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The ground-state Hanle effect (GSHE) in alkali-metal atomic vapor using a single circularly polarized light
wave underlies one of the most reliable and simple techniques of modern atomic magnetometry. This effect
causes a narrow (subnatural-width) resonance in the light wave intensity passing through the vapor cell. The
GSHE-based sensors typically operate in the so-called spin-exchange relaxation-free (SERF) regime to reduce
the resonance linewidth. However, this regime requires a relatively high temperature of vapors (approximately
equal to 150 ◦C), leading to high heat release and power consumption of the sensor head. In addition, without
applying special measures, the SERF regime significantly limits the dynamic range of measurements. Here we
study a pump-probe scheme involving a single elliptically polarized light wave and a polarimetric detection
technique. The wave is in resonance with two adjacent optical transitions in the cesium D1 line (λ ≈ 894.5
nm) due to their overlap in the presence of a buffer gas (130 Torr neon). Using a small (V ≈ 0.1 cm3) glass
vapor cell, we demonstrate the possibility to observe subnatural-width resonances with a high contrast-to-width
ratio (up to 45%/mG) in low-temperature (60 ◦C) operation due to strong light-induced circular dichroism in
the medium. Based on the � scheme of atomic energy levels, we obtain explicit analytical expressions for the
shape of the resonance line. The model reveals a linewidth narrowing effect due to openness of the level scheme.
The observed bright features are unusual for magneto-optical atomic spectroscopy as openness is commonly
considered to be an undesirable effect that degrades resonance characteristics. Measuring the noise voltage, we
estimate the sensitivity of the magnetic-field measurements to be 1.8 pT/

√
Hz with a sensitivity of 60 fT/

√
Hz

in the photon-shot-noise limit. In general, the results contribute to the theory of GSHE resonances and also
can be applied to development of a low-temperature high-sensitivity miniaturized magnetic-field sensor with an
extended dynamic range.
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I. INTRODUCTION

Optically pumped (atomic) magnetometers are a rapidly
developed technology in modern magnetometry. The sensitiv-
ity of atomic magnetometers (AMs) has already reached that
of superconducting quantum interference devices (SQUIDs)
[1]. At the same time, AMs do not require cryogenic tem-
perature and consume significantly less power compared to
SQUIDs. Atomic magnetometers have already found promis-
ing applications in medicine for magnetocardiography [2],
magnetoencephalography [3], magnetomyography [4], blood
velocimetry [5], etc. They can also be used in biology for
studying plant biomagnetism [6] or observing nuclear mag-
netic resonances in biomolecules [7].

One of the most robust and simple techniques in atomic
magnetometry is based on the ground-state Hanle effect
(GSHE) linked with the zero-field level-crossing phenomenon

*Corresponding author: brazhnikov@laser.nsc.ru

[8–10]. In contrast to the excited-state Hanle effect studied
by Hanle [11] and his contemporaries, the GSHE provides a
much narrower level-crossing resonance (LCR), especially if
a buffer gas or an antirelaxation coating of the cell walls is
used. This feature immediately suggested to researchers an ap-
plication of the effect for measuring very weak magnetic fields
[12,13]. First studied in cadmium vapors [14], the GSHE is
nowadays used in quantum magnetometry mainly with He or
alkali-metal vapors such as Rb, Cs, and K.

A single circularly polarized light wave is usually used
in GSHE-based sensors to both pump atoms and probe
their quantum state. To observe a nonlinear resonance in
the light wave intensity transmitted through the vapor cell,
the transverse magnetic field is slowly (�200 Hz) scanned
around zero. This technique does not require the additional
rf magnetic field as in several other types of AMs [15,16],
simplifying the scheme and mitigating crosstalk problems
between adjacent sensor heads in a multichannel mode of
operation. The simplicity of the scheme also provides an
opportunity for radical miniaturization of the sensor while
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maintaining high reliability and sensitivity of the measure-
ment [17,18].

State-of-the-art Hanle sensors [2–4,17–19] engage the
spin-exchange relaxation-free (SERF) regime [20] to reduce
the linewidth of the resonance. This helps achieve the highest
sensitivity (the smallest detectable change in the magnetic
field [16,21]) through a simple relation δB ≈ �/S , where �
is the full width at half maximum (FWHM) of the resonance
(in gauss units) and S is the signal-to-noise ratio (SNR) in
a 1-Hz bandwidth. The SERF regime, however, requires a
high atomic density, i.e., an increased alkali-metal vapor tem-
perature, which is usually well above 100 ◦C. It also means
relatively high power consumption and heat release of the
sensor, especially in a multichannel mode used in several
medical applications.

As a further development of the GSHE-based sensing tech-
nique, it would be interesting to propose a technique that
can provide a high sensitivity of measurements at a much
lower temperature of vapors (T � 60 ◦C) in a small vapor
cell (V � 1 cm3). Reducing the linewidth of the resonance
without the SERF regime, a high sensitivity of the sensor can
be obtained by increasing the SNR. Since it is proportional to
the resonance contrast C, there is a problem of increasing C
or, more precisely, the contrast-to-width ratio (CWR) of the
zero-field LCR under a low-temperature regime.

At low temperature the standard Hanle scheme with a
single circularly or linearly polarized light wave can only
demonstrate high contrast and/or high CWR resonances for
extended vapor cells (V � 1 cm3) [22–27], making it dif-
ficult to design a miniature sensor. Other types of AMs
based on nonlinear Faraday rotation also require a relatively
large vapor cell volume to achieve subpicotesla sensitivity
at low vapor temperatures [28,29]. Various pump-probe cw
[30–35] or pulsed [36–38] light-field configurations can help
us overcome this problem. For example, high-quality Hanle
resonances were recently observed in our pump-probe scheme
with cesium vapors [35]: C ≈ 80% was achieved at � ≈
2 mG, yielding a large CWR of around 40%/mG. The light
field was composed of two counterpropagating light waves
of circular polarizations with opposite handedness (σ+-σ−
configuration). Since a small (5 × 5 × 5 mm3) cubic vapor
cell was used, the scheme is attractive for the development of
a highly sensitive miniaturized magnetic-field sensor. A key
advantage of the studied scheme consisted in the possibility of
obtaining high-quality resonances at low vapor temperatures
(T � 60 ◦C).

Although linearly and circularly polarized light beams
are mainly used in atomic magnetometers, there are sev-
eral pump-probe schemes with elliptically polarized single
beams that have been successfully applied to magnetic-field
sensing. For example, in [39] an elliptically polarized off-
resonant laser beam and a miniature (5 × 5 × 5 mm3) Rb
vapor cell were used. A zero-field LCR was observed in
the rotation of the polarization ellipse caused by the circu-
lar birefringence of the medium. To achieve a sensitivity of
7 fT/

√
Hz, the SERF regime was engaged. This technique

has subsequently been developed to perform vector measure-
ments under the near-zero-field condition [40]. A polarization
modulation Bell-Bloom-like scheme was investigated in [41].
The authors used a centimeter-scale (2 × 2 × 5 cm3) Rb vapor

cell to observe the coherent-population-trapping (CPT) reso-
nances in the light wave transmission. The cell was heated to
a relatively low temperature of 78 ◦C. Based on the provided
contrast and linewidth measured values, the authors deduced
a picotesla sensitivity of their technique. Another simple and
efficient scheme with time-modulated ellipticity of the light
wave was proposed in a recent study using a Cs vapor cell
of 8 × 8 × 8 mm3 [42]. The resonant circular component of
light was used to pump atoms into a so-called stretch Zeeman
state, while the linear component was used to measure opti-
cal rotation induced by circular birefringence of the medium
due to off-resonant interaction with the pumped atoms. The
cell was heated to a temperature of 90 ◦C and a sensitivity
of 15 fT/

√
Hz was achieved. Another single-beam pulsed

(push-pull) scheme was studied in [36] that could provide high
sensitivity at a temperature of Cs vapors as low as 20 ◦C. The
cell was a 30-mm-diam evacuated paraffin-coated glass bulb.

The resonant interaction of 87Rb atoms with a single light
wave with ellipticity only slightly different from 45◦ was
studied in [43]. Such a wave can be decomposed into a
relatively strong pump wave and a weak probe wave with
counterrotating circular polarizations (here referred to as σ+
and σ− components). The transmission of the probe wave
was monitored separately using a polarimeter. The relatively
low pressure of the buffer gas (25 Torr) allowed the au-
thors to excite a single optical transition Fg = 2 → Fe = 2
in the D1 line and observe a LCR of electromagnetically
induced transparency (EIT) type in a centimeter-scale low-
temperature (62 ◦C) vapor cell. However, to achieve the 25%
resonance contrast, a microwave field was required, meaning
that a bulky microwave cavity had to be used. A similar
low-temperature technique, without a microwave field, was
used then to demonstrate a three-axis AM with a sensitivity
of approximately 10 pT/

√
Hz in a centimeter-size Rb vapor

cell [44].
Here, inspired by the results in the σ+-σ− cw configura-

tion [35], we consider a scheme that employs only a single
resonant elliptically polarized wave instead of using two
counterpropagating waves. Similarly to the scheme studied in
[43,44], such a wave can be decomposed into the probe Ep

and pump Ec circularly polarized components σ+ and σ−. The
probe-wave transmission is monitored on the polarimeter. The
experiments show that the same high-quality resonances can
be observed in the proposed single-beam scheme with a low-
temperature 5 × 5 × 5 mm3 Cs vapor cell as in the two-beam
σ+-σ− configuration. Obviously, such a scheme with only one
beam is much more attractive for creating a miniature sensor.
Besides, the scheme provides an additional possibility for
differential observation of the pump- and probe-wave trans-
mission signals with the help of a balanced photodetector,
suppressing some types of noise similarly to schemes with a
polarization rotation [17,39,42].

It should be noted that, compared to the single-beam
scheme proposed in [43], we observe electromagnetically in-
duced absorption (EIA) resonance in the transmission of the
probe wave instead of EIT resonance. This is due to the rela-
tively high buffer-gas pressure in the cell, where both optical
transitions Fg = 4 → Fe = 3 and Fg = 4 → Fe = 4 in the D1

line are excited by light, allowing us to observe extremely
high contrast (�80%) of the resonance without the need to
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apply a microwave field as in [43]. Preliminary measurements
of the noise spectrum density reveal a 1.8 pT/

√
Hz sensitivity

of measurements. However, an estimated shot-noise-limited
sensitivity is around 60 fT/

√
Hz, which can be achieved after

applying additional efforts to reduce various noise sources in
our scheme, in particular, relative intensity noise of the laser
radiation, magnetic-field noise due to insufficient magnetic
shielding of the cell, and other technical noises mainly in
electronics.

Finally, we have developed a simplified theoretical model
that allows us to obtain explicit analytical solutions of the
resonance line shape over a wide range of pump-wave in-
tensities, i.e., beyond the perturbation theory approach that
is commonly used in other works. This model predicts a
line-narrowing effect caused by transition openness (Sec. II).
The effect is confirmed by experiments (Sec. III B). We note
that LCRs of the EIA type have been rarely used in atomic
magnetometry (see, e.g., [45,46]). One of the main reasons is
that EIA resonances usually exhibit a much worse contrast-
to-width ratio compared to EIT resonances. In Sec. III C we
demonstrate that the proposed scheme eliminates this draw-
back and therefore expands the scope of EIA applications.

II. THEORY

Electromagnetically induced transparency or absorption
effects are usually observed in atomic vapors as subnatural-
width resonances either in a single-frequency magneto-optical
(Hanle) configuration [47,48] or in a two-frequency light field
[49,50]. The resonance sign (EIT or EIA) depends on different
experimental conditions, such as the structure of the energy
levels involved in combination with the polarization of the
light wave and the direction (transverse or longitudinal) of
the magnetic-field vector scan or the presence of a resid-
ual magnetic field (in the Hanle configuration) [23,50–55],
collisional depolarization of the excited state in buffered or
antirelaxation-coated vapor cells [52,56–58], etc.

Doppler line broadening or buffer-gas-collision broadening
can also affect the resonance sign due to the mutual influence
of neighboring optical transitions in the D1 or D2 lines in
alkali-metal atoms [23,25,50,54,59]. For instance, in [43] the
excitation of a single optical transition Fg = 2 → Fe = 2 in
the D1 line of 87Rb by an elliptically polarized light wave
led to observation of the well-known EIT effect in the probe
(σ−) wave transmission as the result of destructive inter-
ference of the σ+ and σ− optical transitions [60]. In our
scheme, in contrast, we observe the EIA effect in the D1 line
of Cs under similar conditions. This resonance behavior can
be explained by a significant overlap between the transitions
Fg = 4 → Fe = 3 and Fg = 4 → Fe = 4 that are not resolved
spectroscopically at 130 Torr neon used as a buffer gas [the
scheme of levels is shown in Fig. 1(a)]. The interference terms
of these two transitions have opposite signs due to properties
of the Clebsch-Gordan coefficients [61], leading to significant
suppression of the σ+-σ− interference effects when the tran-
sitions are completely overlapped.

In our analysis, therefore, we consider the two circularly
polarized components of the light field as independent, the
probe wave Ep(t, z) and the pump (coupling) wave Ec(t, z),
traveling along the z axis. In the �-scheme model, the light

FIG. 1. (a) Scheme of energy levels in the D1 line of Cs. The
hyperfine structure in the upper state is not resolved due to buffer-
gas-collisional broadening. The Zeeman sublevels of the upper state
are not shown. Green solid and blue dashed arrows stand for the
pump and the probe waves, respectively (for simplicity, we show
only one σ− transition for the probe light). Pink dotted lines in the
two ground-state levels denote Zeeman coherences induced by the
transverse magnetic field. Circles schematically reflect the sublevel
populations. A simplified three-level model of the atom is shown
(b) in the absence of the transverse magnetic field and (c) in the
presence of the field. See the text for further details

field is commonly considered as scalar, where Ec(t, z) and
Ep(t, z) drive the |1〉 → |3〉 and |2〉 → |3〉 transitions, respec-
tively, without reference to the wave polarizations [Figs. 1(a)
and 1(b)]. Therefore, the light field can be written as

E (t, z) = Ec(z)e−iωt + Ep(z)e−iωt + c.c., (1)

where Ec,p(z) are the real amplitudes slowly varying in space,
ω is the optical frequency, and c.c. means the complex conju-
gate terms. We assume that the buffer-gas broadening prevails
over the Doppler broadening, so atomic motion can be ne-
glected. This explains the absence of eikz terms in (1) with k
the absolute value of the wave vector.

All optical transitions in the D1 line are open. In our exper-
iments, the field (1) is in resonance with two of them, namely,
Fg = 4 → Fe = 3, 4 [Fig. 1(a)]. Qualitative explanations for
the reasons leading to observation of high-contrast EIA res-
onances in a probe-wave transmission can be found in [35].
Here we consider a simplified three-level (�) scheme that,
on the one hand, provides a similar explanation and, on the
other hand, allows us to derive explicit analytical solutions
valid for a wide range of the pump-wave intensities. In the
scheme shown in Figs. 1(b) and 1(c), |3〉 is the excited state,
while |1〉 and |2〉 are the ground-state sublevels of the same
energy. These levels are in resonance with the light field. The
trap state |0〉 is not in resonance with the field and only serves
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to collect atoms as a result of their spontaneous decay from
the excited state. For simplicity, it is assumed that the dipole
moments of the two arms |1〉 → |3〉 and |2〉 → |3〉 are the
same and equal to d0. This means that the spontaneous decay
rates of these arms are also the same and can be denoted
by βγ , with 2γ the total spontaneous relaxation rate of the
excited state (2γ ≈ 2π × 4.56 MHz for the Cs D1 line) and β

the branching ratio that controls the degree of openness of the
scheme: 0 � β � 1, where β = 1 corresponds to the case of
a closed scheme. The ground-state relaxation is governed by
the rate 
, which is usually �1 kHz in the experiments with
alkali-metal atoms in the presence of a buffer gas (it is not
shown in the figure for simplicity). Note that such a scheme is
commonly used for theoretical study of various manifestations
of the EIT effect [62–64] as well as some types of the EIA
effect [65,66].

We use a standard quantum-mechanics formalism of the
density matrix ρ̂(z, t ) to describe the atom-field interaction
(for instance, see [67]). The corresponding master equa-
tion has the Lindblad form

∂

∂t
ρ̂ = − i

h̄
[(Ĥ0 + V̂b + V̂e), ρ̂] + R̂{ρ̂}, (2)

where the term in square brackets is the commutation opera-
tion of two matrices, Ĥ0 is part of the total Hamiltonian for
a free atom, and V̂b and V̂e describe the interaction between
the atoms and the magnetic and light fields, respectively (in
the electric dipole approximation). The linear functional R̂ is
responsible for the relaxation processes in the atom. Details
can be found in the Appendix.

We assume the probe wave to be weak enough so that
optical properties of the medium do not depend on Ep, the
linear approximation with respect to the probe field. In the ex-
periments, a photodetector registers the wave intensity Ip,c =
(c/2π )E2

p,c, with c the speed of light. We first analyze the LCR
in the pump-wave intensity, which obeys the equation (see the
Appendix)

dIc

dz
= −αcIc. (3)

Here the pump-wave absorption index is

αc ≈ 3γ βλ2na

4πγeg
ρ11, (4)

where ρ11 is the population of sublevel |1〉; λ is the light
wavelength (approximately equal to 894.5 nm for the Cs D1

line); na is the atomic number density, which is strongly de-
pendent on the vapor temperature; and γeg is the relaxation rate
of the optical coherences in the � scheme, determining the
linewidth of the optical transitions, γeg = 
 + γ + γc, with γc

the rate of dephasing collisions between the cesium atoms and
the buffer-gas atoms. In our experiments, the collisional line
broadening significantly prevails over the other impacts, i.e.,
γc � γ , 
, meaning γeg ≈ γc.

In the linear regime on the probe wave, the absorption
index αc depends only on the pump-wave intensity Ic, which
in turn slowly varies along the z axis due to absorption in the
cell. However, as we will see, the pump wave experiences low
absorption in the cell, i.e., the medium is optically thin for this
wave (in the considered temperature of the cell). Therefore,

αc depends on Ic as a constant parameter. This approximation
allows us to obtain a simple solution in the form of the well-
known Beer-Lambert-Bouguer law

Ic(z) = Ic0e−αcz, (5)

with Ic0 the pump-wave intensity at the entrance of the cell.
For theoretical analysis, it is convenient to define a dimen-
sionless coefficient of transmission following the expression

ηc = Ic(z = Lcell )

Ic0
= e−αcLcell , (6)

where Lcell is the cell length.
Substituting ρ11 from the Appendix into (4), we get a

compact solution

αc ≈ α0(1 + ξ + 4�2τ 2)

(1 + ξ )[1 + (2 − β )ξ ] + 4[1 + (1 − β )ξ ]�2τ 2
. (7)

Here � = gBx is the Larmor frequency, where g is the gy-
romagnetic ratio (approximately equal to 2π × 350 Hz/mG
for the Cs ground state), Bx is the transverse magnetic-field
strength, τ = 
−1 is the relaxation time of the ground state,
and ξ is the modified saturation parameter

ξ = R2
cτ

γeg
= 3βγ τλ3

16π2h̄cγeg
Ic, (8)

which is nothing but the optical pumping rate R2
c/γeg mul-

tiplied by the time of coherent interaction τ , where Rc =
d0Ec/h̄ is the Rabi frequency for the pump field. In (8) we
have taken into account the relation βγ = 4k3d2

0 /3h̄.
The coefficient α0 in (7) is the absorption index at the

center of the resonance curve (� = 0) in the low-intensity
limit (ξ � 1)

α0 = 3βγλ2naρ0

4πγeg
, (9)

with ρ0 the initial population of a sublevel in the ground state.
In our model, we take ρ0 = 1

3 for each of the sublevels |0〉,
|1〉, and |2〉.

The other approximations of the theory that should be men-
tioned are the following. We neglect the effect of optical line
splitting that can be observed when � ∼ γeg, because under
our experimental conditions the resonance width is signifi-
cantly less than γeg, so we can focus on the range of � � γeg.
We can also consider the condition R2

c � γegγ to be fulfilled
for a reasonable light wave intensity. The condition γ τ � 1 is
also satisfied in the presence of a buffer gas when the coherent
interaction time between light and atoms increases consider-
ably compared to the case of a vacuum vapor cell. Finally,
since we neglected any interference effects between the probe
and the pump waves, the subnatural-width-resonance splitting
effect [63,68,69] does not occur.

Figure 2(a) shows the behavior of αc(�) calculated
for typical experimental conditions at β = 1 and 0.5. Fig-
ure 2(b) demonstrates the corresponding transmission coeffi-
cient ηc(�). The EIT resonance is observed with significantly
suppressed height in the case of an open system of levels
(β = 0.5). The pump-wave absorption is low at both � = 0
and � �= 0, especially if the system is open. It validates our
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FIG. 2. Calculated zero-field level-crossing resonance of EIT for
(a) the pump-wave absorption index and (b) the transmission coeffi-
cient in closed (β = 1) and open (β = 0.5) systems of energy levels.
(c) Full width at half maximum of the resonance as a function of light
wave intensity (dimensionless saturation parameter). The parame-
ters of the calculation are 2γ = 2π × 4.56 MHz, 
 = 10−4γ , γc =
2π × 2 GHz, na = 1012 cm−3, λ = 894.5 nm, and Lcell = 0.5 cm. In
(a) and (b) the Rabi frequency Rc = γ .

approximation concerning the low pump-wave absorption in
the cell.

The function αc(�) has the Lorentzian-like shape. The low
pump-wave absorption means that ηc(�) is also described by
the same line shape due to the approximation

ηc(�) ≈ 1 − αc(�)Lcell. (10)

The resonance linewidth (FWHM) in αc(�) and ηc(�) can be
easily figured out from (7):

�c ≈ 


√
(1 + ξ )

(
1 + ξ

1 + (1 − β )ξ

)
. (11)

The effect of openness-induced line narrowing readily follows
from the expression (11). Indeed, if the system of levels is
closed (β = 1), then one gets a linear behavior �c ≈ 
 +
R2

c/γeg ∝ Ic. Such a dependence is well known in the theory of
GSHE [20,70] as well as in the theory of two-frequency EIT
or CPT effects [71,72] for homogeneously broadened closed
transitions. In particular, the latest analytical results for a real
(degenerate) structure of energy levels can be found in [73].
Otherwise, in open systems (β < 1), the linewidth demon-
strates a square-root-like behavior �c ∝ √

Ic, which is clearer
at ξ � 1. Similar behavior can be extracted from the linewidth
expression in [74] for two-frequency CPT resonances in a
buffered vapor cell. We demonstrate this narrowing effect
in Fig. 2(c). This openness-induced line-narrowing effect is
not emphasized in the literature for magneto-optical (GSHE)
resonances, nor has it attracted much attention as a separate
line-narrowing effect in two-frequency CPT experiments.

The resonance contrast can be defined as C = 100% ×
[ηc(0) − ηc(∞)]/ηc(0) where [ηc(0) − ηc(∞)] is the reso-
nance height and ηc(∞) means the background, i.e., the light
transmission at � � �c. As seen in Fig. 2(b), in the standard
Hanle configuration with only one circularly polarized wave
for pumping and probing, the resonance contrast is quite low
(less than 5%) for a temperature less than or equal to 60 ◦C.
The large difference between the resonance heights in closed
and open systems [dashed and solid curves in Figs. 2(a) and
2(b)] can be easily explained. Indeed, at � = 0 [Fig. 1(b)],
the pump wave experiences low absorption in the cell due
to optically pumping most of the atoms to the noninteracting
state |2〉 (in the closed scheme) or to both noninteracting states
|2〉 and |0〉 (in the open scheme). The probe light is assumed
to have such a weak strength that it does not noticeably affect
the sublevel populations. Then, if the system of levels is closed
and � � �c, the two sublevels |1〉 and |2〉 are strongly mixed,
i.e., the so-called Zeeman coherence is created [pink dotted
line in Fig. 1(c)]. Such a mixing prevents the optical pumping
of the |2〉 sublevel and leads to a considerable scattering of
the pump-wave light. Therefore, we can see a relatively large
amplitude of the EIT resonance in the case of a closed scheme
[solid curves in Figs. 2(a) and 2(b)]. Otherwise, openness of
the scheme leads to a low absorption even when � � �c

because most of the atoms are collected in the |0〉 trap sublevel
by means of optical pumping [Fig. 1(c)].

In [25] the authors proposed to overcome a problem with
low contrast of EIT resonance in the standard Hanle scheme
by using potassium vapors instead of cesium. That was made
possible due to a small energy separation between the ground-
state hyperfine levels in K, leading to a higher absorption
at B �= 0 than in the case of Cs. In a sense, the system of
levels in potassium can be considered as closed. However, a
K vapor cell requires either an extended length (greater than
or equal to 5 cm) or a higher temperature of vapors to achieve
a good resonance contrast. Another way is typically realized
in miniature SERF magnetometers where very high buffer-gas
pressure is used (1 atm and more), leading to overlapping of
the ground-state hyperfine levels in Cs or Rb atoms [17,20].
However, an increased temperature (greater than or equal to
150 ◦C) is also required to obtain a desirable contrast.

Here we study the possibility of a significant increase in the
resonance contrast at lower temperatures (less than or equal
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to 60 ◦C) by means of adding the second (probe) light wave.
Such pump-probe light-field configurations have been studied
in several works, expanding the capabilities of the standard
Hanle scheme. Most of them utilize two separate light waves
[31–35,37,38,75–77]. However, it is obvious that a single
light wave configuration is preferable for the development of
a miniature magnetic-field sensor. Our current proposal has
much in common with the proposal studied in [43]: An ellipti-
cally polarized light wave can be treated as two copropagating
circularly polarized light waves of opposite handedness. Here,
in contrast to [43], we propose to use a higher buffer-gas pres-
sure so that the excited-state hyperfine levels in the cesium D1

line are overlapped, while the ground-state hyperfine structure
is spectroscopically resolved. As we will see, such a condition
appears to be a key point of the proposed technique. In addi-
tion, the considered scheme allows either monitoring the LCR
in each channel of a polarimeter or using a differential signal
of two channels, increasing the SNR.

By analogy with (3) and (4), the probe-wave absorption
index reads

αp ≈ 3γ βλ2na

4πγeg
ρ22

≈ α0[(1 + ξ )(1 + 2ξ ) + 4�2τ 2]

(1 + ξ )[1 + (2 − β )ξ ] + 4[1 + (1 − β )ξ ]�2τ 2
. (12)

This function has the same linewidth as αc(�) according
to the expression (11). However, since the transmission co-
efficient ηp, defined similarly to (6), is monitored in the
experiments rather than the absorption index αp, the GSHE
resonance linewidth can slightly differ from (11) because the
approximation (10) is not valid for the probe wave.

In contrast to αc(�), the function αp(�) exhibits the
subnatural-width EIA resonance instead of the EIT resonance
[Fig. 3(a)]. This behavior has a clear qualitative explanation.
For brevity, consider only the case of an open scheme (orange
solid curve in the figure). At � = 0, the probe wave experi-
ences an increased absorption in the cell because many atoms
have been prepared in the |2〉 sublevel by the pump field. Now,
if � � �c, the atoms are mostly transferred to the |0〉 trap
sublevel and the medium becomes almost transparent. This
process explains the sign of the resonance as well as its large
height in αp(�).

The transition openness also leads to an increase in the
resonance height in the transmission coefficient shown in
Fig. 3(b). The behavior of the probe-wave absorption there-
fore is very different from that of the pump wave [compare
Figs. 2(b) and 3(b)]. The additional line broadening due to
violation of the condition (10) for the probe wave is seen in
Fig. 3(c) at higher pump-wave intensities.

Based on (7) and (12), we can figure out the ratio be-
tween the heights Ac and Ap of the resonance in αc and αp,
respectively. The height can be calculated as the difference
A = |α(� = 0) − α(� → ∞)|. A routine procedure leads to
the ratio

Ap

Ac
= 1 + 2(1 − β )ξ . (13)

From this, a constructive action of both the optical pumping
process, proportional to ξ , and the openness of the system,

FIG. 3. Calculated zero-field level-crossing resonance of EIA
for (a) the probe-wave absorption index and (b) the transmission
coefficient in closed (β = 1) and open (β = 0.5) systems of energy
levels. (c) Full width at half maximum of the resonance as a func-
tion of pump-wave intensity, namely, the dimensionless saturation
parameter ξ , observed in the absorption index αp (orange solid curve)
and in the transmission coefficient ηp (green dash-dotted curve). The
dashed line shows the linewidth behavior (proportional to 1 + ξ ) in
the closed system of levels. The parameters of the calculation are the
same as in Fig. 2

proportional to 1 − β, on the resonance height can be clearly
seen: In an open system of levels (β �= 1), the condition
ξ � 1 immediately leads to the relation Ap � Ac, making
the proposed pump-probe scheme much more attractive than
the standard Hanle scheme.

The expression (7) for the pump-wave absorption index is
valid in a wide range of light intensities. At the same time, the
expression (12) is valid only for such a probe-wave intensity
that is low enough to not disturb the atomic sublevel popula-
tions. Therefore, it is important to figure out an expression
for the light intensity that can characterize a degree of the
atom-field interaction strength in the case of an open scheme
of levels and a finite time of interaction. In a widely used
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steady-state two-level model of the atom, such an intensity
is known as the saturation intensity

Isat2l = 4π2h̄cγ12

3λ3
, (14)

with γ12 the relaxation rate of the optical coherence in the two-
level atom that characterizes the homogeneously broadened
line shape of the resonance. This rate considerably exceeds the
spontaneous relaxation rate γ in the case of frequent dephas-
ing collisions of alkali-metal atoms with buffer-gas atoms (at
P � 1 Torr). At I = Isat2l , a light-field absorption index in the
two-level atom drops to half of its maximum value that takes
place at I � Isat2l . For the parameters used in our experiments,
we can estimate Isat2l ≈ 340 mW/cm2 (versus 1.1 mW/cm2

in a purely spontaneous relaxation regime [78]).
Obviously, the expression (14) is not applicable to the open

� scheme considered here. A valid expression can be obtained
in the same way as in the two-level model, namely, we use
(7) to define saturation intensity as an intensity that satisfies
the condition αc(Isat ) = α0/2. Trivial calculations lead to the
expression

Isat = 16π2 h̄c
γeg

3βγλ3(2 − β )
. (15)

This expression can be written in terms of the saturation
parameter from (8) as ξsat = (2 − β )−1, so in the closed �

scheme (β = 1) we simply get ξsat = 1. This is obvious from
(11) because at this value the resonance linewidth starts to
suffer from the power broadening. For instance, under the ex-
perimental conditions used, we can estimate Isat to be around
0.25 mW/cm2, which is much less than in the two-level
model. Note that the developed theory is adequate, only if
Ip � Isat. Comparing (8) and (15), we can write an alternative
expression for the saturation parameter in our scheme:

ξ = Ic

(2 − β )Isat
. (16)

We emphasize once again the positive role of the transition
openness in the pump-probe scheme that, on the one hand,
shrinks the resonance linewidth and, on the other hand, sig-
nificantly increases its contrast. It should be noted that it is a
unique case because such a transition openness has long been
considered as a harmful effect, noticeably degrading proper-
ties of both the EIT and EIA resonances in various schemes
[23,79–82]. In general, the line-narrowing effect considered
contributes to other known narrowing effects of subnatural-
width resonances, for instance, due to atomic motion in a gas
(Doppler narrowing) [83,84], suppression of spin-exchange
relaxation [20,85], and the influence of the transverse intensity
distribution of a light beam [86,87].

III. EXPERIMENT

A. Setup

The experimental setup is shown in Fig. 4. We use a
distributed Bragg reflector diode laser with a radiation wave-
length of λ ≈ 894.5 nm (Cs D1 line) and a linewidth less
than or equal to 0.5 MHz. The laser output beam is passed
through a Faraday optical isolator. A set of neutral density
filters is used to control the light power. Subsequently, the

FIG. 4. Experimental setup: DBR, distributed Bragg reflector
diode laser; Isolator, optical Faraday insulator; NDF, set of neu-
tral density filters; λ/2 and λ/4, phase half waveplate and quarter
waveplate, respectively; PM fiber, polarization maintaining fiber; Cs,
cesium vapor cell; D, iris diaphragm; WP, Wollaston prism; and
BPD, balanced photodetector.

beam is sent to a polarization-maintaining optical fiber. A
half waveplate (λ/2) before the fiber is used to adjust the
linear polarization of the beam. A lens is placed after the
fiber to collimate the beam (another lens is included in the
fiber collimator and can be moved). The beam diameter (1/e2)
after the lens is around 1.5 mm. A quarter waveplate (λ/4)
placed after the lens creates two circularly polarized light
waves, the pump and the probe beams. The relative strength of
the beams is determined by the light wave ellipticity and can
be controlled by the angle between the main axis of the plate
and the direction of linear polarization of the initial light wave
(with accuracy reaching approximately 0.1◦). For instance,
this angle equals 45◦ if one needs a circularly polarized wave
as in the standard Hanle scheme. The pump and probe beams
pass through the cesium vapor cell and their circular polariza-
tions are transformed back into the linear polarizations by the
second quarter waveplate. Since the circularly polarized pump
and probe beams have an opposite handedness, their linear
polarizations after the second λ/4 plate are mutually orthogo-
nal. The beams can then be separated in space by means of a
Wollaston prism (WP) and monitored independently by using
a balanced photodetector. An iris diaphragm before the WP,
having about the same diameter as the beams, is used to reduce
the influence of a Gaussian profile of the beam intensity, on
the one hand, and helps to slightly improve the resonance
contrast, on the other hand (see details in [34]).

A cubic 5 × 5 × 5 mm3 cesium vapor cell is made of Pyrex
glass and filled with a neon buffer gas (approximately equal
to 130 Torr). The cell is heated by an ac electric current
(100 kHz) applied to resistive heating elements. The elements
are made of a polyimide film, containing microwires that carry
electric currents in opposite directions to reduce the stray
magnetic field. The heating process does not have a visible
effect on the LCRs. A three-layer μ-metal magnetic shield is
utilized to reduce the ambient field down to approximately
0.1 mG in the cell volume.

The absorption profiles corresponding to the separate op-
tical transitions Fg = 4 → Fe = 3 and Fg = 4 → Fe = 4 are
significantly broadened due to collisions with a buffer gas, so
they merge into a single absorption line. The laser frequency

013113-7



D. V. BRAZHNIKOV et al. PHYSICAL REVIEW A 106, 013113 (2022)

is tuned manually to the center of this curve. We use a pair of
Helmholtz coils to produce a transverse magnetic field, here
referred to as Bx. It is scanned around zero to observe the
GSHE resonance.

Let us provide several estimations to check that our ex-
perimental conditions meet the main limitations underlying
our theory. At T ≈ 60 ◦C, the atomic number density in the
cell (na) is around 1012 cm−3 [78]. Using the well-known
expressions [88,89] and coefficients from [90], we get an
estimation for the ground-state relaxation rate 
 to be around
2π × 420 Hz (or approximately 1.1 mG in the magnetic-field
domain). The D1 line broadening data from [91] lead to γeg ≈
2π × 680 MHz. In our experiments, the pump-wave intensity
is in the range approximately equal to 10–700 mW/cm2.
Therefore, from (8) we can easily deduce that Rc is in the
range approximately equal to 2π × (3–24) MHz ≈ (1–10)γ .
For the latter estimation we took β = 0.5. Finally, in the
next section we will see that the LCR lies in the region
Bx � 50 mG, i.e., � � 2π × 18 kHz. The estimations pro-
vided demonstrate that the following conditions necessary for
the validity of our theory are met with a good margin: 
 �
γ � γeg and � � γeg. Another condition Rc � γegγ can
be rewritten as Ic � γ (2 − β )Isat/
 ≈ 1.5 × 103 mW/cm2.
Therefore, we can anticipate achieving good agreement be-
tween the theory and the experiments at Ic � 200 mW/cm2.

B. Openness-induced line-narrowing effect

First, we register a GSHE resonance in the standard Hanle
scheme where the light wave has circular polarization. At this
regime, the laser beam completely transferred to channel 1 of
the balanced photodetector (see Fig. 4). At an optical power
of 600 μW, the resonance FWHM is around 3.5 mG and the
contrast is approximately equal to 12% [Fig. 5(a)], which is
defined as C = (A/B) × 100%, with A the resonance height
and B the light transmission at the center of the resonance.

Figure 5(b) shows the dependence of the resonance
linewidth on the laser beam intensity. In the figure, the green
solid curve fits the experimental data (violet circles) accord-
ing to the theoretically predicted square-root-like law �c ≈



√
1 + Ic/I0. Note that our theory is based on a simplified �

scheme of levels; therefore, we cannot anticipate quantitative
agreement between the theory and experiments without using
any fitting (free) parameters. Since we have already estimated

 to be around 1.1 mG, we can use only one fitting parameter
I0 ≈ 5.3 mW/cm2. As seen from Fig. 5(b), an increase in the
cell temperature leads to an additional broadening that looks
like a linearization of the linewidth behavior (orange squares)
as mentioned in Sec. II [see Fig. 3(c)]. In addition, in Sec. II
we also noted that our expressions are valid if Ic is less than
200 mW/cm2. Consequently, this can be the reason for the
slight deviation from the square-root law in Fig. 5(b) when Ic

exceeds this value. In general, we can conclude that both sets
of experimental data points in Fig. 5(b) visibly deviate from a
linear dependence (dashed line), which could be expected for
the closed scheme of energy levels, � = 
 (1 + Ic/I0), i.e.,
the predicted linewidth narrowing effect is clearly seen in the
figure.

Figure 6(a) shows the levelcrossing EIA resonance ob-
served in channel 2 of the balanced photodetector (PD) when

FIG. 5. (a) Level-crossing resonance in the standard Hanle
scheme at Pc ≈ 600 μW and T ≈ 60 ◦C. (b) Linewidth (FWHM)
of the resonance versus the wave intensity. The green solid line is
a square-root fitting of the experimental data points (violet circles) at
a lower temperature of 57 ◦C. Orange squares stand for the FWHM
at an increased temperature. The black dashed line is a linear law
drawn through the first three experimental points by the method of
least squares.

the polarization of the initial beam differs slightly from cir-
cular polarization (ε ≈ 41◦). In the case of EIA resonance,
the contrast is defined as C = (A/B) × 100%, where A is the
resonance height and B is the background light transmission.
As seen in the figure, at 650 μW of the total optical power,
the resonance has approximately 80% contrast and a 4 mG
linewidth. In contrast to the EIT resonance in the pump-wave
transmission (at channel 1), the EIA linewidth behavior is
almost linear [Fig. 6(b), violet curve with closed squares].
This differs from the linear law only at It � 50 mW/cm2. This
peculiarity can be explained by the fact that the probe-wave
intensity is not as low as it is required by the developed
theory. Indeed, it changes as the total intensity It changes.
In particular, the probe-wave intensity can be calculated as
Ip = It sin2(ε − π/4), so at It = 50 mW/cm2 and ε = 39◦
we get Ip ≈ 0.25 mW/cm2. This value coincides with the
saturation intensity (see Sec. II); therefore, the probe wave
can be considered to be small in a whole range of It . The
green solid line with open squares in Fig. 6(b) corresponds
to the case when the probe-wave intensity is kept low enough
by adjusting the ellipticity of light polarization every time the
total intensity is increased (Ip is in the range approximately
equal to 40–60 μW/cm2 for this case). We use a few initial
data points to make a linear fit of the experimental data (pink
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open squares

FIG. 6. (a) Level-crossing EIA resonance observed in channel 2
of the PD at ε = 39◦, Pt = 650 μW, and T = 60 ◦C. (b) Linewidth
(FWHM) of the resonance as the total light intensity is changed
(closed squares) or only the pump-wave intensity is changed (open
squares). Solid curves are just guides for the eye. The pink dashed
line is the linear fitting for the first six open squares.

dashed line). The square-root-like behavior is now clearly
manifested as it has been predicted by the theory.

C. Measurement of the resonance parameters

Here we focus on analyzing the EIA resonance parameters
(linewidth, contrast, and contrast-to-width ratio) depending
on the total intensity and the ellipticity parameter, keeping
the cell temperature around 60 ◦C. As seen in Fig. 7(a), if
the light wave polarization differs significantly from the cir-
cular polarization (blue triangles and violet asterisks), the
linewidth experiences an additional broadening. In this case,
the probe-wave intensity is not low enough and the conditions
for observation of the EIA resonance are not optimal. The
same reason leads to a degradation of the EIA resonance
contrast with the intensity increase in Fig. 7(b). At the same
time, at 35◦ < ε < 45◦ (orange squares, pink circles, and
green rhombuses), the contrast does not experience a visible
degradation with the intensity increase, reaching 83% (orange
squares).

The EIA resonance in the probe-wave transmission can
be used for magnetic-field measurements. In miniaturized

FIG. 7. Parameters of the EIA resonances for different elliptic-
ities versus the total light intensity: (a) linewidth, (b) contrast, and
(c)contrast-to-width ratio. Here T = 60 ◦C. Solid curves are just
guides for the eye.

sensors, the noise voltage at the PD is often higher than the
photon-shot-noise limit and contains different contributions
proportional to the light intensity. In this case, the sensitivity
of the measurement depends considerably on the contrast-to-
width ratio (CWR) of the resonance, which can be regarded
as a figure of merit (see, e.g., [38]). As seen in Fig. 7(c), the
EIA resonance CWR takes its maximum value at the lower
intensities. It can also be seen that the optimal ellipticity is
around 40◦.

Let us compare C and the CWR parameters measured for
the EIT (channel 1) and the EIA (channel 2) resonances at

013113-9



D. V. BRAZHNIKOV et al. PHYSICAL REVIEW A 106, 013113 (2022)

FIG. 8. Comparison of the EIT resonance parameters (in the
standard Hanle scheme with a circularly polarized wave) with the
best EIA parameters observed in the experiments. Here T = 60 ◦C.
Solid curves are just guides for the eye.

the same temperature of the cell. As follows from Fig. 8,
the contrast and the CWR are much higher in the case of
EIA. The high contrast of the EIA resonances in comparison
with the EIT ones is also demonstrated in Fig. 9, where the
laser frequency is scanned simultaneously with scanning the
magnetic field (spikes correspond to the EIT effect, while
dips correspond to the EIA effect). If Bx ≈ 0, then the pump
wave experiences an increased transmission through the cell
(EIT), while the probe-wave transmission is dramatically de-
creased (EIA). We can easily compare the heights of the
EIT and EIA resonances. It can be noted that a nonzero
optical frequency detuning from the center of absorption line
may cause a change in the resonance sign. In this case only
one optical transition Fg = 4 → Fe = 3 or Fg = 4 → Fe =
4 is predominantly excited by the light, exhibiting EIT- or
EIA-type resonances depending on the angular momentum
values of the involved levels. In addition, there can be a
non-negligible influence of the circular birefringence under
a nonzero-frequency detuning, competing with the dichroism
effects.

Before we end this section we would like to mention an-
other way to observe the GSHE resonance which consists
in monitoring a differential channel at the PD. The pump

FIG. 9. Transmission signals observed at ε = 37◦ in both chan-
nels of the balanced PD with simultaneous scanning of the light-field
frequency detuning ( fscan = 0.5 Hz) and the transverse magnetic field
( fscan = 20 Hz). The separate optical transitions Fg = 4 → Fe = 3
and Fg = 4 → Fe = 4 are not resolved due to buffer-gas line broad-
ening. Here Pt = 5.3 mW and T = 63 ◦C.

and probe channels provide significantly different magnitudes
of the signals. To show them on the same plot, we need
to normalized these signals to, for example, the background
transmission. Then if we want to include the signal from
the differential channel, the background should be extracted
from all signals because the differential channel has a zero
background. The result of this procedure is demonstrated in
Fig. 10. As can be seen, the differential channel provides
the resonance with an increased height (solid pink curve)
compared to the heights of the EIT and EIA resonances. This
observation technique deserves additional study and is not
considered in the present paper.

D. Sensitivity

To estimate the sensitivity, we have measured the noise
voltage and signal-to-noise ratio in channel 2 at ε = 37◦
[Figs. 11(a) and 11(b)]. On a log-log plot in Fig. 11(a), the
noise decreases linearly down to approximately 30 nVrms at

FIG. 10. Level-crossing resonances observed in different chan-
nels of the balanced photodetector at ε = 37◦, Pt = 1.1 mW, and
T = 60 ◦C.
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FIG. 11. (a) Noise voltage of the EIA resonance (upper dark cyan
curve) at Pt = 1 mW and the dark noise of the PD (lower dark yellow
curve). (b) SNR (dark red squares along the left y axis) and sensitivity
(green circles along the right y axis) at 40 Hz as the work frequency
of the sensor versus total intensity of the beam. The conditions for
the measurements are ε = 37◦ and T = 60 ◦C.

40 Hz. It has been checked in our experiments (not shown
here) that the EIA resonance characteristics do not degrade
visibly up to 150 Hz of the scanning frequency. Therefore,
we can take a work frequency of the sensor in the range
40–150 Hz. Then, using the dependence of the linewidth in
Fig. 7(a), we can now plot the sensitivity δB versus the
light-field intensity [Fig. 11(b)]. It reaches approximately
1.8 pT/

√
Hz at It ≈ 50 mW/cm2. This sensitivity is deter-

mined mainly by the laser intensity noise, dark noise of the
PD, and electric current noise in the Helmholtz coils which is
transferred to the intensity noise at the resonance slope. As an
example, we show the dark noise of the PD in the same plot.
A shot-noise limit shown in the figure as a dashed line is much
lower than the observed total noise. Therefore, if all necessary
steps are taken to reduce the noise sources, we can expect
to achieve a shot-noise-limited sensitivity of approximately
60 fT/

√
Hz. Some improvement likely can be obtained just

by using a differential channel of the PD. However, we do
not focus on this possibility in the present study because it
deserves separate and careful investigation.

IV. CONCLUSION

In this paper we have considered subnatural-width zero-
field level-crossing resonances in a cesium vapor cell with a
buffer gas. The effect is also known as the ground-state Hanle
effect. The atoms are excited by a single light wave, while

a transverse magnetic field is slowly scanned around zero to
observe the LCR in the light beam transmission. The buffer-
gas pressure is such that the excited-state hyperfine levels of
the Cs D1 line are overlapped due to collisional broadening,
while the ground-state hyperfine levels are spectroscopically
resolved. Based on a three-level � scheme, we developed a
simplified theory that provides an explicit analytical solution
for the light-wave absorption index. The solution revealed
a line-narrowing effect that can be observed in an open
system of energy levels. This effect was confirmed experimen-
tally.

The main goal of the paper consisted in developing a
single-beam technique that could provide high-quality LCRs
in a low-temperature small vapor cell. Such a technique could
be of interest in biomedical applications where an array of
magnetic-field sensors are required. We have proposed to
use a single elliptically polarized light wave that, under the
conditions considered, can be treated as a combination of
two independent circularly polarized waves: The pump wave
creates a strong circular dichroism in the resonant medium,
while the probe wave interacts with the prepared atoms. It
has been shown that LCRs in the probe-wave transmission
demonstrate an extraordinary contrast up to 83% versus 17%
as in the standard Hanle scheme. The observed contrast-
to-width ratio, a figure of merit of the resonance, reached
42%/mG. It should be emphasized that the observed high
characteristics of the resonances have been obtained in a
small 5 × 5 × 5 mm3 vapor cell heated to a relatively low
temperature of approximately 60 ◦C, in contrast to many other
schemes where alkali-metal vapors are usually heated to a
higher temperature than 120 ◦C to reach the SERF regime of
operation. The absence of the SERF regime in our case also
means a potentially large dynamic range of measurements of
the sensor up to several microtesla.

The proposed technique for observing the LCRs can be
used for developing a high-sensitivity compact magnetic-field
sensor of low power consumption and heat release. To demon-
strate this, we have measured the noise voltage observed on
the photodetector. The noise level appeared to be significantly
higher than the shot-noise limit; nevertheless, the estimated
sensitivity reached approximately 1.8 pT/

√
Hz at 40 Hz. We

expect that additional efforts directed at the noise suppression
will help us demonstrate the shot-noise-limited sensitivity of
approximately 60 fT/

√
Hz. However, such a systematic work

deserves a separate study.
In our experiments, a pair of Helmholtz coils is used to

scan the transverse field Bx to observe the resonance. The
resonance shift provides information about the x component
of the ambient magnetic field that can be measured. A two-
dimensional operation of the sensor can be easily realized
by using the second pair of coils to scan By field. A full
three-dimensional (vector) mode of operation can be also
realized in different ways. One of them is to use additional
coils to compensate for the z component of the ambient field
by maximization of the resonance contrast. Another way is to
monitor the resonance linewidth that experiences additional
linear broadening if Bz is presented in the cell [35]. Also, all
three components of the field can be measured by scanning
the transverse and longitudinal magnetic fields to observe
different types of LCRs [73].
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Finally, we would like to point out that the small vapor
cell used in our experiments can be integrated into a com-
pact magnetic-field sensor, as has already been demonstrated
by other groups with similar cubic glass vapor cells (see,
e.g., [39,92]). However, what is truly breathtaking is the
possibility of using the proposed technique in conjunction
with the booming photonic-atomic chip-scale technologies
that provide extreme miniaturization. For instance, a photon
spin sorter was recently demonstrated in [93]. Such a device
is probably best suited for creating a chip-scale circular-
dichroism-based quantum sensor.
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APPENDIX

Here we apply a well-known density matrix approach [67]
to figure out analytical expressions for absorption indices of
the pump and probe waves in atomic vapors. We start from the
general equation (2), where the free-atom Hamiltonian has the
explicit form

Ĥ0 =
3∑

n=0

En|n〉〈n|, (A1)

where En is an energy of n level with E1 = E2 [see Fig. 1(b)]
so that ω31 = ω32 = (E3 − E1)/h̄ is the optical transition
frequencies in the � scheme. Angular brackets 〈· · · | and | · · · 〉
stand for the Dirac’s bra and ket vectors, respectively.

The operator V̂b is responsible for the interaction between
the atomic spins and ambient transverse magnetic field (Bx ⊥
k). It leads to mixing of the |1〉 and |2〉 states

V̂b = h̄�(|1〉〈2| + |2〉〈1|), (A2)

where � is the Larmor frequency.
In the rotating-wave approximation, the interaction be-

tween the atomic dipole momentum d and the light field (1) is
described by the operator

V̂e = −d̂E (t, z) = −h̄Rce−iωt |3〉〈1|
− h̄Rpe−iωt |3〉〈2| + H.c., (A3)

with Rc,p the Rabi frequencies for the pump (c) and probe (p)
waves and H.c. the Hermitian conjugate terms. As shown in
Sec. II, the pump wave experiences low absorption in the cell.
The probe wave in turn is weak enough to not affect the atomic
density matrix at all. Therefore, we do not take into account
the dependence of the Rabi frequencies on the z coordinate in
(A3).

The density matrix ρ̂ for the � scheme considered can be
written in the form

ρ̂ =

⎛
⎜⎝

ρ00 0 0 0
0 ρ11 ρ12 ρ13

0 ρ21 ρ22 ρ23

0 ρ31 ρ32 ρ33

⎞
⎟⎠, (A4)

where diagonal elements ρnn (n = 0, . . . , 3) denote the sub-
level populations, ρ12 and ρ21 stand for the so-called Zeeman
coherences, and ρ13, ρ31, ρ23, and ρ32 are known as optical
coherences because they oscillate in time at the optical fre-
quency ω. Other nondiagonal elements, such as ρ0n and ρn0

(n = 1, . . . , 3), are equal to zero because there is no light or
microwave field in the system that could couple the corre-
sponding sublevels. Therefore, |0〉 can be referred to as the
trap state with the population ρ00. Since the density matrix is
Hermitian, ρ̂ = ρ̂†, we get the relation ρnm = ρ∗

mn.
The relaxation operator R̂ in (2) reflects the influence of

three different processes in the atom: spontaneous radiation
emission from the excited state occurring at the rate 2γ ,
collisional broadening of the optical absorption line (γc), and
diffusive motion of alkali-metal atoms in buffer gas (
), dur-
ing which a spin-polarized atom either leaves the light beam or
undergoes a spin-exchange–destruction collision (see review
[88]). We can consider these contributions by separate terms,
namely, the spontaneous relaxation reads

R̂spon = γ

⎛
⎜⎝

β0ρ33 0 0 −1
0 β1ρ33 0 −1
0 0 β2ρ33 −1

−1 −1 −1 −2

⎞
⎟⎠, (A5)

where the branching ratios are β1 = β2 ≡ β and β0 = 2(1 −
β ). The collisional line broadening is described by the terms

R̂coll = −γc

2∑
n=1

ρn3|n〉〈3| + H.c., (A6)

Finally, the diffusion time-of-flight relaxation has the form

R̂diff = −
ρ̂ + 1

3



2∑
n=0

|n〉〈n|. (A7)

Here we take into account that the initial (isotropic) popula-
tion distribution is such that ρ00 = ρ11 = ρ22 = 1

3 .
We apply the rotating-wave approximation, which means

the following series expansion for the optical coherences:

ρ13(t ) = ρ̃13eiωt , ρ23(t ) = ρ̃23eiωt ,

ρ31(t ) = ρ̃31e−iωt , ρ32(t ) = ρ̃32e−iωt . (A8)

We consider the atom-field interaction under the optical res-
onance condition when ω = ω31 = ω32. Using the master
equation (2) and all the above expressions, we arrive at the
set of linear differential equations

d

dt
ρ00 = 1

3

 + 2(1 − β )γ ρ33 − 
ρ00, (A9)

d

dt
ρ11 = 1

3

 + βγρ33 − 
ρ11

+ i�(ρ12 − ρ21) + iRc(ρ̃31 − ρ̃13), (A10)

d

dt
ρ22 = 1

3

 + βγρ33 − 
ρ22

+ i�(ρ21 − ρ12) + iRp(ρ̃32 − ρ̃23), (A11)
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d

dt
ρ33 = −2γ ρ33 − 
ρ33 + iRc(ρ̃13 − ρ̃31)

+ iRp(ρ̃23 − ρ̃32), (A12)

d

dt
ρ12 = −
ρ12 + i�(ρ11 − ρ22)

+ iRcρ̃32 − iRpρ̃13, (A13)

d

dt
ρ̃13 = −γegρ̃13 − i�ρ̃23

+ iRc(ρ33 − ρ11) − iRpρ12, (A14)

d

dt
ρ̃23 = −γegρ̃23 − i�ρ̃13

+ iRp(ρ33 − ρ22) − iRcρ21. (A15)

The three other equations for ρ̃31, ρ̃32, and ρ̃21 can be obtained
by complex conjugation of the corresponding equations.

The pump wave propagates through the medium according
to the reduced wave equation

dEc

dz
= 2π ikP̃c, (A16)

where Pc(z, t ) = P̃c(z)e−iωt is the medium polarization in-
duced by the pump wave with P̃c = nad0ρ̃31. Taking into
account the relation Ip,c = (c/2π )E2

p,c, we get the equation for
the pump-wave intensity change

dIc

dz
= 2nah̄ωRcIm(ρ̃13). (A17)

Considering the steady-state regime, when the complex
amplitudes ρ̃nm in (A8) do not depend on time as well as the
sublevel populations ρnn and Zeeman coherences ρ12 and ρ21,
we arrive at the expression

ρ̃13 = iγegRc

�2 + γ 2
eg

(ρ33 − ρ11) − Rc�

�2 + γ 2
eg

ρ21

+ Rp�

�2 + γ 2
eg

(ρ33 − ρ22) − iγegRp

�2 + γ 2
eg

ρ12. (A18)

In a linear approximation on the probe field, we can take
Rp = 0 in the formula (A18). We also assume that � � γeg

and Rc � γeg, so (A18) now reads

ρ̃13 ≈ i
Rc

γeg
(ρ33 − ρ11). (A19)

This expression means that the optical coherence on the transi-
tion |1〉 → |3〉 is created by the pump light field rather than the
interference action of the probe light field and the transverse
magnetic field. In our approach, this coherence contains only
the imaginary part, i.e., any effects of birefringence, such
as the Voigt (Cotton-Mouton) effect [10], are negligible in
comparison to dichroism effects under the optical resonance
condition ω = ω32 = ω31 considered in the present work.

By substituting (A19) into (A12) and taking Rp = 0, in the
steady state we get

ρ33 ≈ 2R2
cτ

γeg(1 + 2γ τ )
(ρ11 − ρ33). (A20)

In this equation we can assume γ τ � 1, which is satisfied
with a good margin in the case of a buffered vapor cell. Fur-
thermore, due to a large collisional broadening of the optical
absorption line, we also have the condition R2

c � γ γeg. These
assumptions lead to a simple solution

ρ33 ≈ R2
c

γ γeg
ρ11, (A21)

meaning that ρ33 � ρ11. Therefore, we can neglect the in-
fluence of the excited-state population on the pump-wave
absorption in the cell. All these conclusions result in the law

dIc

dz
≈ −2nah̄ω

γeg
ρ11R2

c = −3γ βλ2na

4πγeg
ρ11Ic, (A22)

which coincides with (3).
To find the steady-state population ρ11, we assume that

the Zeeman coherences ρ12 and ρ21 are produced only by
the magnetic field. This assumption is valid because, as men-
tioned at the beginning of Sec. II, the interference between the
pump and the probe waves can be neglected. If Rc � γeg and
� � γeg, then we find

ρ12 ≈ i�τ

1 + ξ
(ρ11 − ρ22), (A23)

with ρ21 = ρ∗
12.

Substituting (A19) and (A23) into (A10) and assuming
ρ33 � ρ11, we arrive at the solution

ρ11 ≈ ρ0
1 + ξ + 4�2τ 2

(1 + ξ )χ + 4�2τ 2(χ − ξ )
, (A24)

with χ = 1 + (2 − β )ξ . In combination with (A22), the ex-
pression (A24) results in the pump-wave absorption index
(7). In (A24), ρ0 = 1

3 is the initial sublevel population in the
absence of the light field.

Similarly to (A17), the probe-wave absorption satisfies the
equation

dIp

dz
= 2nah̄ωRpIm(ρ̃23). (A25)

At � � γeg, from (A15) we get

ρ̃23 ≈ i
Rp

γeg
(ρ33 − ρ22) + i

Rc

γeg
ρ12, (A26)

and (A25) now transforms to

dIp

dz
= 2nah̄ω

γeg

[
R2

p(ρ33 − ρ22) − RpRcRe(ρ12)
]
. (A27)

Neglecting the low impact from the excited-state population
and the influence of the interference term (proportional to
RcRp) gives

dIp

dz
≈ −2nah̄ω

γeg
ρ22R2

p = −3γ βλ2na

4πγeg
ρ22Ip, (A28)

where ρ22 does not depend on the probe field in the linear
regime. In addition, since the pump field experiences low
absorption in the cell (discussed in the main text), ρ22 does not
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depend on z as well. Therefore, we can easily get an explicit
solution in the form

Ip(z) = Ip0e−αpz, (A29)

with Ip0 the probe-wave intensity at the entrance of the cell
and αp the probe-wave absorption index

αp ≈ 3γ βλ2na

4πγeg
ρ22. (A30)

Using the same assumptions (R2
c � γ γeg and � � γeg), the

steady-state solution of (A11) gives

ρ22 ≈ ρ0
(1 + ξ )(1 + 2ξ ) + 4�2τ 2

(1 + ξ )χ + 4�2τ 2(χ − ξ )
, (A31)

which results in the probe-wave absorption index (12).

[1] I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis,
Nature (London) 422, 596 (2003).

[2] O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran,
U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe,
Phys. Med. Biol. 60, 4797 (2015).

[3] E. J. Pratt et al., in Optical and Quantum Sensing and Precision
Metrology, edited by S. M. Shahriar and J. Scheuer, SPIE Proc.
Vol. 11700 (SPIE, Bellingham, 2021), p. 1170032.

[4] J. Marquetand, T. Middelmann, J. Dax, S. Baek, D. Sometti, A.
Grimm, H. Lerche, P. Martin, C. Kronlage, M. Siegel, C. Braun,
and P. Broser, Clin. Neurophysiol. 132, 2681 (2021).

[5] A. Soheilian, M. M. Tehranchi, and M. Ranjbaran, Sci. Rep. 11,
7156 (2021).

[6] A. Fabricant, G. Z. Iwata, S. Scherzer, L. Bougas, K. Rolfs, A.
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B. M. Jelenković, Phys. Scr. T162, 014038 (2014).

[38] L. Lenci, L. Marmugi, F. Renzoni, S. Gozzini, A. Lucchesini,
and A. Fioretti, J. Phys. B 52, 085002 (2019).

[39] V. Shah and M. V. Romalis, Phys. Rev. A 80, 013416 (2009).
[40] J. Tang, Y. Zhai, L. Cao, Y. Zhang, L. Li, B. Zhao, B. Zhou, B.

Han, and G. Liu, Opt. Express 29, 15641 (2021).
[41] A. Ben-Kish and M. V. Romalis, Phys. Rev. Lett. 105, 193601

(2010).
[42] M. V. Petrenko, A. S. Pazgalev, and A. K. Vershovskii, Phys.

Rev. Applied 15, 064072 (2021).
[43] Y. Ma, J. Deng, Z. Hu, H. He, and Y. Wang, Chin. Opt. Lett. 11,

022701 (2013).

013113-14

https://doi.org/10.1038/nature01484
https://doi.org/10.1088/0031-9155/60/12/4797
https://doi.org/10.1016/j.clinph.2021.06.009
https://doi.org/10.1038/s41598-021-86358-0
https://doi.org/10.1038/s41598-021-81114-w
https://doi.org/10.1021/acs.analchem.0c04738
https://doi.org/10.1103/RevModPhys.5.91
https://doi.org/10.1103/RevModPhys.74.1153
https://doi.org/10.1007/BF01331827
https://doi.org/10.1016/0375-9601(69)90480-0
https://doi.org/10.1364/AO.1.000061
https://doi.org/10.1038/nphoton.2007.201
https://doi.org/10.1063/1.4770361
https://doi.org/10.1088/1674-1056/28/4/040703
https://doi.org/10.1103/PhysRevLett.89.130801
https://doi.org/10.1109/TIM.2009.2023829
https://doi.org/10.1103/PhysRevA.66.012502
https://doi.org/10.1140/epjd/e2002-00178-y
https://doi.org/10.1103/PhysRevA.78.013417
https://doi.org/10.1140/epjd/e2009-00126-5
https://doi.org/10.1364/JOSAB.29.002729
https://doi.org/10.1209/0295-5075/117/63002
https://doi.org/10.1063/1.4901588
https://doi.org/10.1103/PhysRevApplied.11.044034
https://doi.org/10.1103/PhysRevA.83.013826
https://doi.org/10.1364/OL.42.002930
https://doi.org/10.1088/1612-202X/aa9977
https://doi.org/10.1103/PhysRevApplied.12.064010
https://doi.org/10.1088/1361-6455/ab3d0e
https://doi.org/10.1063/5.0059019
https://doi.org/10.1063/1.4861458
https://doi.org/10.1088/0031-8949/2014/T162/014038
https://doi.org/10.1088/1361-6455/ab0fc5
https://doi.org/10.1103/PhysRevA.80.013416
https://doi.org/10.1364/OE.425851
https://doi.org/10.1103/PhysRevLett.105.193601
https://doi.org/10.1103/PhysRevApplied.15.064072
https://doi.org/10.3788/COL201311.022701


LEVEL-CROSSING RESONANCES ON OPEN ATOMIC … PHYSICAL REVIEW A 106, 013113 (2022)

[44] S. Pradhan and R. Behera, Sensor Actuat. A 290, 48 (2019).
[45] A. Papoyan, S. Shmavonyan, A. Khanbekyan, K. Khanbekyan,

C. Marinelli, and E. Mariotti, Appl. Opt. 55, 892 (2016).
[46] D. Brazhnikov, S. Ignatovich, I. Mesenzova, A.

Novokreshchenov, and A. Goncharov, Opt. Lett. 45, 3309
(2020).

[47] E. Pfleghaar, J. Wurster, S. I. Kanorsky, and A. Weis, Opt.
Commun. 99, 303 (1993).

[48] Y. Dancheva, G. Alzetta, S. Cartaleva, M. Taslakov, and C.
Andreeva, Opt. Commun. 178, 103 (2000).
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