular, we anticipate
regularization by replacing

n(r)1/3

C(r)
→ n(r)1/3

Creg.(r)
≡ C̃(r) − P�̃c(r). (D2)

where we note P�̃c(r) = P�c(q(r)2)/A(r) given explicitly
below. The effective coupling constant of the pairing part of
the functional, defined by Eq. (D2), can be obtained using

n(r)1/3

Creg.(r)
≡ n(r)1/3

C(r)
− P�c[q(r)2]

A(r)
. (D3)

The mean-field potential is finally defined by

U (r) = 1

2

∂A

∂n
(r)τ (r) +

[
B(r) + 3

5

∂B

∂n
(r)n(r)

]
εF(r)

−
[

A(r)
∂C̃

∂n
(r) − ∂P�c

∂n
(r)

] |�(r)|2
A(r)

− 1

A(r)
[C̃(r)|�(r)|2 + �∗(r)ν(r)]

∂A

∂n
(r)

+ Vext(r), (D4)

where the local Fermi energy εF(r) is defined thought the
local Fermi momentum kF(r) related to the normal density as
kF(r) = [3π2n(r)]1/3.

2. Self-consistent regularization

In the text, we introduced a cutoff momentum kc. However,
for nonuniform system, the momentum of the quasiparticle

is no more a good quantum number. Instead, we introduce
a cutoff energy Ec such that the summations of Eq. (3) are
performed only on single-particle states labeled by n such that
|En| < Ec. Guided by the in-medium regularization scheme
introduced in Sec. III, we choose the cutoff energy

Ec = A(r)
kc(r)2

2
+ U (r) − μ, (D5)

that define a position dependent cutoff momentum kc(r). We
can now compute the cutoff integral as

A(r)P�̃c(r)

≡ P�c(q(r)2)

= A(r)

4π2
P
ˆ kc (r)

0

k2dk

A(r)k2/2 + U (r) − μ

=
⎧⎨⎩

kc (r)
2π2

[
1 − q(r)

2kc (r) ln
∣∣ kc (r)+q(r)

kc (r)−q(r)

∣∣] if μ − U (r) > 0,

kc (r)
2π2

[
1 + q(r)

kc (r) arctan
( q(r)

kc (r)

)]
if μ − U (r) � 0,

(D6)

where q(r)2 ≡ 2|U (r) − μ|/A(r) is the positive pole of the
cutoff integral. Note that the term A(r)k2/2 appearing in the
denominator of the cutoff integral integrand corresponds to
the action of the kinetic operator of Eq. (D1a) in the dual
reciprocal space, i.e., −i∇ = k is the momentum of the quasi-
particle considered.
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