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Optical distinguishability of Mott insulators in the time versus frequency domain
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High harmonic generation (HHG) promises to provide insight into ultrafast dynamics and has been at the
forefront of attosecond physics since its discovery. One class of materials that demonstrates HHG are Mott
insulators whose electronic properties are of great interest given their strongly correlated nature. Here, we
use the paradigmatic representation of Mott insulators, the half-filled Fermi-Hubbard model, to investigate the
potential of using the HHG response to distinguish these materials. We develop a heuristic argument based on
the Magnus expansion which predicts that distinguishability of Mott insulators will in most cases diminish as the
dimensionless parameter g = aFy/w, becomes large, a result confirmed by numerical simulation. The notable
exception is when comparing to a conducting system, which becomes more distinguishable from in the frequency

domain at high g.
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I. INTRODUCTION

One of the principal breakthroughs of the last half-century
has been the discovery of nonlinear optics, enabled by the
invention of the laser [1,2]. Nonlinear effects are expected
to play a crucial role in what has been termed the “second
quantum revolution” [3], where quantum effects are exploited
to develop new technology. It has already been demonstrated
that systems exhibiting a nonlinear optical response pos-
sess a number of both useful and surprising properties, such
as controllability [4-8], optical indistinguishability [9,10],
nonuniqueness [11-14], self-focusing [15], the nonlinear
Fano effect [16], and many more [17,18].

Within the plethora of nonlinear effects already discov-
ered [19], one of the most promising is high harmonic genera-
tion (HHG). First observed in gases, this phenomenon has also
been induced by strong fields in atoms and molecules [20-26],
the surfaces of both metal and dielectric solids [27-31], and in
bulk crystals [32—41]. The ability to generate light at frequen-
cies many multiples greater than the initial excitation provides
a tool for observation and manipulation at the attosecond
timescale [42—45]. Given inter- and intraatomic electron mo-
tion occurs on precisely this timescale, applications of HHG
can provide a route to the study of the electronic structure
of materials [40,44,46]. Not only does this offer insight into
fundamental phenomena, such as tunneling [47], proper un-
derstanding of atomic scale properties has many applications,
from mixture characterization [48], to faster task-specific
electronics [49], and measurements of chirality [50,51] to
novel “valleytronics” [52].

Given that HHG offers a higher-resolution window on
electron dynamics, it is natural to ask how it might be
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used to improve material characterization. In the modern era,
this process has moved beyond the determination of simple
properties, such as conductivity, and focuses instead on mi-
croscopic or even atomic properties. To do so, tools, such
as scanning tunneling microscopes [53] and electron diffrac-
tion [54] have been employed. These have had great success
in certain applications but are far from ubiquitous [40]. Mean-
while, high harmonic responses to optical driving has become
a useful tool in electronic analysis [46]. Researchers have suc-
cessfully applied HHG spectroscopy to probe the electronic
structure of specific materials [20-41,45,55], and it has even
been shown recently that HHG spectra can indicate a critical
point of a quantum phase transition from a spin-density wave
to a charge-density wave [56]. Taken together, these results
indicate that the high harmonic response of materials may be
a powerful future tool in the characterization and analysis of
of materials in the solid state.

In such a case, one would ideally employ all information
that can be gleaned from a material’s optical emission—
i.e., the full time-domain response. Whereas there is some
prospect of obtaining this in the future [46], at present
time-resolved measurement of subfemtosecond processes is
difficult in the solid state [49,57]. Nevertheless, frequency-
domain spectroscopy of high-order harmonics and their
relative intensities can be acquired experimentally at the cost
of losing the phase information of the response. This begs the
question as to the importance of this lost phase information.

Here, we consider the potential of high harmonic optical
responses as a tool for material identification whereas plac-
ing particular emphasis on the role of the optical response’s
phase information in distinguishing the driven dynamics of
different materials. We investigate this question in a class
of materials described by the Hubbard model, namely, Mott
insulators [58,59]. Previous studies of HHG in the Hubbard
model have revealed that the mechanism for generation of
high harmonics is intrinsically distinct from that of crystals
and other solids in which HHG has been observed [60,61].

©2022 American Physical Society
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Specifically, the plateaus in the optical spectra depend heav-
ily on the dynamics of the charge carriers, doublons, and
holes [60], suggesting that the HHG spectra of Mott insula-
tors contain valuable electronic information [62]. This can be
illustrated with the consideration that in the regime of linear
response, a monchromatic source will generate a relatively
narrow emission spectrum which can be difficult to distin-
guish from the spectra produced by similar materials [10].
The advantage of HHG is that it generates an broad spec-
trum of response from a monochromatic source, which carries
more information about the irradiated material than can be
obtained from a single pulse in the linear-response regime.
This naturally begs the question as to whether a specific Mott
insulator can be characterized and distinguished from others
purely by its high harmonic response. This would, in turn,
facilitate the parametrization of new materials purely by a
spectral measurement.

The rest of this paper will be structured as follows. In
Sec. II we set out the the driven Hubbard model and define
figures of merit which quantify the relative distinguishability
of two systems based on their time or frequency domain
response. We also provide a heuristic analysis predicting how
the degree of distinguishability of two materials depends on
both intrinsic system and laser pulse parameters. Section III
presents the results of numerical analysis, identifying the
regime in which phase information plays an important role in
material characterization. Finally, we close with a discussion
of the results and their potential applications in Sec. I'V.

II. MODEL

We would like to analyze the responses of different ma-
terials to an incident laser pulse which couples electrons to
an electric field. Using atomic units (7 = e = 1), henceforth,
unless explicitly stated otherwise, we take the paradigmatic
Hubbard model [8,59-62],

Ht)=—tg Y (V¢ &1 +He)+U Y ijaiyy,
Jo J

D

where &' ;.o and ¢, are, respectively, the canonical fermionic
creation and annihilation operators at site j with spin o,
i jo = cj »Cj.o 1 the particle number operator, #; is the hop-
ping parameter, U is the on-site interaction parameter, and
®(t) = aA(t) is the Peierls phase. This, in turn, is composed
of both lattice spacing a and the vector potential A(¢), which
is related to the electric field by E(¢) = —0d,A(?).

Although the Hubbard model is a relatively simple descrip-
tion of Mott insulators, it provides rich insight into the strong
electron-electron interactions in these materials [58,59,62,63],
distinguishing itself from models relying on mean-field ap-
proximations. These interactions play a crucial role in the
band structure of Mott insulators [60], preventing current flow
in these materials with half-filled valence bands that are pre-
dicted to be conductors under band theory.

The optical response of the material to driving is quantified
by the current operator,

J(t) = —iatyy " e Ot 211, — He., 2)

j.o

which can be derived from a continuity equation for electron
density [8]. The expectation of the current density operator
over the course of the evolution gives access to all spatial and
temporal information regarding a given material’s optical re-
sponse as the radiated emission will be proportional to 9;J ().
Ordinarily, it is easier to measure the spectra rather than the
time-resolved HHG output. The spectrum is given by

S(@) = |Fi-add (0P, 3)
where F denotes the Fourier transform and J(t) = (J (1)) is
the current expectation.

Clearly, the spectrum does not contain any of the phase
information present in the corresponding current expectation.
We seek to determine not only the degree to which one is
able to distinguish between systems via their optical response,
but whether phase information materially affects this distin-
guishability. In order to assess the relative distinguishability
of two systems (indexed by i and j), we define two relative
distance functions for a set of current expectations and their
spectra,

pu - (20 ),

¢ S; S
D, (i, j) :/\/p\//o 1og10 % — logyy fn(f)> do, (5)

J

L= , © A
m = max 9,Ji(t), nj Jmax Si(w), (6)
1 1
./V’[ _ = Np - = (7)

max; ; D, (i, j) max; ; D,(i, j)

Here, D, (i, j) denotes the distance in the time domain,
ﬁ,(i, j) is the unnormalized distance in the time domain,
D,(i, j) denotes the distance in the frequency domain, and
ﬁp(i, j) is the unnormalized distance in the time domain.
Each distance measure is normalized to the maximum value
over the set of pairs, giving a relative distinguishability that
allows the otherwise incommensurate distance measures of
the two domains to be compared directly. T is the duration of
the pulse, and w, is the cutoff frequency defined as the mini-
mum frequency for which S;(w.) = 1072 or S;(w.) = 10729,
choosing whichever w, is smaller. Note that each scaled by
its maximum value over the pulse n “, reflecting the fact
that Hubbard dynamics are controlled by the ratio U /1y [59],
rather than any absolute scaling of the Hamiltonian. This
ensures that the distinguishability measures capture genuine
differences in the optical dynamics, rather than simple scale
variations. Naturally, a distance of zero between two systems
indicates identical responses and perfect indistinguishability,
whereas a longer distance indicates a higher degree of relative
distinguishability.

In equilibrium (®(¢) = 0) only the ratio of two parameters,
the interaction energy U and the hopping energy fy, determine
the electronic properties of a material described by Eq. (1).
Consequently, one may scale all parameters to units of #,
and remove it from consideration. Under driving, however,
the dynamics of the optical response depends not only on
U /1y, but also on the lattice constant a and the driving pulse.
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FIG. 1. Power spectra of a conductor (U/fy = 0) and two Mott
insulators (U/ty =3 and U/ty =5) ata = 4 A and Fy = 10 XV,
The vertical lines indicate odd integer harmonics on which the power
spectra of the conductor demonstrates well-defined peaks. The upper
line of the insulators’ spectra is the power spectrum of the U/ty = 3

system, and the lower one is the spectrum of the U /fy = 5 system.

For concreteness, we consider driving each system from its
ground state with the phase resulting from a transform-limited
laser pulse,

®(t) = g sin’ (‘2‘)—]“’;) sin(wot), @®)

where M = 10 is the number of cycles and the dimensionless
ratio g = aFy/wy relates the lattice constant, field strength
Fy, and driving frequency wy, which we hold constant at
32.9 THz (fiwy/ty = 4.2 x 1072) throughout the paper. It is
interesting to note the similarity between g and the Hubbard
model Keldysh crossover parameter y = wqo/(§Fy) [64,65],
where £ is the correlation length [66]. This parameter indi-
cates the mechanism for pair production: y < 1 corresponds
to the quantum tunneling regime whereas y >> 1 indicates a
multiphoton absorption regime [64].

The response of a given material to optical stimulation
depends heavily on the values of U and g that define the
material’s electronic properties. For Mott insulators, charge
is carried by doublon-hole excitations [60], the pair produc-
tion of which decreases exponentially with U [64]. Figure 1
shows some of the essential optical characteristics resulting
from this, such as a white-light response to optical driving in
sufficiently strong Mott insulators. In the U = 0 conducting
limit, the spectral behavior becomes identical to atomic sys-
tems [67] with well-defined peaks present at odd harmonics.

There is no simple method for determining the effect of g
on material response as the parameter is a combination of both
an intrinsic material property (the lattice constant a) and the
frequency and amplitude of the driving field. Naturally, this
means that it is difficult to disentangle the effect of varying
g as being the consequence of either the system or driving
field parameters. In the first instance, however, the principal
response of a material depends on its intrinsic properties rather
than the field driving it (i.e., a conductor vs an insulator). We
might, therefore, be able to obtain a heuristic understanding

of the zeroth-order effect of scaling g by considering its effect
in terms of the intrinsic parameters defining a given system.
That is, we can estimate what consequence varying the field
parameters (or, equivalently, the system lattice spacing) will
have on the effective parametrization of the system without
directly considering the full dynamics of the response. To
do so, we borrow a commonly used technique from Floquet
engineering [68], the Magnus expansion [69]. Using this, it is
possible to estimate how in the large g limit this factor affects
optical spectra.

Taking | (¢)) = U®)|y(0)), the system propagator will
be of the form

U@r) = "0, 9)

We would like to approximate an effective time-independent
Hamiltonian, such that

Q(t) ~ —iHut. (10)

The exponent 2(¢) can itself be expressed in terms of the
Magnus expansion,

Q)= ). (a1

k=1

The first term in this expansion is given by

Qi) = —i/ H(t)dn, (12)
0

with the integral over the two-body term of Eq. (1) being
trivial given that it is time independent. Note that it is the
higher-order terms of this expansion that are precisely those
that will actually generate the high harmonics, but as men-
tioned previously the first-order term allows one to estimate
how (for example) a material may display more metallic or
insulator, such as behavior as the field it is subjected to is
varied, by approximating its effect on the 7y and U parameters.
Thus, we focus our attention on the integral over the hopping
term,

T
/ dry e V¢ &40 +He. (13)
0

J.o

T
= & e / dte ™ fHe., (14)
o 0

where integrating over the duration of the single pulse 7 =
27 M /wyp. The relevant integral is, therefore,

T
I= / dt expl—igf ()], (15)
0

where £ (1) = sin?(wot /2M) sin(wot ) (see Fig. 2).

Given the envelope is slowly varying relative to wy, for
each half period 7 /wy, we approximate it by its averaged
value over that period,

I . ' LG+
A; = §|:sm2 <%) + sin® (]Z—MT[)] (16)
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FIG. 2. A plot of f(¢) where each dashed line is the boundary of
aA je

Consequently, the integral can be approximated as

5 M-l
I ~— Z/ dt cos[gA; sin(t)]
wo =5 Jo

e
== "Jo(gA)). (17)
wo =

where Jp(x) is the zero-order Bessel function [70,
Eq. (10.9.1)]. In the limit of large g, this function may
be replaced by its asymptote [70, Eq. (10.17.3)] to obtain

1=~ T\/Ig, (18)
8
\/7 —7=cos (gAJ %) (19)

Having approximated the integral, it is now possible to
state the form of the effective Hamiltonian in Eq. (10),

where

a Iq! A oA
H ~ _20 Z(C‘]GCH-I o +Hc)+U Z”m”.ﬁi' (20)

J

This effective Hamiltonian is in the form of the Hubbard
Hamiltonian in equilibrium with one important difference, the
scaling of the hopping energy by ¢ /,/g. Note that whereas this
effective Hamiltonian will not capture the full dynamics of
the system, it does make a concrete prediction on the effective
strength of the system’s kinetic term in the large g limit.

Note that whereas ¢ has some g dependence, this occurs
only in the trigonometric terms in the sum, meaning that this
parameter will be bounded with respect to g, and have little
impact once the response is normalized. This is borne out by
numerical calculation of Eq. (15) as shown in Fig. 3. Here it is

15 20 25 30

FIG. 3. Numerical calculation of Eq. (15). As expected, the be-
havior at large g is well described by %, where « is some constant of
proportionality. The trigonometric dependence of { on g introduces
small oscillations around the central asymptote.

apparent that the contribution of ¢ at large g is the introduction
of small oscillations around Lg. It, therefore, follows that

the principal effect of increasing g will be the scaling of the
system response in the following manner:

I/ U U
no L — U UME @
fo fo

Clearly, for any insulator, the effective ratio of the interac-
tion parameter to the hopping parameter is proportional to the
scaling parameter ,/g. This means an increase in g leads to a
higher effective ratio. Depending on the value of U, this can
potentially transition the system from a regime where hop-
ping dominates to one where the on-site potential dominates
the dynamics of the system. This suggests increasing g will
trend push all systems towards the high U, strongly insulating
regime. The exception to this is the U = 0 conducting system,
which will only experience a scaling in the magnitude of
its optical response, rather than its dynamical character. The
same will be true (albeit to a lesser extent) when U is suffi-
ciently small that even after scaling the the parameter ratio is
< 1, and the system remains a kinetic-dominated regime.

Thus, when g is increased, we expect that the distance
between the responses of two Mott insulators given by Egs. (4)
and (5) to reduce, with the exception of those systems with
sufficiently small U that the scaling does not invert the balance
between kinetic and potential terms. This is exactly the phe-
nomena illustrated in Fig. 4: At low scaling the two systems
have highly distinguishable responses, but at high scaling their
power spectra are more similar. The only type of material
that will be distinguishable from Mott insulators in the high-g
regime are conductors whose response is unaffected by the
scaling in Eq. (21).

III. RESULTS

In this section, we numerically investigate the extent to
which the degree of distinguishability between systems de-
pends on system U /1y, a, and pulse parameters Fy and wg. In
particular, we demonstrate that there is a comparatively high
experimental optical discriminability between many Mott
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FIG. 4. Spectra of two systems defined by their intrinsic elec-
tronic properties (U/ty = 1 and U /t, = 8) at two levels of scaling:
the spectra in plot (a) are scaled by g = 4.62 and the spectra in plot
(b) are scaled by g = 46.2. In plot (a), the upper line represents the
U/ty = 1 system and the lower line represents the U /t, = 8 system,
and in plot (b), the lower line corresponds to the U/t; = 1 system
whereas the lower line corresponds to the U /t; = 8 system.

insulators at a low lattice spacing and low-field strength rel-
ative to the driving frequency. Conversely, as predicted in
Sec. II, as one increases the factor g, all systems (except near
conductors) exhibit behavior associated with the large U /1
regime and, hence, become less distinguishable. The in-
creased distinguishability of conductors in this parameter
range is also demonstrated.

Pairs of systems distinguished by potentials U; and U; are
simulated via exact diagonalization in QUSPIN, and evolved
using an eighth-order Runge-Kutta method [71]. Current ex-
pectations are calculated by constructing the time-dependent
operator in (2) at each time step, and taking the expectation
value using the state at the corresponding time. From this, the
distance measures of Eqs. (4) and (5) are calculated. These
distances are then scaled to their maximum value over the total
range of parameter pairs considered to give a measure of rela-
tive distinguishability. Figure 5 demonstrates the dependence
relative distinguishability of several system pairs with respect
to g, whereas Fig. 6 reports the relative distinguishability in
the time and spectral domains via both the difference AU and
the average U of each system’s potential.

The first point to note is that in almost all cases, the rel-
ative distinguishability of two systems is greater in the time

1.0

— Ujlty=0.0
Ujlto=2.0

— Ujltg=3.0

—— Ujfty=8.0
0.8 - o

0.6

0.4

Time Domain Distance D¢

0.2 A

0.0 T T T T
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Uj/to = 20

— Uilty=3.0
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0.8 -
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0.2 1

(b)

0-0 T T T T
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g

FIG. 5. The distance in the (a) time domain and the (b) frequency
domain of comparing U; = 1f, to U; specified by the legend. In both
plots, the curves, from top to bottom, correspond to U;/ty = 0, 8, 3,
and 2.

domain than the spectral domain (i.e., points lie below the
diagonal), demonstrating the importance of phase information
for distinguishing between system responses. As might be
expected, distinguishability tends to be lowest for materials
with small AU and high U. The relative distinguishability
between the two domains also changes dramatically as g is
increased. Taking U = t( as a reference system, Fig. 5 shows
clearly that in the time domain, the distinguishability of the
U =ty system from other insulating systems trends down-
wards, whereas distinguishability from the conductor remains
relatively constant. Interestingly, the distinguishability of the
nonconducting systems all appear to share some oscillatory
features, consistent with the oscillatory character of the inte-
gral shown in Fig. 3. In the spectral domain, the increase in
distinguishability relative to a conductor can be seen clearly.
This is to be expected, given the scaling argument in Eq. (21).
At intermediate g the distinguishability relative to the deeply
insulating U = 8¢ increases slightly before plateauing, and
this is likely due to the scaling producing a more extreme shift
in both the location and magnitude of the U = 8f; system’s
spectral peak (as can be seen in Fig. 4).

When examining the distinguishability as a function of
both the difference and average U for system pairs, the same
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FIG. 6. Each point is a comparisons of two systems with different electronic properties (U; # U;) at the same scaling factor g. Distances in
time and spectral domains are scaled by the maximum distance observed in the respective domain over g € [4.62,46.2]and U € [0, 10#], so the
distance plotted here is unitless in both domains. Systems represented in plots (a) and (d) are driven with g = 4.62, those in plots (b) and (e) are
driven with g = 14.7, and those in plots (c) and (f) are driven with g = 25.2. The coloring of the points in plots (a)—(c) and (d)—(f) represents
AU =U; — U; and U = (U; + U;)/2, respectively, of the systems being compared. A more-saturated color indicates a larger difference or
average of the U values, and a less-saturated color indicates a smaller difference or average. The different coloring schemes highlight special
comparisons. Red points in all plots are comparisons where one system is a conductor (U; = 0), green points are comparisons to the smallest
nonzero value of U;, U; = 0.1¢, and the blue points are all remaining comparisons, that is, comparisons of only insulators.

trend of systems close to the conducting limit increasing
in spectral distinguishability with g can be seen in Fig. 6.
Since the effective ratio of conductors cannot be scaled by
the field strength or lattice constant, conductor response to
optical driving cannot be dynamically altered by varying g.
A system close to this U = 0 limit will still retain its con-
ductorlike properties, whereas a system that is already deeply
in the insulating regime is scaled into an even more strongly
insulating system. This behavior is most strikingly observed
in Fig. 6(c), where at high g a banding effect is observed
separating distinguishabilities into those systems where one
of the material pair is either a conductor or small U material.

Finally, we find in all cases that whereas increasing g may
for some systems increase spectral distinguishability, all pairs
in the time domain experience a steady compression of distin-
guishability as one might expect from Eq. (21). Nevertheless,
with the exception of comparisons where one system is con-
ducting, all systems are relatively more distinguishable in the
time domain, despite the reduction in distinguishability that
occurs at high g [i.e., Figs. 6(c) and 6(f)].

IV. DISCUSSION

Here we have examined the feasibility of distinguishing
driven Mott insulators via their optical response. Simulation
demonstrated that the importance of phase information in
this process was dependent on the applied field strength and
confirmed the heuristic argument that the distinguishability of
insulators should decrease in the large-g limit. To paraphrase

Tolstoy [72], conductors—TIike happy families—always retain
a high degree of distinguishability in one domain or another,
whereas the distinguishability of insulating pairs depends
strongly on the combination of driving field amplitude, fre-
quency, and system lattice spacing.

The high dependence of material response on the scaling
factor g begs the question, what scaling values are physically
realizable for high-frequency pulses? Considering a simple
subclass of Mott insulators, transition-metal oxides, we deter-
mine that 4 A is a physically realistic lattice constant based on
studies performed by Heine and Mattheiss [73]. Hohenleutner
et al. [36] also experimentally demonstrated pulse generation
with a peak field of 44 % Thus, given an infrared frequency
32.9 THz, the scaling factors studied here are certainly within
the range of allowed experimental values since these estimates
place a maximum scaling at g = 81.3. Moreover, the results
presented here demonstrate that the change in distinguishabil-
ity sweeping over a range of field strengths may also serve as
a useful source of information for identifying materials.

It is rather interesting to note that the strong dependence of
distinguishability on g implies that the Keldysh parameter y
may also serve as a proxy for optical distinguishability for
systems. Indeed, given this parameter will depend on each
system’s correlation length (and, therefore, U), it encapsulates
more information about each system individually than g alone.
A potential future avenue of investigation would there be to
study whether a pairwise function of each system’s y may
offer some predictive heuristic for their relative distinguisha-
bility.
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Of particular importance is the finding that experimen-
tal differentiation between different Mott insulators is in
most cases more easily achieved in the time domain.
Whereas spectral characteristics are unquestionably easier
to obtain experimentally, the results presented show that
the technique of terahertz time-domain spectroscopy [74,75]
could profitably be employed to better distinguish between
materials.

Although our results only apply to strongly correlated ma-
terials, sufficient experimental optical similarity between a
known Mott insulator whose atoms are spaced sufficiently and
a material with comparable interatomic spacing could provide
an aid to the nontrivial problem of distinguishing between a
band insulator and a Mott insulator [53].
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