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Polarization effects in the total rate of biharmonic ω + 3ω ionization of atoms
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The total ionization rate of biharmonic (ω + 3ω) ionization is studied within the independent particle ap-
proximation and the third-order perturbation theory. Particular attention is paid to how the polarization of the
biharmonic light field affects the total rate. The ratios of the biharmonic ionization rates for linearly and circularly
polarized beams as well as for corotating and counter-rotating elliptically polarized beams are analyzed, and
how they depend on the beam parameters, such as photon frequency or phase between ω and 3ω light beams.
We show that the interference of the biharmonic ionization amplitudes determines the dominance of a particular
beam polarization over another and that it can be controlled by an appropriate choice of beam parameters.
Furthermore, we demonstrate our findings for the ionization of neon L shell electrons.

DOI: 10.1103/PhysRevA.106.013118

I. INTRODUCTION

The influence of the polarization of the light beam on
the total photoionization cross sections has been a focus of
research for decades. While the total cross section for the one-
photon ionization of unpolarized atoms is independent of the
polarization of the ionizing light, the multiphoton ionization
cross section of atoms is typically influenced by its polariza-
tion. Based on rather a simple analysis of angular factors,
Klarsfeld and Maquet [1] predicted that atoms are ionized
more efficiently by a circularly polarized light beam than by
a linearly polarized beam. Moreover, they also pointed out
that the ratio of total multiphoton ionization cross sections for
circular versus linear polarization increases rapidly with the
order of the process. However, subsequent theoretical studies
[2–4] showed that multiphoton ionization by linearly polar-
ized light beams is predominant in the higher-order interaction
regime. These theoretical findings were experimentally con-
firmed for low- [5,6] and high-order [7] ionization processes.

A number of free-electron laser (FEL) facilities are
capable today of producing intense circularly polarized
extreme-ultraviolet (XUV) beams [8] which, together with an
additional laser, allow ionization of atoms by a circularly po-
larized XUV + IR light beam. In this process, the XUV pulse
pumps the atomic system to several states with well-defined
projection of angular momentum, while the infrared (IR)
beam subsequently interacts with an already polarized target.
Different total ionization rates are measured and depend on
whether the IR beam is corotating or counter-rotating with
the XUV beam. The question of whether the ionization by
two corotating or counter-rotating beams is more efficient de-
pends strongly on the frequency and intensity of the IR beam
[9,10]. It was shown that ionization by corotating XUV + IR
beams dominates [9,11] at low IR beam intensities, whereas

the result reverses for higher intensities. However, due to the
complexity of the process, further investigations need to be
carried out to fully understand the process.

In this paper, we will address the two questions mentioned
above, namely, about the dominance of ionization by lin-
early or circularly polarized and corotating or counter-rotating
beams, for the case of biharmonic ω + 3ω ionization of atoms.
Biharmonic beams consist of two copropagating field com-
ponents with a fixed phase difference and with frequencies
that are integer multiples of the same fundamental frequency
ω, i.e., m ω + n ω. In the biharmonic multiphoton ionization
of atoms by such beams, the photoelectrons ionized by n ×
(m ω) or m × (n ω) photons are therefore released with the
same energy. It has been shown that the interference between
the two processes gives rise to properties in photoelectron
angular distributions, such as up or down asymmetry [12,13],
elliptical dichroism [14,15], or circular dichroism [16], and
it can be even used for the creation and control of electron
vortices [17–19]. In ω + 2ω ionization of atoms, the photo-
electron partial-wave states are orthogonal to each other and,
hence, the total ionization rate is independent of interference
between the two process [20]. However, the interference be-
tween the two processes in ω + 2ω ionization of atoms is
imprinted in the photoelectron angular distribution [21–23]. In
contrast, both photoelectron distributions as well as the total
rate of ω + 3ω ionization depend on the interference between
the one- and three-photon ionization processes, as discussed
in the theoretical paper by Chan, Brumer, and Shapiro [24].

Here we address two main questions in detail. Is it more ef-
fective to ionize an atom with a linearly or circularly polarized
beam? Are the total electron yields dominant for ionization
of atoms by corotating or counter-rotating biharmonic fields?
We show that the answers to these questions strongly de-
pend on the beam properties and the interference between the

2469-9926/2022/106(1)/013118(8) 013118-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0580-8984
https://orcid.org/0000-0001-8439-1472
https://orcid.org/0000-0003-3101-2824
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.013118&domain=pdf&date_stamp=2022-07-29
https://doi.org/10.1103/PhysRevA.106.013118


J. HOFBRUCKER et al. PHYSICAL REVIEW A 106, 013118 (2022)

one- and three-photon ionization processes. We demonstrate
our findings for the ionization of neon L shell electrons.

This paper is structured as follows. We first introduce our
fully relativistic approach, which is based on the third-order
perturbation theory and the independent particle approxima-
tion, in Sec. II. Section III shows our main results, where
the total biharmonic ω + 3ω ionization rates are compared
for various combinations of polarization as an example of
ionization of the 2s1/2 as well as 2p3/2 electrons of neutral
neon atoms. A summary is given in Sec. IV. A more detailed
description of the first- and third-order ionization amplitudes
is provided in the Appendix.

II. THEORY

The vector potential of a plane-wave photon with fre-
quency nω and wave vector k can be written as

A(nω)(r, t ) = ε(nω)e−inωt+ik(nω)·r. (1)

Here, the polarization is denoted by ε(nω) and can be expressed
in terms of ellipticity γ (nω) and basis vectors in helicity repre-
sentation ε±1 as

ε(nω) = ε−1[1 − γ (nω)] − ε+1[1 + γ (nω)]√
2[1 + (γ (nω) )2]

. (2)

The ellipticity takes values in the range |γ (nω)| � 1, where
γ (nω) = −1 refers to left-circularly polarized light, γ (nω) = 0
refers to linearly polarized light, and γ (nω) = 1 refers to right-
circularly polarized light.

Let us moreover consider a biharmonic ω + 3ω beam that
consists of a fundamental frequency ω and its third-harmonic
order copropagating along the quantization axis k̂||ẑ. The vec-
tor potential of such a biharmonic beam can be written as

A(r, t ) = A(ω)
0 A(ω)(r, t ) + ei�A(3ω)

0 A(3ω)(r, t ), (3)

where � defines a constant phase shift between the two beam
components. Furthermore, A(nω)

0 is the amplitude of the vec-
tor potential of each component and is directly proportional
to the flux of the component F (nω) = (A(nω)

0 )2 and its inten-
sity I (nω) = nωF (nω). Below, we consider the ionization of
a closed-shell neutral atom in an initial many-electron state
|αiJiMi〉 by a biharmonic ω + 3ω field as given in Eq. (3).
The atomic state is characterized by the total angular mo-
mentum J , its projection M, and further quantum numbers
α which are necessary to uniquely describe the atomic state.
The interaction of the biharmonic field with the atom can
lead to a number of different processes. We shall consider
the below-threshold ionization (2ω < Eb) of an atom due to
the absorption of one photon with energy 3ω or three pho-
tons with energy ω, as shown schematically in Fig. 1 for the
biharmonic ω + 3ω ionization. The final state of the system
consists of a singly charged ion, a photoelectron which is
denoted by |α f J f M f , peme〉, momentum pe, and the projection

FIG. 1. Schematic representation of the electric dipole ionization
pathways in biharmonic ω + 3ω ionization of atoms. Both the one-
and three-photon ionization always lead to at least one partial wave of
the free electron that coincides with and gives rise to the interference
effects in the total biharmonic rates.

of spin me. In this paper, we will consider infinitely long
biharmonic pulses, an assumption that applies well for the
biharmonic pulses produced by the current FELs [12,23,25].
We describe the one- and three-photon ionization processes
within the lowest-order perturbation theory, the transition am-
plitudes of which are

M (3ω)
MiM f me

= 〈α f J f M f , peme|α · A(3ω)|αiJiMi〉, (4)

M (ω)
MiM f me

=
∑∫
ν2

〈α f J f M f , peme|α · A(ω)|αν2 Jν2 Mν2〉

×
∑∫
ν1

〈αν2 Jν2 Mν2 |α · A(ω)|αν1 Jν1 Mν1〉

× 〈αν1 Jν1 Mν1 |α · A(ω)|αiJiMi〉
(Ei + 2ω − Eν2 )(Ei + ω − Eν1 )

, (5)

respectively, and where α denotes the vector of Dirac ma-
trices. Moreover, we make use of the independent-particle
approximation, where the electron wave function is repre-
sented by a single active electron, while all other electrons are
taken into account by a screening potential in the Hamiltonian
of the Dirac equation; see [26] for a detailed description of
the numerical method. However, numerical calculations for a
many-electron atomic system can be performed with atomic
structure theory codes such as Jena Atomic Calculator (JAC)
[27]. Due to the interaction of the atom with the electromag-
netic field, the active electron of the substate described by the
principal na, relativistic κa quantum numbers, and the projec-
tion of total angular momentum ma given by |a〉 ≡ |naκama〉
of the atom is promoted into the continuum, leaving a vacancy
in the atomic substate. The relativistic quantum number κa can
be obtained from the total ( ja) and orbital (la) angular momen-
tum quantum numbers by κ = (−1)la+ ja+1/2( ja + 1/2). In the
second quantization, the final many-electron state can be de-
scribed by a Slater determinant wave function with the use
of the electron creation operators a†

peme
, annihilation operators

anaκama , and Clebsch-Gordan coefficients 〈.., ..|..〉 as

|α f J f M f , peme〉 =
∑
maM

〈 ja − ma, JiM|Jf M f 〉

× (−1) ja−ma a†
peme

anaκama |αiJiM〉. (6)
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In the independent particle approximation, the many-electron
amplitudes (4) and (5) can be simplified to amplitudes which
depend only on one-electron wave functions of the active
electron:

M (3ω)
MiM f me

=
∑
ma

〈 ja − ma, JiMi|Jf M f 〉(−1) ja−ma

× 〈peme|α · A(3ω)|a〉 (7)

and

M (ω)
MiM f me

=
∑
ma

〈 ja − ma, JiMi|Jf M f 〉(−1) ja−ma

×
∑
n1n2

〈peme|α · A(ω)|n2〉〈n2|α · A(ω)|n1〉
(Ea + 2ω − En2 )(Ea + ω − En1 )

× 〈n1|α · A(ω)|a〉. (8)

To calculate the third-order transition amplitude, we perform
two summations over the complete energy spectra of single-
electron intermediate states |n1,2〉. For the sake of numerical
evaluation, it is convenient to expand the transition ampli-
tudes. To do that, we express the photoelectron wave function
into its partial-wave components:

|peme〉 = 1√
Ee|pe|

∑
jm j

∑
lml

il e−iδκ 〈lml , 1/2me| jm j〉

× |Eeκmj〉Y ∗
lml

(θ, φ), (9)

where the electron energy is given by Ee = √
p2

e + 1, the
phases of the partial waves are given by δκ , and the emis-
sion direction of each partial wave in terms of the polar θ

and azimuthal φ angles is given by the spherical harmon-
ics Ylml (θ, φ). Furthermore, the vector potential A(nω) can be
decomposed into spherical tensors with electric (p = 1) and
magnetic (p = 0) components of multipolarity J using

A(nω) = 4π
∑
JM p

iJ−p
[
ε(nω) · Y (p)∗

JM (k̂)
]
a(p)

JM (r). (10)

The explicit forms of the two transition amplitudes in Eqs. (7)
and (8) are provided in the Appendix for the first- and third-
order transition amplitudes, respectively.

The amplitudes of the one- and three-photon ionization are
applied to construct the biharmonic ω + 3ω ionization rate:

W (γ (ω), γ (3ω) ) =
∫

d�
1

[Ji]

∑
MiM f me

∣∣K (ω)M (ω)
MiM f me

+ K (3ω)ei�M (3ω)
MiM f me

∣∣2
, (11)

with [Ji] = (2Ji + 1) and with the prefactors for one- and two-

photon ionization K (3ω) =
√

4απ2F (3ω)

3ω
and K (ω) = 4π2(αF (ω) )3/2

ω3/2 ,
respectively. These prefactors are derived from the S-matrix
formalism (see, e.g., [28]). Equation (11) for the ioniza-
tion rate contains all relativistic effects and all multipoles
of the electron-photon interaction. In practice, however, it is
generally sufficient to account only for the dominant electric

FIG. 2. Schematic representation of the electric dipole ion-
ization pathways in biharmonic ω + 3ω ionization of atoms for a
specific case of the s electron. Both the one- and three-photon ioniza-
tion pathways lead to the s → p ionization pathway which proceeds
through different paths. In this example, the one-photon ionization
pathway interferes with two three-photon ionization pathways.

dipole transitions. Therefore, in the calculations of our results,
the electric dipole approximation was applied.

III. RESULTS

A. Energy dependence of the total ionization rate

The total ionization rate of the biharmonic ω + 3ω ioniza-
tion of atoms can be divided into the one- and three-photon
ionization rates and their interference. The interference in-
cludes all combinations of the ionization pathways of the two
processes, the angular dependence of which is determined
by the spherical harmonics [see Eq. (9)]. Owing to the an-
gular integration in Eq. (11) and orthogonality of spherical
harmonics, only partial waves with the same orbital angular
momentum interfere in the total ionization rate. For example,
the one-photon ionization of an s electron leads to a s → p
ionization pathway which comprises both the p1/2 and p3/2

partial waves, while three-photon ionization proceeds through
the s → p → s → p, s → p → d → p, and s → p → d →
f ionization pathways with all the associated fine-structure
levels, as shown in Fig. 2. The one-photon ionization path-
way (s → p) in this example interferes only with the first
two three-photon ionization pathways (s → p → s → p and
s → p → d → p), as all of them lead to a final partial wave
p. This interference in the total biharmonic ω + 3ω ionization
rate is, however, independent of the phases of the photoelec-
tron partial waves δκ . However, the dependence on the phase
difference � between the two beam components remains and
is proportional to cos �.

Figure 3 displays the total ionization rate as a function of
incident photon energy for biharmonic ω + 3ω ionization of
neon 2s1/2 (left) and 2p3/2 (right) electrons by linearly (top)
and corotating circularly (bottom) polarized beams. In this
figure, the intensity of the fundamental frequency beam is
I (ω) = 1014 W/cm2 and the intensity of the third-harmonic
beam was chosen to be I (3ω) = 1.1 × 1011 W/cm2 for ion-
ization of the 2s1/2 electrons and I (3ω) = 8 × 1011 W/cm2

for ionization of the 2p3/2 electrons, such that the ionization
rates of both processes at threshold energies are comparable.
In this paper, we use intensity I (ω) of the fundamental light
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FIG. 3. Total biharmonic ω + 3ω ionization rate as a function of
incident photon energy. The rates are shown for ionizing the neon
2s1/2 (left) and 2p3/2 electrons (right) by linearly (top) and circularly
(bottom) polarized biharmonic light. An intensity of the fundamental
light beam I (ω) = 1.0 × 1014 W/cm2 was used, while the intensity of
the third-harmonic beam was chosen to be I (3ω) = 1.1 × 1011 W/cm2

for ionization of the 2s1/2 electrons and I (3ω) = 8 × 1011 W/cm2 for
2p3/2 electrons. The phase difference between the fundamental and
third-harmonic light beam was set to zero in the above plots.

field and I (3ω) of the third-harmonic light field of the order
of 1014 W/cm2 and 1011 W/cm2, respectively, which results
in comparable ionization rates for the one- and three-photon
ionization processes. Although it is currently challenging to
reach such beam configurations, experiments with similar
parameters have been recently successfully carried out [23]
and advancements in FEL science will likely deliver light
beams considered here in the near future. The phase differ-
ence between the two beam components was set to zero, i.e.,
� = 0, which results in the maximum absolute value for the
interference term. The ionization rate for one-photon ioniza-
tion follows the typical (3ω)−7/2 dependence on the incident
photon energy, and hence the dynamical dependence of the
biharmonic rate on the incident photon energy pictured in
Fig. 3 is dominantly determined by the three-photon ioniza-
tion process.

In the top left plot, for the biharmonic ω + 3ω ioniza-
tion of the 2s1/2 electron by linearly polarized light, a local
minimum in the rate as well as a resonance behavior ap-
pear. This minimum arises from the destructive interference
of the one- and three-photon ionization paths and vanishes
if the interference is zero, i.e., if the phase difference be-
tween the beam components is chosen to be � = π/2. The
resonance in the ionization rate at ω = 21.5 eV arises from
the 2ω energy matching the energy difference between the
ground state of neon and the 1s22s2p63s excited state. No such
resonant enhancement of the rate is observed for the bihar-
monic ω + 3ω ionization of the 2s1/2 electron by circularly
polarized beams. This behavior can be readily understood
because two circularly polarized photons transfer two units
of angular momentum projection to the atom. Since the pro-
jection of angular momentum of the excited state is zero,
the excitation of the neon in its 1S0 ground state to the
1s22s2p63s level is forbidden for circularly polarized light.
A resonantly increasing ionization rate can be also observed

for the biharmonic ω + 3ω ionization of the 2p3/2 electron
of neon due to the transition of the ground-state neon into
the 1s22s22p53p (first resonance) and 1s22s22p54p (second
resonance) excited states. For these transitions, the individual
intermediate fine-structure states with different total angular
momenta of the excited atom differ by about less than 0.5 eV
in energy, which is not resolved in our calculations. The total
rates for biharmonic ω + 3ω ionization of the 2p1/2 electron
of neutral neon are similar to those on the right side of Fig. 3,
but shifted by ≈0.1 eV, which arises from the difference in the
binding energies of the 2p1/2 and 2p3/2 electrons of neon.

B. Circular versus linear polarization in ω + 3ω ionization

In contrast to the total one-photon ionization cross section,
early experiments showed that the multiphoton ionization
cross section depends on the polarization of the ionizing
light beam [5,29]. For low-order ionization processes, the
cross-section ratio for ionization by circularly and linearly
polarized light is well described by the simple estimate
max(σlin/σcirc) = N!/(2N − 1)!! for N-photon ionization by
Klarsfeld and Maquet [1]. This estimate refers to the max-
imum possible value while the actual ratio might deviate
significantly for specific incident photon energies, for ex-
ample, if the photon energy matches a resonance atomic
transition or nonlinear Cooper minimum [15,30].

For the biharmonic ω + 3ω ionization of atoms, the ques-
tion of whether ionization by linearly or circularly polarized
light dominates the other is more complex than for ionization
by monochromatic light, since there are different possible
combinations of polarization states that the fundamental and
third harmonic can take. In order to facilitate the discussion,
we here chose both the fundamental and the third harmonic to
have the same polarization, i.e., either they are both linearly
or both circularly polarized. The corresponding biharmonic
ionization rates are, therefore, represented by W (0, 0) and
W (±1,±1), respectively. Furthermore, there is a significant
difference between the biharmonic ionization of atoms by
linearly and circularly polarized light. The total ionization rate
for biharmonic ω + 3ω ionization by linearly polarized light
comprises the one- and three-photon ionization rates as well
as the interference between the corresponding processes. In
contrast, the one- and three-photon ionization by circularly
polarized light does not lead to any partial wave with the
same orbital angular momentum, and hence does not interfere
in the total ionization rate (see the theory section for more
details).

To evaluate the relative total biharmonic ω + 3ω ioniza-
tion rate for ionization by linearly and circularly polarized
beams, the ratio W (0, 0)/W (1, 1) was calculated for three
different values of the phase difference between the beam
components � = 0, π/2, and π and as a function of inci-
dent photon energies. Calculations were performed for the
biharmonic ω + 3ω ionization of the 2s1/2 and 2p3/2 elec-
trons of neutral neon and are shown in Fig. 4. The results
were obtained by using the intensity of the fundamental light
beam of I (ω) = 1.0 × 1014 W/cm2 and the third harmonic
I (3ω) = 1.1 × 1011 W/cm2 for the ionization of 2s1/2 elec-
trons and I (3ω) = 8 × 1011 W/cm2 for the ionization of
2p3/2 electrons. This choice of beam intensities then results

013118-4



POLARIZATION EFFECTS IN THE TOTAL RATE OF … PHYSICAL REVIEW A 106, 013118 (2022)

FIG. 4. The ratio of the ionization rates for linear polarization
vs circular polarization is plotted against the photon energy. The
above plot describes the ionization of 2s1/2 (top) and 2p3/2 (bottom)
electrons for three different phase differences between the first- and
third-harmonic light beams. In the above plots, an intensity of the
fundamental light beam I (ω) = 1.0 × 1014 W/cm2 was applied, while
the intensity of the third-harmonic beam was fixed to be I (3ω) =
1.1 × 1011 W/cm2 for the ionization of the 2s1/2 electrons and to
I (3ω) = 8 × 1011 W/cm2 for 2p3/2 electrons.

in comparable total ionization rates between the one- and
three-photon ionization rates for all off-resonant incident
beam energies.

From Fig. 4, we can see the behavior of the ratio
W (0, 0)/W (1, 1) as a function of the incident beam en-
ergy, which is especially pronounced for the biharmonic
ionization of the neon 2s1/2 electron (upper plot). Let us there-
fore start with the description of the upper plot. Apart from
the enhancement due to the 1s22s2p63s two-photon resonance
at around ω = 21.5 eV, the ratio W (0, 0)/W (1, 1) demon-
strates a very strong dependence of the rates on the phase �

near the ionization threshold. By choosing the phase � = 0
(short-dashed blue), the constructive interference of the one
and three-photon ionization is maximized. Therefore, bihar-
monic ionization by linearly polarized light dominates over
ionization by circularly polarized light. For � = π/2 (long-
dashed orange), the interference is zero and W (0, 0)/W (1, 1)
represents purely the ratio of the one- and three-photon ion-
ization rates. For � = π (solid red), the interference becomes
destructive and, hence, the rate corresponding to ionization by
linearly polarized light becomes significantly smaller, while
the rate for ionization by circularly polarized light remains
unaffected.

FIG. 5. Ionization of neon 2s1/2 electrons by corotating (solid
blue) and counter-rotating (dash-dotted orange) biharmonic ω + 3ω

beams. The photon energy was chosen near to the threshold at
ω = 26.7 eV, the polarization of the third harmonic is chosen to be
right-circular γ (3ω) = 1, while the ellipticity of the fundamental fre-
quency γ (ω) is varied. The intensity of the fundamental beam I (ω) =
1014 W/cm2 and of the third harmonic I (3ω) = 1.1 × 1011 W/cm2

which gives rise to the same one- and three-photon ionization rates.
Rates for ionization by biharmonic beams with φ = 0, π/2, and π

phase difference (top three plots, respectively) are shown as func-
tions of the ellipticity of the fundamental beam γ (ω). The dichroism
parameter corresponding to these three considerations is shown at the
bottom.

The sign change of the transition amplitudes near a reso-
nance is often difficult to observe in other processes. However,
the sign change of the three-photon ionization amplitudes near
the mentioned two-photon resonance can be read off from the
W (0, 0)/W (1, 1) ratio in the upper plot of Fig. 4. For � = 0,
the interference between the one- and three-photon ionization
processes becomes negative, which results in a trough in the
W (0, 0)/W (1, 1) ratio. In contrast, for � = π the resonance
enhancement of the ratio appears to be shifted to lower photon
energies as a result of the constructive interference, increasing
the rates of ionization by linearly polarized light. Similar anal-
ysis can be carried out for the ionization of the p3/2 electrons,
although the described effects become less pronounced.
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C. Corotating versus counter-rotating beams
in ω + 3ω ionization

The dominance of ionization by two-color corotating or
counter-rotating beams often refers to circularly polarized
light. Since the total ionization rates by circular biharmonic
ω + 3ω beams do not contain any interference terms (as ex-
plained before), we will investigate this issue for ionization by
the right-circularly polarized third harmonic, i.e., γ (3ω) = 1,
and as a function of the ellipticity of the fundamental fre-
quency γ (ω). To enumerate the dominance of corotating or
counter-rotating beams in biharmonic ionization, we define
the dichroism parameter �(γ (ω) ) as

�(γ (ω) ) = W (γ (ω), γ (3ω) = 1) − W (−γ (ω), γ (3ω) = 1)

W (γ (ω), γ (3ω) = 1) + W (−γ (ω), γ (3ω) = 1)
.

(12)
In Fig. 5, we only show the ionization rates for the biharmonic
ionization of 2s1/2 electrons of neon.

The rates for ionization of neon 2s1/2 electrons by coro-
tating and counter-rotating biharmonic ω + 3ω beams with
different phase difference between the beam components are
shown in Fig. 5 as a function of the ellipticity of the fun-
damental beam together with the corresponding dichroism
parameter. This figure shows that the phase difference be-
tween the beam components is the key parameter which
determines the dominance of one polarization setting over an-
other. For � = 0 (first plot), the interference between one- and
three-photon ionization is constructive, leading to the dom-
inance of the ionization by corotating beams. For the phase
shift � = π/2 (second plot), no interference occurs between
the two processes, and therefore the total biharmonic rates are
independent of the sign of the ellipticity of the fundamental
frequency component. For � = π (third plot), the interfer-
ence between the process is destructive, which leads to the
dominance of the ionization by counter-rotating biharmonic
beams. The fourth plot shows the dichroism parameters for the
three scenarios discussed. The zero dichroism parameter for
� = π/2 reflects the equal rates of ionization by corotating
and counter-rotating biharmonic beams. Figure 5 also reveals
that the dichroism arising from destructive interference for
� = π reaches higher absolute values than the dichroism for

� = 0. This can be understood from the comparison of the
ionization rates. While the magnitude of the interference is
the same for both � = 0 and π , the latter case results in
lower ionization rates which then lead to higher dichroism
values. For ionization of 2p3/2 electrons, the dependence of
the dichroism parameter on the ellipticity of the fundamental
frequency beam and the phase difference between the beam
components � are the same for the ionization of both 2s1/2

electrons and differ only in magnitude.

IV. SUMMARY

The polarization effects in biharmonic ω + 3ω ionization
of atoms were studied within the third-order perturbation
theory. In particular, the total rates for ionization by lin-
early and circularly polarized beams were compared, and the
dominance of ionization by corotating and counter-rotating
elliptically polarized beams was analyzed. In an example of
biharmonic ionization of the neon L shell, we showed that the
dominance of a particular beam polarization over another is
strongly influenced by interference in the biharmonic ioniza-
tion process and can be controlled by an appropriate choice
of beam parameters. This interference can be controlled most
efficiently by varying the phase difference between the bihar-
monic beam components, which has the strongest effect and
has a simple dependence on cos(�).
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APPENDIX

Using the multipole (10) as well as the electron partial
wave expansion (9) and carrying out the angular integration
over the spatial direction r̂ of the electron wave functions,
the transition amplitudes (7) and (8) can be written in the
following form:

M (3ω)
MiM f me

= 4π
∑
jm j

∑
lml

(−i)l eiδκ 〈lml , 1/2me| jm j〉Ylml ( p̂e)
∑
JM p

iJ−p
[
ε̂(3ω) · Y (p)

JM

]∑
ma

〈 jm j, JM| jama〉[ j]−1/2

× (−1) ja−ma〈 ja − ma, JiMi|Jf M f 〉〈 j‖TJ‖ ja〉Uκ (pJ ) (A1)

and

M (ω)
MiM f me

= 16π2
∑
jm j

∑
lml

(−i)l eiδκ 〈lml , 1/2me| jm j〉Ylml ( p̂e)
∑

J1M1 p1

∑
J2M2 p2

∑
J3M3 p3

iJ1−p1+J2−p2+J3−p3
[
ε̂(ω) · Y (p1 )

J1M1

]

× [
ε̂(ω) · Y (p2 )

J2M2

][
ε̂(ω) · Y (p3 )

J3M3

] ∑
jn1 ln1 mn1

∑
jn2 ln2 mn2

[ jn1 , jn2 , j]−1/2〈 jm j, J3M3| jn2 mn2〉

× 〈 jn2 mn2 , J2M2| jn1 mn1〉
∑
ma

〈 jn1 mn1 , J1M1| jama〉〈 ja − ma, JiMi|Jf M f 〉

× (−1) ja−ma〈 j‖TJ3‖ jn2〉〈 jn2‖TJ2‖ jn1〉〈 jn1‖TJ1‖ ja〉U (κn2 ,κn1 )
κ (p1J1, p2J2, p3J3), (A2)
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in terms of radial transition amplitudes for one-photon ioniza-
tion

Uκ (pJ ) = Rκκa (pJ ) (A3)

and three-photon ionization

U (κn2 ,κn1 )
κ (p1J1, p2J2, p3J3)

=
∑∫
n1

∑∫
n2

Rκκn2
(p3J3)Rκn2 κn1

(p2J2)Rκn1 κa (p1J1)

(εnaκa + 2ω − εnn2 κn2
)(εnaκa + ω − εnn1 κn1

)
. (A4)

The transition amplitudes Uκ (pJ ) and
U

(κn2 ,κn1 )
κ (p1J1, p2J2, p3J3) of course depend on the principal

quantum numbers of each involved electronic state; however,
this dependence was left out from the notation for practical
purposes. The angular integration of the space coordinate is
given by

〈 j f ‖TJ‖ ji〉 = (−1) ji+ j f −J+1[ ji]
1/2〈 ji1/2, J0| j f 1/2〉�li,l,J ,

(A5)
where �li,l,J = 1 if li + l + J is even and �li,l,J = 0 other-
wise. In the transverse (velocity) gauge, the radial integrals
are explicitly given for the magnetic (p = 0, or pJ = MJ)
transitions:

Rκ f κi (MJ ) = i

√
[J](J + 1)

4Jπ

∫ ∞

0
dr

κi + κ f

J + 1
jJ (kr)

× [Pi(r)Q f (r) + Qi(r)Pf (r)], (A6)

where jJ (x) are the spherical Bessel functions, and the ra-
dial wave functions P(r) and Q(r) are the large and small
components of the radial Dirac wave functions for the
orbital with principal and Dirac quantum numbers ni and κi,

respectively. These components are obtained from the single-
electron Dirac equation, with a screening potential in the
Hamiltonian, which partially accounts for the interelectronic
interaction. We compared a number of different potential
models. The core-Hartree potential, which reproduces the
binding energies in good agreement with the experimental
values, was used to produce the results presented in this paper.
For the electric transitions (p = 1, or pJ = EJ)

Rκ f κi (EJ ) = i

√
[J](J + 1)

4Jπ

∫ ∞

0
dr

{
− κi − κ f

J + 1

[
j′J (kr)

+ jJ (kr)

kr

]
[Pi(r)Q f (r) + Qi(r)Pf (r)]

+ J
jJ (kr)

kr
[Pi(r)Q f (r) − Qi(r)Pf (r)]

}
. (A7)

In the length gauge, this integral is given by

Rκ f κi (EJ ) = i

√
[J](J + 1)

4Jπ

∫ ∞

0
dr jJ (kr)[Pi(r)Pf (r)

+ Qi(r)Q f (r)] + jJ+1(kr)

{
κi − κ f

J + 1

× [Pi(r)Q f (r)Qi(r)Pf (r)] + [Pi(r)Q f (r)

− Qi(r)Pf (r)]

}
. (A8)

The presented results were calculated in the velocity gauge;
however, the calculations were performed in both velocity and
length gauges to check the consistency and accuracy of our
calculations.
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